Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
C
coq-stdpp
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
David Swasey
coq-stdpp
Commits
4fd8d550
Commit
4fd8d550
authored
Jan 04, 2017
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Fix more _L lemmas.
parent
108d1f8d
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
2 additions
and
2 deletions
+2
-2
theories/collections.v
theories/collections.v
+2
-2
No files found.
theories/collections.v
View file @
4fd8d550
...
...
@@ -643,9 +643,9 @@ Section collection.
Proof
.
unfold_leibniz
;
apply
union_intersection_l
.
Qed
.
Lemma
union_intersection_r_L
X
Y
Z
:
(
X
∩
Y
)
∪
Z
=
(
X
∪
Z
)
∩
(
Y
∪
Z
).
Proof
.
unfold_leibniz
;
apply
union_intersection_r
.
Qed
.
Lemma
intersection_union_l_L
X
Y
Z
:
X
∩
(
Y
∪
Z
)
≡
(
X
∩
Y
)
∪
(
X
∩
Z
).
Lemma
intersection_union_l_L
X
Y
Z
:
X
∩
(
Y
∪
Z
)
=
(
X
∩
Y
)
∪
(
X
∩
Z
).
Proof
.
unfold_leibniz
;
apply
intersection_union_l
.
Qed
.
Lemma
intersection_union_r_L
X
Y
Z
:
(
X
∪
Y
)
∩
Z
≡
(
X
∩
Z
)
∪
(
Y
∩
Z
).
Lemma
intersection_union_r_L
X
Y
Z
:
(
X
∪
Y
)
∩
Z
=
(
X
∩
Z
)
∪
(
Y
∩
Z
).
Proof
.
unfold_leibniz
;
apply
intersection_union_r
.
Qed
.
(** Difference *)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment