fin_maps.v 67.9 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5 6
induction principles for finite maps and implements the tactic
[simplify_map_equality] to simplify goals involving finite maps. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7
Require Import Permutation.
8
Require Export prelude.relations prelude.vector prelude.orders.
9

10 11
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
12 13 14 15 16
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
17

Robbert Krebbers's avatar
Robbert Krebbers committed
18 19
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
20
prove well founded recursion on finite maps. *)
21

22 23 24
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
25

26
Class FinMapToList K A M := map_to_list: M  list (K * A).
Robbert Krebbers's avatar
Robbert Krebbers committed
27

28 29 30
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
     i j : K, Decision (i = j)} := {
31 32
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
33 34 35 36
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
37
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
38
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
39 40
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
41
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
42 43 44
  lookup_merge {A B C} (f : option A  option B  option C)
      `{!PropHolds (f None None = None)} m1 m2 i :
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
45 46
}.

47 48 49
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
50 51
significant performance loss to make including them in the finite map interface
worthwhile. *)
52 53 54 55 56
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
57
  partial_alter (λ _, None).
58 59
Instance map_singleton `{PartialAlter K A M, Empty M} :
  Singleton (K * A) M := λ p, <[p.1:=p.2]> .
Robbert Krebbers's avatar
Robbert Krebbers committed
60

61
Definition map_of_list `{Insert K A M, Empty M} : list (K * A)  M :=
62
  fold_right (λ p, <[p.1:=p.2]>) .
63 64 65
Definition map_of_collection `{Elements K C, Insert K A M, Empty M}
    (f : K  option A) (X : C) : M :=
  map_of_list (omap (λ i, (i,) <$> f i) (elements X)).
Robbert Krebbers's avatar
Robbert Krebbers committed
66

67 68 69 70 71 72
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
73

Robbert Krebbers's avatar
Robbert Krebbers committed
74 75 76
Instance map_equiv `{ A, Lookup K A (M A), Equiv A} : Equiv (M A) | 1 := λ m1 m2,
   i, m1 !! i  m2 !! i.

77 78
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
79
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
80
  λ m,  i x, m !! i = Some x  P i x.
Robbert Krebbers's avatar
Robbert Krebbers committed
81 82 83
Definition map_relation `{ A, Lookup K A (M A)} {A B} (R : A  B  Prop)
    (P : A  Prop) (Q : B  Prop) (m1 : M A) (m2 : M B) : Prop :=  i,
  option_relation R P Q (m1 !! i) (m2 !! i).
84
Definition map_included `{ A, Lookup K A (M A)} {A}
Robbert Krebbers's avatar
Robbert Krebbers committed
85 86 87 88 89 90 91
  (R : relation A) : relation (M A) := map_relation R (λ _, False) (λ _, True).
Definition map_disjoint `{ A, Lookup K A (M A)} {A} : relation (M A) :=
  map_relation (λ _ _, False) (λ _, True) (λ _, True).
Infix "⊥ₘ" := map_disjoint (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Notation "( m ⊥ₘ.)" := (map_disjoint m) (only parsing) : C_scope.
Notation "(.⊥ₘ m )" := (λ m2, m2  m) (only parsing) : C_scope.
92
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
93
  map_included (=).
Robbert Krebbers's avatar
Robbert Krebbers committed
94 95 96 97 98

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
99
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
100 101 102
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

103 104
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
105
Instance map_difference `{Merge M} {A} : Difference (M A) :=
106
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
107

108 109 110 111 112 113
(** A stronger variant of map that allows the mapped function to use the index
of the elements. Implemented by conversion to lists, so not very efficient. *)
Definition map_imap `{ A, Insert K A (M A),  A, Empty (M A),
     A, FinMapToList K A (M A)} {A B} (f : K  A  option B) (m : M A) : M B :=
  map_of_list (omap (λ ix, (fst ix,) <$> curry f ix) (map_to_list m)).

114 115 116 117
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

Robbert Krebbers's avatar
Robbert Krebbers committed
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
(** ** Setoids *)
Section setoid.
  Context `{Equiv A}.
  Global Instance map_equivalence `{!Equivalence (() : relation A)} :
    Equivalence (() : relation (M A)).
  Proof.
    split.
    * by intros m i.
    * by intros m1 m2 ? i.
    * by intros m1 m2 m3 ?? i; transitivity (m2 !! i).
  Qed.
  Global Instance lookup_proper (i : K) :
    Proper (() ==> ()) (lookup (M:=M A) i).
  Proof. by intros m1 m2 Hm. Qed.
  Global Instance partial_alter_proper :
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) partial_alter.
  Proof.
    by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|];
      rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done;
      try apply Hf; apply lookup_proper.
  Qed.
  Global Instance insert_proper (i : K) :
    Proper (() ==> () ==> ()) (insert (M:=M A) i).
  Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed.
  Global Instance delete_proper (i : K) :
    Proper (() ==> ()) (delete (M:=M A) i).
  Proof. by apply partial_alter_proper; [constructor|]. Qed.
  Global Instance alter_proper :
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (alter (A:=A) (M:=M A)).
  Proof.
    intros ?? Hf; apply partial_alter_proper.
    by destruct 1; constructor; apply Hf.
  Qed.
  Lemma merge_ext f g
      `{!PropHolds (f None None = None), !PropHolds (g None None = None)} :
    (() ==> () ==> ())%signature f g 
    (() ==> () ==> ())%signature (merge f) (merge g).
  Proof.
    by intros Hf ?? Hm1 ?? Hm2 i; rewrite !lookup_merge by done; apply Hf.
  Qed.
  Global Instance union_with_proper :
    Proper ((() ==> () ==> ()) ==> () ==> () ==> ()) union_with.
  Proof.
    intros ?? Hf ?? Hm1 ?? Hm2 i; apply (merge_ext _ _); auto.
    by do 2 destruct 1; first [apply Hf | constructor].
  Qed.    
  Global Instance map_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (M A).
  Proof.
    intros m1 m2; split.
    * by intros Hm; apply map_eq; intros i; unfold_leibniz; apply lookup_proper.
    * by intros <-; intros i; fold_leibniz.
  Qed.
End setoid.

(** ** General properties *)
173 174 175 176 177
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
178
  unfold subseteq, map_subseteq, map_relation. split; intros Hm i;
179 180
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
181
Global Instance: EmptySpec (M A).
182
Proof.
183 184
  intros A m. rewrite !map_subseteq_spec.
  intros i x. by rewrite lookup_empty.
185
Qed.
186 187
Global Instance:  {A} (R : relation A), PreOrder R  PreOrder (map_included R).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
188
  split; [intros m i; by destruct (m !! i); simpl|].
189
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
Robbert Krebbers's avatar
Robbert Krebbers committed
190 191
  destruct (m1 !! i), (m2 !! i), (m3 !! i); simplify_equality';
    done || etransitivity; eauto.
192
Qed.
193
Global Instance: PartialOrder (() : relation (M A)).
194
Proof.
195 196 197
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
198 199 200
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
201
Proof. rewrite !map_subseteq_spec. auto. Qed.
202 203 204 205 206 207
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
208 209
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
210 211
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
212 213
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
214 215 216 217 218 219 220 221 222
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬ !! i = Some x.
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
223 224 225
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
226 227

(** ** Properties of the [partial_alter] operation *)
228 229 230
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
231 232
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
233 234
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
235 236
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
237 238
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
239
Qed.
240
Lemma partial_alter_commute {A} f g (m : M A) i j :
241
  i  j  partial_alter f i (partial_alter g j m) =
242 243
    partial_alter g j (partial_alter f i m).
Proof.
244 245 246 247 248 249 250
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
  * by rewrite lookup_partial_alter,
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
  * by rewrite !lookup_partial_alter_ne by congruence.
251 252 253 254
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
255 256
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
257
Qed.
258
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
259
Proof. by apply partial_alter_self_alt. Qed.
260
Lemma partial_alter_subseteq {A} f (m : M A) i :
261
  m !! i = None  m  partial_alter f i m.
262 263 264 265
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
266
Lemma partial_alter_subset {A} f (m : M A) i :
267
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
268
Proof.
269 270 271 272
  intros Hi Hfi. split; [by apply partial_alter_subseteq|].
  rewrite !map_subseteq_spec. inversion Hfi as [x Hx]. intros Hm.
  apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
  by rewrite lookup_partial_alter.
273 274 275
Qed.

(** ** Properties of the [alter] operation *)
276 277
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
278
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal'; auto. Qed.
279
Lemma lookup_alter {A} (f : A  A) m i : alter f i m !! i = f <$> m !! i.
280
Proof. unfold alter. apply lookup_partial_alter. Qed.
281
Lemma lookup_alter_ne {A} (f : A  A) m i j : i  j  alter f i m !! j = m !! j.
282
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
283 284 285 286 287 288 289 290 291
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
292 293 294 295
Lemma lookup_alter_Some {A} (f : A  A) m i j y :
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
296
  destruct (decide (i = j)) as [->|?].
297 298 299 300 301 302
  * rewrite lookup_alter. naive_solver (simplify_option_equality; eauto).
  * rewrite lookup_alter_ne by done. naive_solver.
Qed.
Lemma lookup_alter_None {A} (f : A  A) m i j :
  alter f i m !! j = None  m !! j = None.
Proof.
303 304
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
305
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
306 307
Lemma alter_id {A} (f : A  A) m i :
  ( x, m !! i = Some x  f x = x)  alter f i m = m.
308
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
309 310 311
  intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
  { rewrite lookup_alter; destruct (m !! j); f_equal'; auto. }
  by rewrite lookup_alter_ne by done.
312 313 314 315 316 317 318 319 320 321 322
Qed.

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
323
  * destruct (decide (i = j)) as [->|?];
324 325 326 327 328 329
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
  * intros [??]. by rewrite lookup_delete_ne.
Qed.
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
330 331
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
332 333 334
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
335
Lemma delete_singleton {A} i (x : A) : delete i {[i, x]} = .
336 337 338 339 340 341 342
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
343
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
344
Proof.
345 346
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
Qed.
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
Lemma insert_delete {A} (m : M A) i x :
  m !! i = Some x  <[i:=x]>(delete i m) = m.
Proof.
  intros Hmi. unfold delete, map_delete, insert, map_insert.
  rewrite <-partial_alter_compose. unfold compose. rewrite <-Hmi.
  by apply partial_alter_self_alt.
Qed.
364
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
365 366 367
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
368
Lemma delete_subseteq_compat {A} (m1 m2 : M A) i :
369
  m1  m2  delete i m1  delete i m2.
370 371 372 373
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
Qed.
374
Lemma delete_subset_alt {A} (m : M A) i x : m !! i = Some x  delete i m  m.
375
Proof.
376 377 378
  split; [apply delete_subseteq|].
  rewrite !map_subseteq_spec. intros Hi. apply (None_ne_Some x).
  by rewrite <-(lookup_delete m i), (Hi i x).
379
Qed.
380
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
381 382 383 384 385
Proof. inversion 1. eauto using delete_subset_alt. Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
386
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
387
Proof. rewrite lookup_insert. congruence. Qed.
388
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
389 390 391 392 393 394 395 396
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
397
  * destruct (decide (i = j)) as [->|?];
398
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
399
  * intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
400 401 402 403
Qed.
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
404 405 406
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
407
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
408
Lemma insert_id {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
409 410 411 412 413 414 415 416
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
Robbert Krebbers's avatar
Robbert Krebbers committed
417 418
  * rewrite lookup_insert. destruct (m !! j); simpl; eauto.
  * rewrite lookup_insert_ne by done. by destruct (m !! j); simpl.
419
Qed.
420
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
421
Proof. apply partial_alter_subseteq. Qed.
422
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
423 424
Proof. intro. apply partial_alter_subset; eauto. Qed.
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
425
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
426
Proof.
427 428 429
  rewrite !map_subseteq_spec. intros ?? j ?.
  destruct (decide (j = i)) as [->|?]; [congruence|].
  rewrite lookup_insert_ne; auto.
430 431
Qed.
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
432
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
433
Proof.
434 435 436 437
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
438 439
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
440
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
441
Proof.
442 443
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
444
  * rewrite lookup_insert. congruence.
445
  * rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
446 447
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
448
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
449
Proof.
450 451 452
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
453 454
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
455
  m1 !! i = None  <[i:=x]> m1  m2 
456 457 458
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
  intros Hi Hm1m2. exists (delete i m2). split_ands.
459
  * rewrite insert_delete. done. eapply lookup_weaken, strict_include; eauto.
460 461 462 463
    by rewrite lookup_insert.
  * eauto using insert_delete_subset.
  * by rewrite lookup_delete.
Qed.
464 465 466 467 468 469 470
Lemma fmap_insert {A B} (f : A  B) (m : M A) i x :
  f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  * by rewrite lookup_fmap, !lookup_insert.
  * by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
Qed.
471 472
Lemma insert_empty {A} i (x : A) : <[i:=x]> = {[i,x]}.
Proof. done. Qed.
473 474 475

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
476
  {[i, x]} !! j = Some y  i = j  x = y.
477 478
Proof.
  unfold singleton, map_singleton.
479
  rewrite lookup_insert_Some, lookup_empty. simpl. intuition congruence.
480
Qed.
481
Lemma lookup_singleton_None {A} i j (x : A) : {[i, x]} !! j = None  i  j.
482 483 484 485
Proof.
  unfold singleton, map_singleton.
  rewrite lookup_insert_None, lookup_empty. simpl. tauto.
Qed.
486
Lemma lookup_singleton {A} i (x : A) : {[i, x]} !! i = Some x.
487
Proof. by rewrite lookup_singleton_Some. Qed.
488
Lemma lookup_singleton_ne {A} i j (x : A) : i  j  {[i, x]} !! j = None.
489
Proof. by rewrite lookup_singleton_None. Qed.
490
Lemma map_non_empty_singleton {A} i (x : A) : {[i,x]}  .
491 492 493 494
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
495
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i, x]} = {[i, y]}.
496 497 498 499
Proof.
  unfold singleton, map_singleton, insert, map_insert.
  by rewrite <-partial_alter_compose.
Qed.
500
Lemma alter_singleton {A} (f : A  A) i x : alter f i {[i,x]} = {[i, f x]}.
501
Proof.
502
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
503 504 505 506
  * by rewrite lookup_alter, !lookup_singleton.
  * by rewrite lookup_alter_ne, !lookup_singleton_ne.
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
507
  i  j  alter f i {[j,x]} = {[j,x]}.
508
Proof.
509 510
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
511 512
Qed.

513 514 515 516 517
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.
518 519 520 521 522 523 524
Lemma omap_singleton {A B} (f : A  option B) i x y :
  f x = Some y  omap f {[ i,x ]} = {[ i,y ]}.
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|].
  * by rewrite lookup_omap, !lookup_singleton.
  * by rewrite lookup_omap, !lookup_singleton_ne.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
525 526 527 528 529 530 531 532 533 534 535
Lemma map_fmap_id {A} (m : M A) : id <$> m = m.
Proof. apply map_eq; intros i; by rewrite lookup_fmap, option_fmap_id. Qed.
Lemma map_fmap_compose {A B C} (f : A  B) (g : B  C) (m : M A) :
  g  f <$> m = g <$> f <$> m.
Proof. apply map_eq; intros i; by rewrite !lookup_fmap,option_fmap_compose. Qed.
Lemma map_fmap_ext {A B} (f1 f2 : A  B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  f1 <$> m = f2 <$> m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_fmap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
536

537 538
(** ** Properties of conversion to lists *)
Lemma map_to_list_unique {A} (m : M A) i x y :
539
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
540
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
541
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup ((map_to_list m).*1).
542
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
543 544 545 546 547 548 549 550 551 552
Lemma elem_of_map_of_list_1_help {A} (l : list (K * A)) i x :
  (i,x)  l  ( y, (i,y)  l  y = x)  map_of_list l !! i = Some x.
Proof.
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
  setoid_rewrite elem_of_cons.
  intros [?|?] Hdup; simplify_equality; [by rewrite lookup_insert|].
  destruct (decide (i = j)) as [->|].
  * rewrite lookup_insert; f_equal; eauto.
  * rewrite lookup_insert_ne by done; eauto.
Qed.
553
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
554
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
555
Proof.
556 557
  intros ? Hx; apply elem_of_map_of_list_1_help; eauto using NoDup_fmap_fst.
  intros y; revert Hx. rewrite !elem_of_list_lookup; intros [i' Hi'] [j' Hj'].
558
  cut (i' = j'); [naive_solver|]. apply NoDup_lookup with (l.*1) i;
559
    by rewrite ?list_lookup_fmap, ?Hi', ?Hj'.
560 561
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
562
  map_of_list l !! i = Some x  (i,x)  l.
563
Proof.
564 565 566
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
567 568
Qed.
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
569
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
570
Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
571
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
572
  i  l.*1  map_of_list l !! i = None.
573
Proof.
574 575
  rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
  exists (i,x); simpl; auto using elem_of_map_of_list_2.
576 577
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
578
  map_of_list l !! i = None  i  l.*1.
579
Proof.
580
  induction l as [|[j y] l IH]; csimpl; [rewrite elem_of_nil; tauto|].
581 582 583 584 585
  rewrite elem_of_cons. destruct (decide (i = j)); simplify_equality.
  * by rewrite lookup_insert.
  * by rewrite lookup_insert_ne; intuition.
Qed.
Lemma not_elem_of_map_of_list {A} (l : list (K * A)) i :
586
  i  l.*1  map_of_list l !! i = None.
587
Proof. red; auto using not_elem_of_map_of_list_1,not_elem_of_map_of_list_2. Qed.
588
Lemma map_of_list_proper {A} (l1 l2 : list (K * A)) :
589
  NoDup (l1.*1)  l1  l2  map_of_list l1 = map_of_list l2.
590 591 592 593 594
Proof.
  intros ? Hperm. apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-!elem_of_map_of_list; rewrite <-?Hperm.
Qed.
Lemma map_of_list_inj {A} (l1 l2 : list (K * A)) :
595
  NoDup (l1.*1)  NoDup (l2.*1)  map_of_list l1 = map_of_list l2  l1  l2.
596
Proof.
597
  intros ?? Hl1l2. apply NoDup_Permutation; auto using (NoDup_fmap_1 fst).
598 599
  intros [i x]. by rewrite !elem_of_map_of_list, Hl1l2.
Qed.
600
Lemma map_of_to_list {A} (m : M A) : map_of_list (map_to_list m) = m.
601 602 603
Proof.
  apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-elem_of_map_of_list, elem_of_map_to_list
604
    by auto using NoDup_fst_map_to_list.
605 606
Qed.
Lemma map_to_of_list {A} (l : list (K * A)) :
607
  NoDup (l.*1)  map_to_list (map_of_list l)  l.
608
Proof. auto using map_of_list_inj, NoDup_fst_map_to_list, map_of_to_list. Qed.
609
Lemma map_to_list_inj {A} (m1 m2 : M A) :
610
  map_to_list m1  map_to_list m2  m1 = m2.
611
Proof.
612
  intros. rewrite <-(map_of_to_list m1), <-(map_of_to_list m2).
613
  auto using map_of_list_proper, NoDup_fst_map_to_list.
614
Qed.
615 616 617 618 619 620
Lemma map_to_of_list_flip {A} (m1 : M A) l2 :
  map_to_list m1  l2  m1 = map_of_list l2.
Proof.
  intros. rewrite <-(map_of_to_list m1).
  auto using map_of_list_proper, NoDup_fst_map_to_list.
Qed.
621
Lemma map_to_list_empty {A} : map_to_list  = @nil (K * A).
622 623 624 625 626
Proof.
  apply elem_of_nil_inv. intros [i x].
  rewrite elem_of_map_to_list. apply lookup_empty_Some.
Qed.
Lemma map_to_list_insert {A} (m : M A) i x :
627
  m !! i = None  map_to_list (<[i:=x]>m)  (i,x) :: map_to_list m.
628
Proof.
629
  intros. apply map_of_list_inj; csimpl.
630 631
  * apply NoDup_fst_map_to_list.
  * constructor; auto using NoDup_fst_map_to_list.
632
    rewrite elem_of_list_fmap. intros [[??] [? Hlookup]]; subst; simpl in *.
633 634 635
    rewrite elem_of_map_to_list in Hlookup. congruence.
  * by rewrite !map_of_to_list.
Qed.
636
Lemma map_of_list_nil {A} : map_of_list (@nil (K * A)) = .
637 638 639 640
Proof. done. Qed.
Lemma map_of_list_cons {A} (l : list (K * A)) i x :
  map_of_list ((i, x) :: l) = <[i:=x]>(map_of_list l).
Proof. done. Qed.
641
Lemma map_to_list_empty_inv_alt {A}  (m : M A) : map_to_list m  []  m = .
642
Proof. rewrite <-map_to_list_empty. apply map_to_list_inj. Qed.
643
Lemma map_to_list_empty_inv {A} (m : M A) : map_to_list m = []  m = .
644 645
Proof. intros Hm. apply map_to_list_empty_inv_alt. by rewrite Hm. Qed.
Lemma map_to_list_insert_inv {A} (m : M A) l i x :
646
  map_to_list m  (i,x) :: l  m = <[i:=x]>(map_of_list l).
647 648
Proof.
  intros Hperm. apply map_to_list_inj.
649 650 651
  assert (i  l.*1  NoDup (l.*1)) as [].
  { rewrite <-NoDup_cons. change (NoDup (((i,x)::l).*1)). rewrite <-Hperm.
    auto using NoDup_fst_map_to_list. }
652 653 654
  rewrite Hperm, map_to_list_insert, map_to_of_list;
    auto using not_elem_of_map_of_list_1.
Qed.
655 656 657 658
Lemma map_choose {A} (m : M A) : m     i x, m !! i = Some x.
Proof.
  intros Hemp. destruct (map_to_list m) as [|[i x] l] eqn:Hm.
  { destruct Hemp; eauto using map_to_list_empty_inv. }
659
  exists i, x. rewrite <-elem_of_map_to_list, Hm. by left.
660
Qed.
661

662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
(** Properties of the imap function *)
Lemma lookup_imap {A B} (f : K  A  option B) m i :
  map_imap f m !! i = m !! i = f i.
Proof.
  unfold map_imap; destruct (m !! i = f i) as [y|] eqn:Hi; simpl.
  * destruct (m !! i) as [x|] eqn:?; simplify_equality'.
    apply elem_of_map_of_list_1_help.
    { apply elem_of_list_omap; exists (i,x); split;
        [by apply elem_of_map_to_list|by simplify_option_equality]. }
    intros y'; rewrite elem_of_list_omap; intros ([i' x']&Hi'&?).
    by rewrite elem_of_map_to_list in Hi'; simplify_option_equality.
  * apply not_elem_of_map_of_list; rewrite elem_of_list_fmap.
    intros ([i' x]&->&Hi'); simplify_equality'.
    rewrite elem_of_list_omap in Hi'; destruct Hi' as ([j y]&Hj&?).
    rewrite elem_of_map_to_list in Hj; simplify_option_equality.
Qed.

679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
(** ** Properties of conversion from collections *)
Lemma lookup_map_of_collection {A} `{FinCollection K C}
    (f : K  option A) X i x :
  map_of_collection f X !! i = Some x  i  X  f i = Some x.
Proof.
  assert (NoDup (fst <$> omap (λ i, (i,) <$> f i) (elements X))).
  { induction (NoDup_elements X) as [|i' l]; csimpl; [constructor|].
    destruct (f i') as [x'|]; csimpl; auto; constructor; auto.
    rewrite elem_of_list_fmap. setoid_rewrite elem_of_list_omap.
    by intros (?&?&?&?&?); simplify_option_equality. }
  unfold map_of_collection; rewrite <-elem_of_map_of_list by done.
  rewrite elem_of_list_omap. setoid_rewrite elem_of_elements; split.
  * intros (?&?&?); simplify_option_equality; eauto.
  * intros [??]; exists i; simplify_option_equality; eauto.
Qed.

(** ** Induction principles *)
696
Lemma map_ind {A} (P : M A  Prop) :
697
  P   ( i x m, m !! i = None  P m  P (<[i:=x]>m))   m, P m.
698
Proof.
699
  intros ? Hins. cut ( l, NoDup (l.*1)   m, map_to_list m  l  P m).
700
  { intros help m.
701
    apply (help (map_to_list m)); auto using NoDup_fst_map_to_list. }
702 703 704
  induction l as [|[i x] l IH]; intros Hnodup m Hml.
  { apply map_to_list_empty_inv_alt in Hml. by subst. }
  inversion_clear Hnodup.
705
  apply map_to_list_insert_inv in Hml; subst m. apply Hins.
706 707 708 709
  * by apply not_elem_of_map_of_list_1.
  * apply IH; auto using map_to_of_list.
Qed.
Lemma map_to_list_length {A} (m1 m2 : M A) :
710
  m1  m2  length (map_to_list m1) < length (map_to_list m2).
711 712 713 714
Proof.
  revert m2. induction m1 as [|i x m ? IH] using map_ind.
  { intros m2 Hm2. rewrite map_to_list_empty. simpl.
    apply neq_0_lt. intros Hlen. symmetry in Hlen.
715
    apply nil_length_inv, map_to_list_empty_inv in Hlen.
716 717 718 719 720
    rewrite Hlen in Hm2. destruct (irreflexivity ()  Hm2). }
  intros m2 Hm2.
  destruct (insert_subset_inv m m2 i x) as (m2'&?&?&?); auto; subst.
  rewrite !map_to_list_insert; simpl; auto with arith.
Qed.
721
Lemma map_wf {A} : wf (strict (@subseteq (M A) _)).
722 723 724 725 726 727
Proof.
  apply (wf_projected (<) (length  map_to_list)).
  * by apply map_to_list_length.
  * by apply lt_wf.
Qed.

728
(** ** Properties of the [map_Forall] predicate *)
729
Section map_Forall.
730 731
Context {A} (P : K  A  Prop).

732
Lemma map_Forall_to_list m : map_Forall P m  Forall (curry P) (map_to_list m).
733 734
Proof.
  rewrite Forall_forall. split.
735 736
  * intros Hforall [i x]. rewrite elem_of_map_to_list. by apply (Hforall i x).
  * intros Hforall i x. rewrite <-elem_of_map_to_list. by apply (Hforall (i,x)).
737
Qed.
738 739 740 741 742 743 744