diff --git a/theories/base.v b/theories/base.v index adc16d87b36967dfc3c2bddbd03799e13490eb58..a94511d4ee56c63cb11a0a57bacb8eaa5c7b8523 100644 --- a/theories/base.v +++ b/theories/base.v @@ -399,20 +399,20 @@ and fmap. We use these type classes merely for convenient overloading of notations and do not formalize any theory on monads (we do not even define a class with the monad laws). *) Class MRet (M : Type → Type) := mret: ∀ {A}, A → M A. -Instance: Params (@mret) 3. Arguments mret {_ _ _} _. +Instance: Params (@mret) 3. Class MBind (M : Type → Type) := mbind : ∀ {A B}, (A → M B) → M A → M B. Arguments mbind {_ _ _ _} _ !_ /. -Instance: Params (@mbind) 5. +Instance: Params (@mbind) 4. Class MJoin (M : Type → Type) := mjoin: ∀ {A}, M (M A) → M A. -Instance: Params (@mjoin) 3. Arguments mjoin {_ _ _} !_ /. +Instance: Params (@mjoin) 3. Class FMap (M : Type → Type) := fmap : ∀ {A B}, (A → B) → M A → M B. -Instance: Params (@fmap) 6. Arguments fmap {_ _ _ _} _ !_ /. +Instance: Params (@fmap) 4. Class OMap (M : Type → Type) := omap: ∀ {A B}, (A → option B) → M A → M B. -Instance: Params (@omap) 6. Arguments omap {_ _ _ _} _ !_ /. +Instance: Params (@omap) 4. Notation "m ≫= f" := (mbind f m) (at level 60, right associativity) : C_scope. Notation "( m ≫=)" := (λ f, mbind f m) (only parsing) : C_scope. diff --git a/theories/collections.v b/theories/collections.v index 7caafe69dc78efb92f897d064d37501fb4b92054..dd1d2f9e93402bdc963a490d72b0de49df4c7d72 100644 --- a/theories/collections.v +++ b/theories/collections.v @@ -525,12 +525,12 @@ End fresh. Section collection_monad. Context `{CollectionMonad M}. - Global Instance collection_fmap_proper {A B} (f : A → B) : - Proper ((≡) ==> (≡)) (fmap f). - Proof. intros X Y [??]; split; esolve_elem_of. Qed. - Global Instance collection_bind_proper {A B} (f : A → M B) : - Proper ((≡) ==> (≡)) (mbind f). - Proof. intros X Y [??]; split; esolve_elem_of. Qed. + Global Instance collection_fmap_proper {A B} : + Proper (pointwise_relation _ (=) ==> (≡) ==> (≡)) (@fmap M _ A B). + Proof. intros f g ? X Y [??]; split; esolve_elem_of. Qed. + Global Instance collection_bind_proper {A B} : + Proper (((=) ==> (≡)) ==> (≡) ==> (≡)) (@mbind M _ A B). + Proof. unfold respectful; intros f g Hfg X Y [??]; split; esolve_elem_of. Qed. Global Instance collection_join_proper {A} : Proper ((≡) ==> (≡)) (@mjoin M _ A). Proof. intros X Y [??]; split; esolve_elem_of. Qed.