(* Copyright (c) 2012-2016, Robbert Krebbers. *) (* This file is distributed under the terms of the BSD license. *) From stdpp Require Import gmap. Record gmultiset A `{Countable A} := GMultiSet { gmultiset_car : gmap A nat }. Arguments GMultiSet {_ _ _} _. Arguments gmultiset_car {_ _ _} _. Instance gmultiset_eq_dec `{Countable A} : EqDecision (gmultiset A). Proof. solve_decision. Defined. Program Instance gmultiset_countable `{Countable A} : Countable (gmultiset A) := {| encode X := encode (gmultiset_car X); decode p := GMultiSet <$> decode p |}. Next Obligation. intros A ?? [X]; simpl. by rewrite decode_encode. Qed. Section definitions. Context `{Countable A}. Definition multiplicity (x : A) (X : gmultiset A) : nat := match gmultiset_car X !! x with Some n => S n | None => 0 end. Instance gmultiset_elem_of : ElemOf A (gmultiset A) := λ x X, 0 < multiplicity x X. Instance gmultiset_subseteq : SubsetEq (gmultiset A) := λ X Y, ∀ x, multiplicity x X ≤ multiplicity x Y. Instance gmultiset_elements : Elements A (gmultiset A) := λ X, let (X) := X in '(x,n) ← map_to_list X; replicate (S n) x. Instance gmultiset_size : Size (gmultiset A) := length ∘ elements. Instance gmultiset_empty : Empty (gmultiset A) := GMultiSet ∅. Instance gmultiset_singleton : Singleton A (gmultiset A) := λ x, GMultiSet {[ x := 0 ]}. Instance gmultiset_union : Union (gmultiset A) := λ X Y, let (X) := X in let (Y) := Y in GMultiSet $ union_with (λ x y, Some (S (x + y))) X Y. Instance gmultiset_difference : Difference (gmultiset A) := λ X Y, let (X) := X in let (Y) := Y in GMultiSet $ difference_with (λ x y, let z := x - y in guard (0 < z); Some (pred z)) X Y. End definitions. (** These instances are declared using [Hint Extern] to avoid too eager type class search. *) Hint Extern 1 (ElemOf _ (gmultiset _)) => eapply @gmultiset_elem_of : typeclass_instances. Hint Extern 1 (SubsetEq (gmultiset _)) => eapply @gmultiset_subseteq : typeclass_instances. Hint Extern 1 (Empty (gmultiset _)) => eapply @gmultiset_empty : typeclass_instances. Hint Extern 1 (Singleton _ (gmultiset _)) => eapply @gmultiset_singleton : typeclass_instances. Hint Extern 1 (Union (gmultiset _)) => eapply @gmultiset_union : typeclass_instances. Hint Extern 1 (Difference (gmultiset _)) => eapply @gmultiset_difference : typeclass_instances. Hint Extern 1 (Elements _ (gmultiset _)) => eapply @gmultiset_elements : typeclass_instances. Hint Extern 1 (Size (gmultiset _)) => eapply @gmultiset_size : typeclass_instances. Section lemmas. Context `{Countable A}. Implicit Types x y : A. Implicit Types X Y : gmultiset A. Lemma gmultiset_eq X Y : X = Y ↔ ∀ x, multiplicity x X = multiplicity x Y. Proof. split; [by intros ->|intros HXY]. destruct X as [X], Y as [Y]; f_equal; apply map_eq; intros x. specialize (HXY x); unfold multiplicity in *; simpl in *. repeat case_match; naive_solver. Qed. Global Instance gmultiset_po : PartialOrder (@subseteq (gmultiset A) _). Proof. split; [split|]. - by intros X x. - intros X Y Z HXY HYZ x. by trans (multiplicity x Y). - intros X Y HXY HYX; apply gmultiset_eq; intros x. by apply (anti_symm (≤)). Qed. Lemma gmultiset_subset_subseteq X Y : X ⊂ Y → X ⊆ Y. Proof. by intros [??]. Qed. Hint Resolve gmultiset_subset_subseteq. (* Multiplicity *) Lemma multiplicity_empty x : multiplicity x ∅ = 0. Proof. done. Qed. Lemma multiplicity_singleton x : multiplicity x {[ x ]} = 1. Proof. unfold multiplicity; simpl. by rewrite lookup_singleton. Qed. Lemma multiplicity_singleton_ne x y : x ≠ y → multiplicity x {[ y ]} = 0. Proof. intros. unfold multiplicity; simpl. by rewrite lookup_singleton_ne. Qed. Lemma multiplicity_union X Y x : multiplicity x (X ∪ Y) = multiplicity x X + multiplicity x Y. Proof. destruct X as [X], Y as [Y]; unfold multiplicity; simpl. rewrite lookup_union_with. destruct (X !! _), (Y !! _); simpl; omega. Qed. Lemma multiplicity_difference X Y x : multiplicity x (X ∖ Y) = multiplicity x X - multiplicity x Y. Proof. destruct X as [X], Y as [Y]; unfold multiplicity; simpl. rewrite lookup_difference_with. destruct (X !! _), (Y !! _); simplify_option_eq; omega. Qed. (* Algebraic laws *) Global Instance gmultiset_comm : Comm (@eq (gmultiset A)) (∪). Proof. intros X Y. apply gmultiset_eq; intros x. rewrite !multiplicity_union; omega. Qed. Global Instance gmultiset_assoc : Assoc (@eq (gmultiset A)) (∪). Proof. intros X Y Z. apply gmultiset_eq; intros x. rewrite !multiplicity_union; omega. Qed. Global Instance gmultiset_left_id : LeftId (@eq (gmultiset A)) ∅ (∪). Proof. intros X. apply gmultiset_eq; intros x. by rewrite multiplicity_union, multiplicity_empty. Qed. Global Instance gmultiset_right_id : RightId (@eq (gmultiset A)) ∅ (∪). Proof. intros X. by rewrite (comm_L (∪)), (left_id_L _ _). Qed. Global Instance gmultiset_union_inj_1 X : Inj (=) (=) (X ∪). Proof. intros Y1 Y2. rewrite !gmultiset_eq. intros HX x; generalize (HX x). rewrite !multiplicity_union. omega. Qed. Global Instance gmultiset_union_inj_2 X : Inj (=) (=) (∪ X). Proof. intros Y1 Y2. rewrite <-!(comm_L _ X). apply (inj _). Qed. Lemma gmultiset_union_difference X Y : X ⊆ Y → Y = X ∪ Y ∖ X. Proof. intros HXY. apply gmultiset_eq; intros x; specialize (HXY x). rewrite multiplicity_union, multiplicity_difference; omega. Qed. Lemma non_empty_difference X Y : X ⊂ Y → Y ∖ X ≠ ∅. Proof. intros [_ HXY2] Hdiff; destruct HXY2; intros x. generalize (f_equal (multiplicity x) Hdiff). rewrite multiplicity_difference, multiplicity_empty; omega. Qed. (* Properties of the elements operation *) Lemma gmultiset_elements_empty : elements (∅ : gmultiset A) = []. Proof. unfold elements, gmultiset_elements; simpl. by rewrite map_to_list_empty. Qed. Lemma gmultiset_elements_empty_inv X : elements X = [] → X = ∅. Proof. destruct X as [X]; unfold elements, gmultiset_elements; simpl. intros; apply (f_equal GMultiSet). destruct (map_to_list X) as [|[]] eqn:?; naive_solver eauto using map_to_list_empty_inv. Qed. Lemma gmultiset_elements_empty' X : elements X = [] ↔ X = ∅. Proof. split; intros HX; [by apply gmultiset_elements_empty_inv|]. by rewrite HX, gmultiset_elements_empty. Qed. Lemma gmultiset_elements_singleton x : elements ({[ x ]} : gmultiset A) = [ x ]. Proof. unfold elements, gmultiset_elements; simpl. by rewrite map_to_list_singleton. Qed. Lemma gmultiset_elements_union X Y : elements (X ∪ Y) ≡ₚ elements X ++ elements Y. Proof. destruct X as [X], Y as [Y]; unfold elements, gmultiset_elements. set (f xn := let '(x, n) := xn in replicate (S n) x); simpl. revert Y; induction X as [|x n X HX IH] using map_ind; intros Y. { by rewrite (left_id_L _ _), map_to_list_empty. } destruct (Y !! x) as [n'|] eqn:HY. - rewrite <-(insert_id Y x n'), <-(insert_delete Y) by done. erewrite <-insert_union_with by done. rewrite !map_to_list_insert, !bind_cons by (by rewrite ?lookup_union_with, ?lookup_delete, ?HX). rewrite (assoc_L _), <-(comm (++) (f (_,n'))), <-!(assoc_L _), <-IH. rewrite (assoc_L _); f_equiv; [rewrite (comm _); simpl|done]. by rewrite replicate_plus, Permutation_middle. - rewrite <-insert_union_with_l, !map_to_list_insert, !bind_cons by (by rewrite ?lookup_union_with, ?HX, ?HY). by rewrite <-(assoc_L (++)), <-IH. Qed. Lemma gmultiset_elements_contains X Y : X ⊆ Y → elements X `contains` elements Y. Proof. intros ->%gmultiset_union_difference. rewrite gmultiset_elements_union. by apply contains_inserts_r. Qed. Lemma gmultiset_elem_of_elements x X : x ∈ elements X ↔ x ∈ X. Proof. destruct X as [X]. unfold elements, gmultiset_elements. set (f xn := let '(x, n) := xn in replicate (S n) x); simpl. unfold elem_of at 2, gmultiset_elem_of, multiplicity; simpl. rewrite elem_of_list_bind. split. - intros [[??] [[<- ?]%elem_of_replicate ->%elem_of_map_to_list]]; lia. - intros. destruct (X !! x) as [n|] eqn:Hx; [|omega]. exists (x,n); split; [|by apply elem_of_map_to_list]. apply elem_of_replicate; auto with omega. Qed. (* Properties of the size operation *) Lemma gmultiset_size_empty : size (∅ : gmultiset A) = 0. Proof. done. Qed. Lemma gmultiset_size_empty_inv X : size X = 0 → X = ∅. Proof. unfold size, gmultiset_size; simpl. rewrite length_zero_iff_nil. apply gmultiset_elements_empty_inv. Qed. Lemma gmultiset_size_empty_iff X : size X = 0 ↔ X = ∅. Proof. split; [apply gmultiset_size_empty_inv|]. by intros ->; rewrite gmultiset_size_empty. Qed. Lemma gmultiset_size_non_empty_iff X : size X ≠ 0 ↔ X ≠ ∅. Proof. by rewrite gmultiset_size_empty_iff. Qed. Lemma gmultiset_choose_or_empty X : (∃ x, x ∈ X) ∨ X = ∅. Proof. destruct (elements X) as [|x l] eqn:HX; [right|left]. - by apply gmultiset_elements_empty_inv. - exists x. rewrite <-gmultiset_elem_of_elements, HX. by left. Qed. Lemma gmultiset_choose X : X ≠ ∅ → ∃ x, x ∈ X. Proof. intros. by destruct (gmultiset_choose_or_empty X). Qed. Lemma gmultiset_size_pos_elem_of X : 0 < size X → ∃ x, x ∈ X. Proof. intros Hsz. destruct (gmultiset_choose_or_empty X) as [|HX]; [done|]. contradict Hsz. rewrite HX, gmultiset_size_empty; lia. Qed. Lemma gmultiset_size_singleton x : size ({[ x ]} : gmultiset A) = 1. Proof. unfold size, gmultiset_size; simpl. by rewrite gmultiset_elements_singleton. Qed. Lemma gmultiset_size_union X Y : size (X ∪ Y) = size X + size Y. Proof. unfold size, gmultiset_size; simpl. by rewrite gmultiset_elements_union, app_length. Qed. Lemma gmultiset_size_difference X Y : Y ⊆ X → size (X ∖ Y) = size X - size Y. Proof. intros HX%gmultiset_union_difference. rewrite HX at 2; rewrite gmultiset_size_union. omega. Qed. (* Mononicity *) Lemma gmultiset_subseteq_size X Y : X ⊆ Y → size X ≤ size Y. Proof. intros. by apply contains_length, gmultiset_elements_contains. Qed. Lemma gmultiset_subset_size X Y : X ⊂ Y → size X < size Y. Proof. intros HXY. assert (size (Y ∖ X) ≠ 0). { by apply gmultiset_size_non_empty_iff, non_empty_difference. } rewrite (gmultiset_union_difference X Y), gmultiset_size_union by auto. lia. Qed. (* Well-foundedness *) Lemma gmultiset_wf : wf (strict (@subseteq (gmultiset A) _)). Proof. apply (wf_projected (<) size); auto using gmultiset_subset_size, lt_wf. Qed. End lemmas.