Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
C
coqstdpp
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
David Swasey
coqstdpp
Commits
20f1b822
Commit
20f1b822
authored
Sep 29, 2017
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Make coding style more consistent.
parent
29f26e4e
Changes
1
Hide whitespace changes
Inline
Sidebyside
Showing
1 changed file
with
25 additions
and
39 deletions
+25
39
theories/fin_maps.v
theories/fin_maps.v
+25
39
No files found.
theories/fin_maps.v
View file @
20f1b822
...
...
@@ 1008,62 +1008,48 @@ Qed.
(** ** The filter operation *)
Section
map_Filter
.
Context
{
A
}
(
P
:
K
*
A
→
Prop
)
`
{!
∀
x
,
Decision
(
P
x
)}.
Implicit
Types
m
:
M
A
.
Lemma
map_filter_lookup_Some
:
∀
m
k
v
,
filter
P
m
!!
k
=
Some
v
↔
m
!!
k
=
Some
v
∧
P
(
k
,
v
).
Lemma
map_filter_lookup_Some
m
i
x
:
filter
P
m
!!
i
=
Some
x
↔
m
!!
i
=
Some
x
∧
P
(
i
,
x
).
Proof
.
apply
(
map_fold_ind
(
λ
m1
m2
,
∀
k
v
,
m1
!!
k
=
Some
v
↔
m2
!!
k
=
Some
v
∧
P
_
)).

setoid_rewrite
lookup_empty
.
naive_solver
.

intros
k
v
m
m'
Hm
Eq
k'
v'
.
case_match
;
case
(
decide
(
k'
=
k
))
as
[>?].
revert
m
i
x
.
apply
(
map_fold_ind
(
λ
m1
m2
,
∀
i
x
,
m1
!!
i
=
Some
x
↔
m2
!!
i
=
Some
x
∧
P
_
))
;
intros
i
x
.

rewrite
lookup_empty
.
naive_solver
.

intros
m
m'
Hm
Eq
j
y
.
case_decide
;
case
(
decide
(
j
=
i
))
as
[>?].
+
rewrite
2
!
lookup_insert
.
naive_solver
.
+
do
2
(
rewrite
lookup_insert_ne
;
[
auto
]).
by
apply
Eq
.
+
rewrite
Eq
,
Hm
,
lookup_insert
.
split
;
[
naive_solver
].
destruct
1
as
[
Eq'
].
inversion
Eq'
.
by
subst
.
+
rewrite
!
lookup_insert_ne
by
done
.
by
apply
Eq
.
+
rewrite
Eq
,
Hm
,
lookup_insert
.
naive_solver
.
+
by
rewrite
lookup_insert_ne
.
Qed
.
Lemma
map_filter_lookup_None
:
∀
m
k
,
filter
P
m
!!
k
=
None
↔
m
!!
k
=
None
∨
∀
v
,
m
!!
k
=
Some
v
→
¬
P
(
k
,
v
).
Lemma
map_filter_lookup_None
m
i
:
filter
P
m
!!
i
=
None
↔
m
!!
i
=
None
∨
∀
x
,
m
!!
i
=
Some
x
→
¬
P
(
i
,
x
).
Proof
.
intros
m
k
.
rewrite
eq_None_not_Some
.
unfold
is_Some
.
rewrite
eq_None_not_Some
.
unfold
is_Some
.
setoid_rewrite
map_filter_lookup_Some
.
naive_solver
.
Qed
.
Lemma
map_filter_lookup_eq
uiv
m1
m2
:
(
∀
k
v
,
P
(
k
,
v
)
→
m1
!!
k
=
Some
v
↔
m2
!!
k
=
Some
v
)
→
filter
P
m1
=
filter
P
m2
.
Lemma
map_filter_lookup_eq
m1
m2
:
(
∀
k
x
,
P
(
k
,
x
)
→
m1
!!
k
=
Some
x
↔
m2
!!
k
=
Some
x
)
→
filter
P
m1
=
filter
P
m2
.
Proof
.
intros
HP
.
apply
map_eq
.
intros
k
.
destruct
(
filter
P
m2
!!
k
)
as
[
v2
]
eqn
:
Hv2
;
[
apply
map_filter_lookup_Some
in
Hv2
as
[
Hv2
HP2
]
;
specialize
(
HP
k
v2
HP2
)

apply
map_filter_lookup_None
;
right
;
intros
v
EqS
ISP
;
apply
map_filter_lookup_None
in
Hv2
as
[
Hv2

Hv2
]].

apply
map_filter_lookup_Some
.
by
rewrite
HP
.

specialize
(
HP
_
_
ISP
).
rewrite
HP
,
Hv2
in
EqS
.
naive_solver
.

apply
(
Hv2
v
)
;
[
by
apply
HP

done
].
intros
HP
.
apply
map_eq
.
intros
i
.
apply
option_eq
;
intros
x
.
rewrite
!
map_filter_lookup_Some
.
naive_solver
.
Qed
.
Lemma
map_filter_lookup_insert
m
k
v
:
P
(
k
,
v
)
→
<[
k
:
=
v
]>
(
filter
P
m
)
=
filter
P
(<[
k
:
=
v
]>
m
).
Lemma
map_filter_lookup_insert
m
i
x
:
P
(
i
,
x
)
→
<[
i
:
=
x
]>
(
filter
P
m
)
=
filter
P
(<[
i
:
=
x
]>
m
).
Proof
.
intros
HP
.
apply
map_eq
.
intros
k'
.
case
(
decide
(
k'
=
k
))
as
[>?]
;
[
rewrite
lookup_insert

rewrite
lookup_insert_ne
;
[
auto
]].

symmetry
.
apply
map_filter_lookup_Some
.
by
rewrite
lookup_insert
.

destruct
(
filter
P
(<[
k
:
=
v
]>
m
)
!!
k'
)
eqn
:
Hk
;
revert
Hk
;
[
rewrite
map_filter_lookup_Some
,
lookup_insert_ne
;
[
by
auto
]
;
by
rewrite
<
map_filter_lookup_Some

rewrite
map_filter_lookup_None
,
lookup_insert_ne
;
[
auto
]
;
by
rewrite
<
map_filter_lookup_None
].
intros
HP
.
apply
map_eq
.
intros
j
.
apply
option_eq
;
intros
y
.
destruct
(
decide
(
j
=
i
))
as
[>?].

rewrite
map_filter_lookup_Some
,
!
lookup_insert
.
naive_solver
.

rewrite
lookup_insert_ne
,
!
map_filter_lookup_Some
,
lookup_insert_ne
by
done
.
naive_solver
.
Qed
.
Lemma
map_filter_empty
:
filter
P
∅
=
∅
.
Lemma
map_filter_empty
:
filter
P
(
∅
:
M
A
)
=
∅
.
Proof
.
apply
map_fold_empty
.
Qed
.
End
map_Filter
.
(** ** Properties of the [map_Forall] predicate *)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment