Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
7
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
David Swasey
coqstdpp
Commits
b9117014
Commit
b9117014
authored
Aug 04, 2014
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Add monoid operation on option.
parent
71214d32
Changes
1
Hide whitespace changes
Inline
Sidebyside
Showing
1 changed file
with
41 additions
and
35 deletions
+41
35
theories/option.v
theories/option.v
+41
35
No files found.
theories/option.v
View file @
b9117014
...
...
@@ 138,6 +138,46 @@ Qed.
Lemma
bind_with_Some
{
A
}
(
x
:
option
A
)
:
x
≫
=
Some
=
x
.
Proof
.
by
destruct
x
.
Qed
.
(** * Union, intersection and difference *)
Instance
option_union_with
{
A
}
:
UnionWith
A
(
option
A
)
:
=
λ
f
x
y
,
match
x
,
y
with

Some
a
,
Some
b
=>
f
a
b

Some
a
,
None
=>
Some
a

None
,
Some
b
=>
Some
b

None
,
None
=>
None
end
.
Instance
option_intersection_with
{
A
}
:
IntersectionWith
A
(
option
A
)
:
=
λ
f
x
y
,
match
x
,
y
with
Some
a
,
Some
b
=>
f
a
b

_
,
_
=>
None
end
.
Instance
option_difference_with
{
A
}
:
DifferenceWith
A
(
option
A
)
:
=
λ
f
x
y
,
match
x
,
y
with

Some
a
,
Some
b
=>
f
a
b

Some
a
,
None
=>
Some
a

None
,
_
=>
None
end
.
Instance
option_union
{
A
}
:
Union
(
option
A
)
:
=
union_with
(
λ
x
_
,
Some
x
).
Lemma
option_union_Some
{
A
}
(
x
y
:
option
A
)
z
:
x
∪
y
=
Some
z
→
x
=
Some
z
∨
y
=
Some
z
.
Proof
.
destruct
x
,
y
;
intros
;
simplify_equality
;
auto
.
Qed
.
Section
option_union_intersection_difference
.
Context
{
A
}
(
f
:
A
→
A
→
option
A
).
Global
Instance
:
LeftId
(=)
None
(
union_with
f
).
Proof
.
by
intros
[?].
Qed
.
Global
Instance
:
RightId
(=)
None
(
union_with
f
).
Proof
.
by
intros
[?].
Qed
.
Global
Instance
:
Commutative
(=)
f
→
Commutative
(=)
(
union_with
f
).
Proof
.
by
intros
?
[?]
[?]
;
compute
;
rewrite
1
?(
commutative
f
).
Qed
.
Global
Instance
:
LeftAbsorb
(=)
None
(
intersection_with
f
).
Proof
.
by
intros
[?].
Qed
.
Global
Instance
:
RightAbsorb
(=)
None
(
intersection_with
f
).
Proof
.
by
intros
[?].
Qed
.
Global
Instance
:
Commutative
(=)
f
→
Commutative
(=)
(
intersection_with
f
).
Proof
.
by
intros
?
[?]
[?]
;
compute
;
rewrite
1
?(
commutative
f
).
Qed
.
Global
Instance
:
RightId
(=)
None
(
difference_with
f
).
Proof
.
by
intros
[?].
Qed
.
End
option_union_intersection_difference
.
(** * Tactics *)
Tactic
Notation
"case_option_guard"
"as"
ident
(
Hx
)
:
=
match
goal
with

H
:
context
C
[@
mguard
option
_
?P
?dec
_
?x
]

_
=>
...
...
@@ 199,6 +239,7 @@ Tactic Notation "simplify_option_equality" "by" tactic3(tac) :=
repeat
match
goal
with

_
=>
progress
simplify_equality'

_
=>
progress
simpl_option_monad
by
tac

H
:
_
∪
_
=
Some
_

_
=>
apply
option_union_Some
in
H
;
destruct
H

H
:
mbind
(
M
:
=
option
)
?f
?o
=
?x

_
=>
match
o
with
Some
_
=>
fail
1

None
=>
fail
1

_
=>
idtac
end
;
match
x
with
Some
_
=>
idtac

None
=>
idtac

_
=>
fail
1
end
;
...
...
@@ 223,38 +264,3 @@ Tactic Notation "simplify_option_equality" "by" tactic3(tac) :=

_
=>
progress
case_option_guard
end
.
Tactic
Notation
"simplify_option_equality"
:
=
simplify_option_equality
by
eauto
.
(** * Union, intersection and difference *)
Instance
option_union_with
{
A
}
:
UnionWith
A
(
option
A
)
:
=
λ
f
x
y
,
match
x
,
y
with

Some
a
,
Some
b
=>
f
a
b

Some
a
,
None
=>
Some
a

None
,
Some
b
=>
Some
b

None
,
None
=>
None
end
.
Instance
option_intersection_with
{
A
}
:
IntersectionWith
A
(
option
A
)
:
=
λ
f
x
y
,
match
x
,
y
with
Some
a
,
Some
b
=>
f
a
b

_
,
_
=>
None
end
.
Instance
option_difference_with
{
A
}
:
DifferenceWith
A
(
option
A
)
:
=
λ
f
x
y
,
match
x
,
y
with

Some
a
,
Some
b
=>
f
a
b

Some
a
,
None
=>
Some
a

None
,
_
=>
None
end
.
Section
option_union_intersection_difference
.
Context
{
A
}
(
f
:
A
→
A
→
option
A
).
Global
Instance
:
LeftId
(=)
None
(
union_with
f
).
Proof
.
by
intros
[?].
Qed
.
Global
Instance
:
RightId
(=)
None
(
union_with
f
).
Proof
.
by
intros
[?].
Qed
.
Global
Instance
:
Commutative
(=)
f
→
Commutative
(=)
(
union_with
f
).
Proof
.
by
intros
?
[?]
[?]
;
compute
;
rewrite
1
?(
commutative
f
).
Qed
.
Global
Instance
:
LeftAbsorb
(=)
None
(
intersection_with
f
).
Proof
.
by
intros
[?].
Qed
.
Global
Instance
:
RightAbsorb
(=)
None
(
intersection_with
f
).
Proof
.
by
intros
[?].
Qed
.
Global
Instance
:
Commutative
(=)
f
→
Commutative
(=)
(
intersection_with
f
).
Proof
.
by
intros
?
[?]
[?]
;
compute
;
rewrite
1
?(
commutative
f
).
Qed
.
Global
Instance
:
RightId
(=)
None
(
difference_with
f
).
Proof
.
by
intros
[?].
Qed
.
End
option_union_intersection_difference
.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment