Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
7
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
David Swasey
coqstdpp
Commits
fcc1f0de
Commit
fcc1f0de
authored
Aug 14, 2013
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
More efficient conversion of pmap to association lists.
parent
bc659ba4
Changes
1
Hide whitespace changes
Inline
Sidebyside
Showing
1 changed file
with
73 additions
and
61 deletions
+73
61
theories/pmap.v
theories/pmap.v
+73
61
No files found.
theories/pmap.v
View file @
fcc1f0de
...
...
@@ 257,76 +257,84 @@ Lemma Plookup_fmap {A B} (f : A → B) (t : Pmap_raw A) i :
fmap
f
t
!!
i
=
fmap
f
(
t
!!
i
).
Proof
.
revert
i
.
induction
t
.
done
.
by
intros
[??]
;
simpl
.
Qed
.
Fixpoint
Pto_list_raw
{
A
}
(
j
:
positive
)
(
t
:
Pmap_raw
A
)
:
list
(
positive
*
A
)
:
=
Fixpoint
Pto_list_raw
{
A
}
(
j
:
positive
)
(
t
:
Pmap_raw
A
)
(
acc
:
list
(
positive
*
A
))
:
list
(
positive
*
A
)
:
=
match
t
with

PLeaf
=>
[]

PNode
l
o
r
=>
default
[]
o
(
λ
x
,
[(
Preverse
j
,
x
)])
++
Pto_list_raw
(
j
~
0
)
l
++
Pto_list_raw
(
j
~
1
)
r

PLeaf
=>
acc

PNode
l
o
r
=>
default
[]
o
(
λ
x
,
[(
Preverse
j
,
x
)])
++
Pto_list_raw
(
j
~
0
)
l
(
Pto_list_raw
(
j
~
1
)
r
acc
)
end
%
list
.
Lemma
Pelem_of_to_list_aux
{
A
}
(
t
:
Pmap_raw
A
)
j
i
x
:
(
i
,
x
)
∈
Pto_list_raw
j
t
↔
∃
i'
,
i
=
i'
++
Preverse
j
∧
t
!!
i'
=
Some
x
.
Lemma
Pelem_of_to_list
{
A
}
(
t
:
Pmap_raw
A
)
j
i
acc
x
:
(
i
,
x
)
∈
Pto_list_raw
j
t
acc
↔
(
∃
i'
,
i
=
i'
++
Preverse
j
∧
t
!!
i'
=
Some
x
)
∨
(
i
,
x
)
∈
acc
.
Proof
.
split
.
*
revert
j
.
induction
t
as
[?
IHl
[?]
?
IHr
]
;
intros
j
;
simpl
.
+
by
rewrite
?elem_of_nil
.
+
rewrite
elem_of_cons
,
!
elem_of_app
.
intros
[?[??]].

simplify_equality
.
exists
1
.
by
rewrite
(
left_id_L
1
(++))%
positive
.

destruct
(
IHl
(
j
~
0
))
as
(
i'
&?&?)
;
trivial
;
subst
.
exists
(
i'
~
0
).
by
rewrite
Preverse_xO
,
(
associative_L
_
).

destruct
(
IHr
(
j
~
1
))
as
(
i'
&?&?)
;
trivial
;
subst
.
exists
(
i'
~
1
).
by
rewrite
Preverse_xI
,
(
associative_L
_
).
+
rewrite
!
elem_of_app
.
intros
[??].

destruct
(
IHl
(
j
~
0
))
as
(
i'
&?&?)
;
trivial
;
subst
.
exists
(
i'
~
0
).
by
rewrite
Preverse_xO
,
(
associative_L
_
).

destruct
(
IHr
(
j
~
1
))
as
(
i'
&?&?)
;
trivial
;
subst
.
exists
(
i'
~
1
).
by
rewrite
Preverse_xI
,
(
associative_L
_
).
*
intros
(
i'
&
?&
Hi'
)
;
subst
.
revert
i'
j
Hi'
.
induction
t
as
[?
IHl
[?]
?
IHr
]
;
intros
i
j
;
simpl
.
+
done
.
+
rewrite
elem_of_cons
,
elem_of_app
.
destruct
i
as
[
i

i
]
;
simpl
in
*.

right
.
right
.
specialize
(
IHr
i
(
j
~
1
)).
rewrite
Preverse_xI
,
(
associative_L
_
)
in
IHr
.
auto
.

right
.
left
.
specialize
(
IHl
i
(
j
~
0
)).
rewrite
Preverse_xO
,
(
associative_L
_
)
in
IHl
.
auto
.

left
.
simplify_equality
.
by
rewrite
(
left_id_L
1
(++))%
positive
.
+
rewrite
elem_of_app
.
destruct
i
as
[
i

i
]
;
simpl
in
*.

right
.
specialize
(
IHr
i
(
j
~
1
)).
rewrite
Preverse_xI
,
(
associative_L
_
)
in
IHr
.
auto
.

left
.
specialize
(
IHl
i
(
j
~
0
)).
rewrite
Preverse_xO
,
(
associative_L
_
)
in
IHl
.
auto
.

done
.
Qed
.
Lemma
Pelem_of_to_list
{
A
}
(
t
:
Pmap_raw
A
)
i
x
:
(
i
,
x
)
∈
Pto_list_raw
1
t
↔
t
!!
i
=
Some
x
.
Proof
.
rewrite
Pelem_of_to_list_aux
.
split
.
by
intros
(
i'
&>&?).
intros
.
by
exists
i
.
{
revert
j
acc
.
induction
t
as
[
l
IHl
[
y
]
r
IHr
]
;
intros
j
acc
;
simpl
.
*
by
right
.
*
rewrite
elem_of_cons
.
intros
[??]
;
simplify_equality
.
{
left
;
exists
1
.
by
rewrite
(
left_id_L
1
(++))%
positive
.
}
destruct
(
IHl
(
j
~
0
)
(
Pto_list_raw
j
~
1
r
acc
))
as
[(
i'
&>&?)?]
;
auto
.
{
left
;
exists
(
i'
~
0
).
by
rewrite
Preverse_xO
,
(
associative_L
_
).
}
destruct
(
IHr
(
j
~
1
)
acc
)
as
[(
i'
&>&?)?]
;
auto
.
left
;
exists
(
i'
~
1
).
by
rewrite
Preverse_xI
,
(
associative_L
_
).
*
intros
.
destruct
(
IHl
(
j
~
0
)
(
Pto_list_raw
j
~
1
r
acc
))
as
[(
i'
&>&?)?]
;
auto
.
{
left
;
exists
(
i'
~
0
).
by
rewrite
Preverse_xO
,
(
associative_L
_
).
}
destruct
(
IHr
(
j
~
1
)
acc
)
as
[(
i'
&>&?)?]
;
auto
.
left
;
exists
(
i'
~
1
).
by
rewrite
Preverse_xI
,
(
associative_L
_
).
}
revert
t
j
i
acc
.
assert
(
∀
t
j
i
acc
,
(
i
,
x
)
∈
acc
→
(
i
,
x
)
∈
Pto_list_raw
j
t
acc
)
as
help
.
{
intros
t
;
induction
t
as
[
l
IHl
[
y
]
r
IHr
]
;
intros
j
i
acc
;
simpl
;
rewrite
?elem_of_cons
;
auto
.
}
intros
t
j
?
acc
[(
i
&>&
Hi
)?]
;
[
by
auto
].
revert
j
i
acc
Hi
.
induction
t
as
[
l
IHl
[
y
]
r
IHr
]
;
intros
j
i
acc
?
;
simpl
.
*
done
.
*
rewrite
elem_of_cons
.
destruct
i
as
[
i

i
]
;
simplify_equality'
.
+
right
.
apply
help
.
specialize
(
IHr
(
j
~
1
)
i
).
rewrite
Preverse_xI
,
(
associative_L
_
)
in
IHr
.
by
apply
IHr
.
+
right
.
specialize
(
IHl
(
j
~
0
)
i
).
rewrite
Preverse_xO
,
(
associative_L
_
)
in
IHl
.
by
apply
IHl
.
+
left
.
by
rewrite
(
left_id_L
1
(++))%
positive
.
*
destruct
i
as
[
i

i
]
;
simplify_equality'
.
+
apply
help
.
specialize
(
IHr
(
j
~
1
)
i
).
rewrite
Preverse_xI
,
(
associative_L
_
)
in
IHr
.
by
apply
IHr
.
+
specialize
(
IHl
(
j
~
0
)
i
).
rewrite
Preverse_xO
,
(
associative_L
_
)
in
IHl
.
by
apply
IHl
.
Qed
.
Lemma
Pto_list_nodup
{
A
}
j
(
t
:
Pmap_raw
A
)
:
NoDup
(
Pto_list_raw
j
t
).
Lemma
Pto_list_nodup
{
A
}
j
(
t
:
Pmap_raw
A
)
acc
:
(
∀
i
x
,
(
i
++
Preverse
j
,
x
)
∈
acc
→
t
!!
i
=
None
)
→
NoDup
acc
→
NoDup
(
Pto_list_raw
j
t
acc
).
Proof
.
revert
j
.
induction
t
as
[?
IHl
[?]
?
IHr
]
;
simpl
.
*
constructor
.
*
intros
.
rewrite
NoDup_cons
,
NoDup_app
.
split_ands
;
trivial
.
+
rewrite
elem_of_app
,
!
Pelem_of_to_list_aux
.
intros
[(
i
&
Hi
&?)(
i
&
Hi
&?)].

rewrite
Preverse_xO
in
Hi
.
apply
(
f_equal
Plength
)
in
Hi
.
rewrite
!
Papp_length
in
Hi
.
simpl
in
Hi
.
lia
.

rewrite
Preverse_xI
in
Hi
.
apply
(
f_equal
Plength
)
in
Hi
.
rewrite
!
Papp_length
in
Hi
.
simpl
in
Hi
.
lia
.
+
intros
[??].
rewrite
!
Pelem_of_to_list_aux
.
intros
(
i1
&?&?)
(
i2
&
Hi
&?)
;
subst
.
rewrite
Preverse_xO
,
Preverse_xI
,
!(
associative_L
_
)
in
Hi
.
by
apply
(
injective
(++
_
))
in
Hi
.
*
intros
.
rewrite
NoDup_app
.
split_ands
;
trivial
.
intros
[??].
rewrite
!
Pelem_of_to_list_aux
.
intros
(
i1
&?&?)
(
i2
&
Hi
&?)
;
subst
.
rewrite
Preverse_xO
,
Preverse_xI
,
!(
associative_L
_
)
in
Hi
.
by
apply
(
injective
(++
_
))
in
Hi
.
revert
j
acc
.
induction
t
as
[
l
IHl
[
y
]
r
IHr
]
;
simpl
;
intros
j
acc
Hin
?.
*
done
.
*
repeat
constructor
.
{
rewrite
Pelem_of_to_list
.
intros
[(
i
&
Hi
&?)
Hj
].
{
apply
(
f_equal
Plength
)
in
Hi
.
rewrite
Preverse_xO
,
!
Papp_length
in
Hi
;
simpl
in
*
;
lia
.
}
rewrite
Pelem_of_to_list
in
Hj
.
destruct
Hj
as
[(
i
&
Hi
&?)
Hj
].
{
apply
(
f_equal
Plength
)
in
Hi
.
rewrite
Preverse_xI
,
!
Papp_length
in
Hi
;
simpl
in
*
;
lia
.
}
specialize
(
Hin
1
y
).
rewrite
(
left_id_L
1
(++))%
positive
in
Hin
.
discriminate
(
Hin
Hj
).
}
apply
IHl
.
{
intros
i
x
.
rewrite
Pelem_of_to_list
.
intros
[(?&
Hi
&?)
Hi
].
+
rewrite
Preverse_xO
,
Preverse_xI
,
!(
associative_L
_
)
in
Hi
.
by
apply
(
injective
(++
_
))
in
Hi
.
+
apply
(
Hin
(
i
~
0
)
x
).
by
rewrite
Preverse_xO
,
(
associative_L
_
)
in
Hi
.
}
apply
IHr
;
auto
.
intros
i
x
Hi
.
apply
(
Hin
(
i
~
1
)
x
).
by
rewrite
Preverse_xI
,
(
associative_L
_
)
in
Hi
.
*
apply
IHl
.
{
intros
i
x
.
rewrite
Pelem_of_to_list
.
intros
[(?&
Hi
&?)
Hi
].
+
rewrite
Preverse_xO
,
Preverse_xI
,
!(
associative_L
_
)
in
Hi
.
by
apply
(
injective
(++
_
))
in
Hi
.
+
apply
(
Hin
(
i
~
0
)
x
).
by
rewrite
Preverse_xO
,
(
associative_L
_
)
in
Hi
.
}
apply
IHr
;
auto
.
intros
i
x
Hi
.
apply
(
Hin
(
i
~
1
)
x
).
by
rewrite
Preverse_xI
,
(
associative_L
_
)
in
Hi
.
Qed
.
Global
Instance
Pto_list
{
A
}
:
FinMapToList
positive
A
(
Pmap
A
)
:
=
λ
t
,
Pto_list_raw
1
(
`
t
).
λ
t
,
Pto_list_raw
1
(
`
t
)
[]
.
Fixpoint
Pmerge_aux
`
(
f
:
option
A
→
option
B
)
(
t
:
Pmap_raw
A
)
:
Pmap_raw
B
:
=
match
t
with
...
...
@@ 385,7 +393,11 @@ Proof.
*
intros
??
[??]
??.
by
apply
Plookup_alter_ne
.
*
intros
???
[??].
by
apply
Plookup_fmap
.
*
intros
?
[??].
apply
Pto_list_nodup
.
*
intros
?
[??].
apply
Pelem_of_to_list
.
+
intros
??.
by
rewrite
elem_of_nil
.
+
constructor
.
*
intros
?
[??]
i
x
;
unfold
map_to_list
,
Pto_list
.
rewrite
Pelem_of_to_list
,
elem_of_nil
.
split
.
by
intros
[(?&>&?)].
by
left
;
exists
i
.
*
intros
???
??
[??]
[??]
?.
by
apply
Pmerge_spec
.
Qed
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment