Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
C
coq-stdpp
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
David Swasey
coq-stdpp
Commits
cab3033b
Commit
cab3033b
authored
Dec 15, 2016
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Move stuff out of sections that does not depend on the section variables.
parent
b084730a
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
32 additions
and
27 deletions
+32
-27
theories/list.v
theories/list.v
+32
-27
No files found.
theories/list.v
View file @
cab3033b
...
...
@@ -2082,11 +2082,18 @@ Proof.
end); clear go; intuition.
Defined.
Definition Forall_nil_2 := @Forall_nil A.
Definition Forall_cons_2 := @Forall_cons A.
Global Instance Forall_proper:
Proper (pointwise_relation _ (↔) ==> (=) ==> (↔)) (@Forall A).
Proof. split; subst; induction 1; constructor; by firstorder auto. Qed.
Global Instance Exists_proper:
Proper (pointwise_relation _ (↔) ==> (=) ==> (↔)) (@Exists A).
Proof. split; subst; induction 1; constructor; by firstorder auto. Qed.
Section Forall_Exists.
Context (P : A → Prop).
Definition Forall_nil_2 := @Forall_nil A.
Definition Forall_cons_2 := @Forall_cons A.
Lemma Forall_forall l : Forall P l ↔ ∀ x, x ∈ l → P x.
Proof.
split; [induction 1; inversion 1; subst; auto|].
...
...
@@ -2113,9 +2120,6 @@ Section Forall_Exists.
Lemma Forall_impl (Q : A → Prop) l :
Forall P l → (∀ x, P x → Q x) → Forall Q l.
Proof. intros H ?. induction H; auto. Defined.
Global Instance Forall_proper:
Proper (pointwise_relation _ (↔) ==> (=) ==> (↔)) (@Forall A).
Proof. split; subst; induction 1; constructor; by firstorder auto. Qed.
Lemma Forall_iff l (Q : A → Prop) :
(∀ x, P x ↔ Q x) → Forall P l ↔ Forall Q l.
Proof. intros H. apply Forall_proper. red; apply H. done. Qed.
...
...
@@ -2226,9 +2230,7 @@ Section Forall_Exists.
Lemma Exists_impl (Q : A → Prop) l :
Exists P l → (∀ x, P x → Q x) → Exists Q l.
Proof. intros H ?. induction H; auto. Defined.
Global Instance Exists_proper:
Proper (pointwise_relation _ (↔) ==> (=) ==> (↔)) (@Exists A).
Proof. split; subst; induction 1; constructor; by firstorder auto. Qed.
Lemma Exists_not_Forall l : Exists (not ∘ P) l → ¬Forall P l.
Proof. induction 1; inversion_clear 1; contradiction. Qed.
Lemma Forall_not_Exists l : Forall (not ∘ P) l → ¬Exists P l.
...
...
@@ -2291,7 +2293,26 @@ Proof.
destruct Hj; subst. auto with lia.
Qed.
Lemma Forall2_same_length {A B} (l : list A) (k : list B) :
Forall2 (λ _ _, True) l k ↔ length l = length k.
Proof.
split; [by induction 1; f_equal/=|].
revert k. induction l; intros [|??] ?; simplify_eq/=; auto.
Qed.
(** ** Properties of the [Forall2] predicate *)
Lemma Forall_Forall2 {A} (Q : A → A → Prop) l :
Forall (λ x, Q x x) l → Forall2 Q l l.
Proof. induction 1; constructor; auto. Qed.
Lemma Forall2_forall `{Inhabited A} B C (Q : A → B → C → Prop) l k :
Forall2 (λ x y, ∀ z, Q z x y) l k ↔ ∀ z, Forall2 (Q z) l k.
Proof.
split; [induction 1; constructor; auto|].
intros Hlk. induction (Hlk inhabitant) as [|x y l k _ _ IH]; constructor.
- intros z. by feed inversion (Hlk z).
- apply IH. intros z. by feed inversion (Hlk z).
Qed.
Section Forall2.
Context {A B} (P : A → B → Prop).
Implicit Types x : A.
...
...
@@ -2299,12 +2320,6 @@ Section Forall2.
Implicit Types l : list A.
Implicit Types k : list B.
Lemma Forall2_same_length l k :
Forall2 (λ _ _, True) l k ↔ length l = length k.
Proof.
split; [by induction 1; f_equal/=|].
revert k. induction l; intros [|??] ?; simplify_eq/=; auto.
Qed.
Lemma Forall2_length l k : Forall2 P l k → length l = length k.
Proof. by induction 1; f_equal/=. Qed.
Lemma Forall2_length_l l k n : Forall2 P l k → length l = n → length k = n.
...
...
@@ -2329,18 +2344,7 @@ Section Forall2.
Proof.
intros H. revert k2. induction H; inversion_clear 1; intros; f_equal; eauto.
Qed.
Lemma Forall2_forall `{Inhabited C} (Q : C → A → B → Prop) l k :
Forall2 (λ x y, ∀ z, Q z x y) l k ↔ ∀ z, Forall2 (Q z) l k.
Proof.
split; [induction 1; constructor; auto|].
intros Hlk. induction (Hlk inhabitant) as [|x y l k _ _ IH]; constructor.
- intros z. by feed inversion (Hlk z).
- apply IH. intros z. by feed inversion (Hlk z).
Qed.
Lemma Forall_Forall2 (Q : A → A → Prop) l :
Forall (λ x, Q x x) l → Forall2 Q l l.
Proof. induction 1; constructor; auto. Qed.
Lemma Forall2_Forall_l (Q : A → Prop) l k :
Forall2 P l k → Forall (λ y, ∀ x, P x y → Q x) k → Forall Q l.
Proof. induction 1; inversion_clear 1; eauto. Qed.
...
...
@@ -2801,11 +2805,12 @@ Section setoid.
End setoid.
(** * Properties of the monadic operations *)
Lemma list_fmap_id {A} (l : list A) : id <$> l = l.
Proof. induction l; f_equal/=; auto. Qed.
Section fmap.
Context {A B : Type} (f : A → B).
Lemma list_fmap_id (l : list A) : id <$> l = l.
Proof. induction l; f_equal/=; auto. Qed.
Lemma list_fmap_compose {C} (g : B → C) l : g ∘ f <$> l = g <$> f <$> l.
Proof. induction l; f_equal/=; auto. Qed.
Lemma list_fmap_ext (g : A → B) (l1 l2 : list A) :
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment