Commit fed72f20 authored by Robbert Krebbers's avatar Robbert Krebbers

A generic filter operation on finite collections.

parent 54bdb7ad
......@@ -11,6 +11,10 @@ Instance collection_size `{Elements A C} : Size C := length ∘ elements.
Definition collection_fold `{Elements A C} {B}
(f : A B B) (b : B) : C B := foldr f b elements.
Instance collection_filter
`{Elements A C, Empty C, Singleton A C, Union C} : Filter A C := λ P _ X,
of_list (filter P (elements X)).
Section fin_collection.
Context `{FinCollection A C}.
Implicit Types X Y : C.
......@@ -184,6 +188,7 @@ Lemma collection_fold_proper {B} (R : relation B) `{!Equivalence R}
Proper (() ==> R) (collection_fold f b : C B).
Proof. intros ?? E. apply (foldr_permutation R f b); auto. by rewrite E. Qed.
(** * Minimal elements *)
Lemma minimal_exists `{!StrictOrder R, x y, Decision (R x y)} (X : C) :
X x, x X minimal R x X.
......@@ -205,6 +210,14 @@ Lemma minimal_exists_L
X x, x X minimal R x X.
Proof. unfold_leibniz. apply minimal_exists. Qed.
(** * Filter *)
Lemma elem_of_filter (P : A Prop) `{! x, Decision (P x)} X x :
x filter P X P x x X.
unfold filter, collection_filter.
by rewrite elem_of_of_list, elem_of_list_filter, elem_of_elements.
(** * Decision procedures *)
Global Instance set_Forall_dec `(P : A Prop)
`{ x, Decision (P x)} X : Decision (set_Forall P X) | 100.
Markdown is supported
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment