Pattern matching notation for monadic binds.

This gets rid of the old hack to have specific notations for pairs
up to a fixed arity, and moreover allows to do fancy things like:

```
Record test := Test { t1 : nat; t2 : nat }.

Definition foo (x : option test) : option nat :=
''(Test a1 a2) ← x;
Some a1.
```
parent 376dff25
 ... ... @@ -887,25 +887,14 @@ Notation "(≫= f )" := (mbind f) (only parsing) : stdpp_scope. Notation "(≫=)" := (λ m f, mbind f m) (only parsing) : stdpp_scope. Notation "x ← y ; z" := (y ≫= (λ x : _, z)) (at level 100, only parsing, right associativity) : stdpp_scope. (at level 20, y at level 100, z at level 200, only parsing) : stdpp_scope. Notation "' x1 .. xn ← y ; z" := (y ≫= (λ x1, .. (λ xn, z) .. )) (at level 20, x1 binder, xn binder, y at level 100, z at level 200, only parsing, right associativity) : stdpp_scope. Infix "<\$>" := fmap (at level 61, left associativity) : stdpp_scope. Notation "' ( x1 , x2 ) ← y ; z" := (y ≫= (λ x : _, let ' (x1, x2) := x in z)) (at level 100, z at level 200, only parsing, right associativity) : stdpp_scope. Notation "' ( x1 , x2 , x3 ) ← y ; z" := (y ≫= (λ x : _, let ' (x1,x2,x3) := x in z)) (at level 100, z at level 200, only parsing, right associativity) : stdpp_scope. Notation "' ( x1 , x2 , x3 , x4 ) ← y ; z" := (y ≫= (λ x : _, let ' (x1,x2,x3,x4) := x in z)) (at level 100, z at level 200, only parsing, right associativity) : stdpp_scope. Notation "' ( x1 , x2 , x3 , x4 , x5 ) ← y ; z" := (y ≫= (λ x : _, let ' (x1,x2,x3,x4,x5) := x in z)) (at level 100, z at level 200, only parsing, right associativity) : stdpp_scope. Notation "' ( x1 , x2 , x3 , x4 , x5 , x6 ) ← y ; z" := (y ≫= (λ x : _, let ' (x1,x2,x3,x4,x5,x6) := x in z)) (at level 100, z at level 200, only parsing, right associativity) : stdpp_scope. Notation "x ;; z" := (x ≫= λ _, z) (at level 100, z at level 200, only parsing, right associativity): stdpp_scope. ... ... @@ -918,9 +907,9 @@ Class MGuard (M : Type → Type) := mguard: ∀ P {dec : Decision P} {A}, (P → M A) → M A. Arguments mguard _ _ _ !_ _ _ / : assert. Notation "'guard' P ; z" := (mguard P (λ _, z)) (at level 100, z at level 200, only parsing, right associativity) : stdpp_scope. (at level 20, z at level 200, only parsing, right associativity) : stdpp_scope. Notation "'guard' P 'as' H ; z" := (mguard P (λ H, z)) (at level 100, z at level 200, only parsing, right associativity) : stdpp_scope. (at level 20, z at level 200, only parsing, right associativity) : stdpp_scope. (** * Operations on maps *) (** In this section we define operational type classes for the operations ... ...
 ... ... @@ -27,7 +27,7 @@ Section definitions. multiplicity x X ≤ multiplicity x Y. Global Instance gmultiset_elements : Elements A (gmultiset A) := λ X, let (X) := X in '(x,n) ← map_to_list X; replicate (S n) x. let (X) := X in ''(x,n) ← map_to_list X; replicate (S n) x. Global Instance gmultiset_size : Size (gmultiset A) := length ∘ elements. Global Instance gmultiset_empty : Empty (gmultiset A) := GMultiSet ∅. ... ...
 ... ... @@ -534,11 +534,12 @@ Definition Qp_minus (x y : Qp) : option Qp := match decide (0 < z)%Qc with left Hz => Some (mk_Qp z Hz) | _ => None end. Program Definition Qp_mult (x y : Qp) : Qp := mk_Qp (x * y) _. Next Obligation. intros x y. apply Qcmult_pos_pos; apply Qp_prf. Qed. Program Definition Qp_div (x : Qp) (y : positive) : Qp := mk_Qp (x / ('y)%Z) _. Program Definition Qp_div (x : Qp) (y : positive) : Qp := mk_Qp (x / Zpos y) _. Next Obligation. intros x y. assert (0 < ('y)%Z)%Qc. { apply (Z2Qc_inj_lt 0%Z (' y)), Pos2Z.is_pos. } by rewrite (Qcmult_lt_mono_pos_r _ _ ('y)%Z), Qcmult_0_l, intros x y. assert (0 < Zpos y)%Qc. { apply (Z2Qc_inj_lt 0%Z (Zpos y)), Pos2Z.is_pos. } by rewrite (Qcmult_lt_mono_pos_r _ _ (Zpos y)%Z), Qcmult_0_l, <-Qcmult_assoc, Qcmult_inv_l, Qcmult_1_r. Qed. ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!