countable.v 10.4 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
2
(* This file is distributed under the terms of the BSD license. *)
3
From stdpp Require Export list.
4
5
Local Open Scope positive.

6
Class Countable A `{EqDecision A} := {
7
8
9
10
  encode : A  positive;
  decode : positive  option A;
  decode_encode x : decode (encode x) = Some x
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
11
12
Arguments encode : simpl never.
Arguments decode : simpl never.
13
14
15
16
17

Definition encode_nat `{Countable A} (x : A) : nat :=
  pred (Pos.to_nat (encode x)).
Definition decode_nat `{Countable A} (i : nat) : option A :=
  decode (Pos.of_nat (S i)).
18
Instance encode_inj `{Countable A} : Inj (=) (=) encode.
19
Proof.
20
  intros x y Hxy; apply (inj Some).
21
22
  by rewrite <-(decode_encode x), Hxy, decode_encode.
Qed.
23
24
Instance encode_nat_inj `{Countable A} : Inj (=) (=) encode_nat.
Proof. unfold encode_nat; intros x y Hxy; apply (inj encode); lia. Qed.
25
26
27
28
29
30
31
Lemma decode_encode_nat `{Countable A} x : decode_nat (encode_nat x) = Some x.
Proof.
  pose proof (Pos2Nat.is_pos (encode x)).
  unfold decode_nat, encode_nat. rewrite Nat.succ_pred by lia.
  by rewrite Pos2Nat.id, decode_encode.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
32
(** * Choice principles *)
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
Section choice.
  Context `{Countable A} (P : A  Prop) `{ x, Decision (P x)}.

  Inductive choose_step: relation positive :=
    | choose_step_None {p} : decode p = None  choose_step (Psucc p) p
    | choose_step_Some {p x} :
       decode p = Some x  ¬P x  choose_step (Psucc p) p.
  Lemma choose_step_acc : ( x, P x)  Acc choose_step 1%positive.
  Proof.
    intros [x Hx]. cut ( i p,
      i  encode x  1 + encode x = p + i  Acc choose_step p).
    { intros help. by apply (help (encode x)). }
    induction i as [|i IH] using Pos.peano_ind; intros p ??.
    { constructor. intros j. assert (p = encode x) by lia; subst.
      inversion 1 as [? Hd|?? Hd]; subst;
        rewrite decode_encode in Hd; congruence. }
    constructor. intros j.
    inversion 1 as [? Hd|? y Hd]; subst; auto with lia.
  Qed.
  Fixpoint choose_go {i} (acc : Acc choose_step i) : A :=
    match Some_dec (decode i) with
    | inleft (xHx) =>
      match decide (P x) with
Robbert Krebbers's avatar
Robbert Krebbers committed
56
      | left _ => x | right H => choose_go (Acc_inv acc (choose_step_Some Hx H))
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
      end
    | inright H => choose_go (Acc_inv acc (choose_step_None H))
    end.
  Fixpoint choose_go_correct {i} (acc : Acc choose_step i) : P (choose_go acc).
  Proof. destruct acc; simpl. repeat case_match; auto. Qed.
  Fixpoint choose_go_pi {i} (acc1 acc2 : Acc choose_step i) :
    choose_go acc1 = choose_go acc2.
  Proof. destruct acc1, acc2; simpl; repeat case_match; auto. Qed.

  Definition choose (H:  x, P x) : A := choose_go (choose_step_acc H).
  Definition choose_correct (H:  x, P x) : P (choose H) := choose_go_correct _.
  Definition choose_pi (H1 H2 :  x, P x) :
    choose H1 = choose H2 := choose_go_pi _ _.
  Definition choice (HA :  x, P x) : { x | P x } := _choose_correct HA.
End choice.

73
Lemma surj_cancel `{Countable A} `{EqDecision B}
74
  (f : A  B) `{!Surj (=) f} : { g : B  A & Cancel (=) f g }.
75
Proof.
76
77
  exists (λ y, choose (λ x, f x = y) (surj f y)).
  intros y. by rewrite (choose_correct (λ x, f x = y) (surj f y)).
78
79
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
80
(** * Instances *)
81
82
(** ** Injection *)
Section injective_countable.
83
  Context `{Countable A, EqDecision B}.
84
85
86
87
88
89
90
  Context (f : B  A) (g : A  option B) (fg :  x, g (f x) = Some x).

  Program Instance injective_countable : Countable B :=
    {| encode y := encode (f y); decode p := x  decode p; g x |}.
  Next Obligation. intros y; simpl; rewrite decode_encode; eauto. Qed.
End injective_countable.

Robbert Krebbers's avatar
Robbert Krebbers committed
91
(** ** Option *)
92
Program Instance option_countable `{Countable A} : Countable (option A) := {|
Robbert Krebbers's avatar
Robbert Krebbers committed
93
94
  encode o := match o with None => 1 | Some x => Pos.succ (encode x) end;
  decode p := if decide (p = 1) then Some None else Some <$> decode (Pos.pred p)
95
96
97
98
99
100
|}.
Next Obligation.
  intros ??? [x|]; simpl; repeat case_decide; auto with lia.
  by rewrite Pos.pred_succ, decode_encode.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
101
(** ** Sums *)
102
103
104
105
106
107
108
109
110
111
112
Program Instance sum_countable `{Countable A} `{Countable B} :
  Countable (A + B)%type := {|
    encode xy :=
      match xy with inl x => (encode x)~0 | inr y => (encode y)~1 end;
    decode p :=
      match p with
      | 1 => None | p~0 => inl <$> decode p | p~1 => inr <$> decode p
      end
  |}.
Next Obligation. by intros ?????? [x|y]; simpl; rewrite decode_encode. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
113
(** ** Products *)
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
Fixpoint prod_encode_fst (p : positive) : positive :=
  match p with
  | 1 => 1
  | p~0 => (prod_encode_fst p)~0~0
  | p~1 => (prod_encode_fst p)~0~1
  end.
Fixpoint prod_encode_snd (p : positive) : positive :=
  match p with
  | 1 => 1~0
  | p~0 => (prod_encode_snd p)~0~0
  | p~1 => (prod_encode_snd p)~1~0
  end.
Fixpoint prod_encode (p q : positive) : positive :=
  match p, q with
  | 1, 1 => 1~1
  | p~0, 1 => (prod_encode_fst p)~1~0
  | p~1, 1 => (prod_encode_fst p)~1~1
  | 1, q~0 => (prod_encode_snd q)~0~1
  | 1, q~1 => (prod_encode_snd q)~1~1
  | p~0, q~0 => (prod_encode p q)~0~0
  | p~0, q~1 => (prod_encode p q)~1~0
  | p~1, q~0 => (prod_encode p q)~0~1
  | p~1, q~1 => (prod_encode p q)~1~1
  end.
Fixpoint prod_decode_fst (p : positive) : option positive :=
  match p with
  | p~0~0 => (~0) <$> prod_decode_fst p
  | p~0~1 => Some match prod_decode_fst p with Some q => q~1 | _ => 1 end
  | p~1~0 => (~0) <$> prod_decode_fst p
  | p~1~1 => Some match prod_decode_fst p with Some q => q~1 | _ => 1 end
  | 1~0 => None
  | 1~1 => Some 1
  | 1 => Some 1
  end.
Fixpoint prod_decode_snd (p : positive) : option positive :=
  match p with
  | p~0~0 => (~0) <$> prod_decode_snd p
  | p~0~1 => (~0) <$> prod_decode_snd p
  | p~1~0 => Some match prod_decode_snd p with Some q => q~1 | _ => 1 end
  | p~1~1 => Some match prod_decode_snd p with Some q => q~1 | _ => 1 end
  | 1~0 => Some 1
  | 1~1 => Some 1
  | 1 => None
  end.

Lemma prod_decode_encode_fst p q : prod_decode_fst (prod_encode p q) = Some p.
Proof.
  assert ( p, prod_decode_fst (prod_encode_fst p) = Some p).
162
  { intros p'. by induction p'; simplify_option_eq. }
163
  assert ( p, prod_decode_fst (prod_encode_snd p) = None).
164
165
  { intros p'. by induction p'; simplify_option_eq. }
  revert q. by induction p; intros [?|?|]; simplify_option_eq.
166
167
168
169
Qed.
Lemma prod_decode_encode_snd p q : prod_decode_snd (prod_encode p q) = Some q.
Proof.
  assert ( p, prod_decode_snd (prod_encode_snd p) = Some p).
170
  { intros p'. by induction p'; simplify_option_eq. }
171
  assert ( p, prod_decode_snd (prod_encode_fst p) = None).
172
173
  { intros p'. by induction p'; simplify_option_eq. }
  revert q. by induction p; intros [?|?|]; simplify_option_eq.
174
175
176
Qed.
Program Instance prod_countable `{Countable A} `{Countable B} :
  Countable (A * B)%type := {|
Robbert Krebbers's avatar
Robbert Krebbers committed
177
    encode xy := prod_encode (encode (xy.1)) (encode (xy.2));
178
179
180
181
182
183
    decode p :=
     x  prod_decode_fst p = decode;
     y  prod_decode_snd p = decode; Some (x, y)
  |}.
Next Obligation.
  intros ?????? [x y]; simpl.
Robbert Krebbers's avatar
Robbert Krebbers committed
184
185
  rewrite prod_decode_encode_fst, prod_decode_encode_snd; simpl.
  by rewrite !decode_encode.
186
187
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
188
189
190
191
192
193
194
(** ** Lists *)
(* Lists are encoded as 1 separated sequences of 0s corresponding to the unary
representation of the elements. *)
Fixpoint list_encode `{Countable A} (acc : positive) (l : list A) : positive :=
  match l with
  | [] => acc
  | x :: l => list_encode (Nat.iter (encode_nat x) (~0) (acc~1)) l
195
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
196
197
198
199
200
201
202
203
Fixpoint list_decode `{Countable A} (acc : list A)
    (n : nat) (p : positive) : option (list A) :=
  match p with
  | 1 => Some acc
  | p~0 => list_decode acc (S n) p
  | p~1 => x  decode_nat n; list_decode (x :: acc) O p
  end.
Lemma x0_iter_x1 n acc : Nat.iter n (~0) acc~1 = acc ++ Nat.iter n (~0) 3.
204
Proof. by induction n; f_equal/=. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
205
206
Lemma list_encode_app' `{Countable A} (l1 l2 : list A) acc :
  list_encode acc (l1 ++ l2) = list_encode acc l1 ++ list_encode 1 l2.
207
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
208
209
  revert acc; induction l1; simpl; auto.
  induction l2 as [|x l IH]; intros acc; simpl; [by rewrite ?(left_id_L _ _)|].
210
  by rewrite !(IH (Nat.iter _ _ _)), (assoc_L _), x0_iter_x1.
211
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
212
213
Program Instance list_countable `{Countable A} : Countable (list A) :=
  {| encode := list_encode 1; decode := list_decode [] 0 |}.
214
Next Obligation.
Robbert Krebbers's avatar
Robbert Krebbers committed
215
216
217
218
219
220
221
222
223
  intros A ??; simpl.
  assert ( m acc n p, list_decode acc n (Nat.iter m (~0) p)
    = list_decode acc (n + m) p) as decode_iter.
  { induction m as [|m IH]; intros acc n p; simpl; [by rewrite Nat.add_0_r|].
    by rewrite IH, Nat.add_succ_r. }
  cut ( l acc, list_decode acc 0 (list_encode 1 l) = Some (l ++ acc))%list.
  { by intros help l; rewrite help, (right_id_L _ _). }
  induction l as [|x l IH] using @rev_ind; intros acc; [done|].
  rewrite list_encode_app'; simpl; rewrite <-x0_iter_x1, decode_iter; simpl.
224
  by rewrite decode_encode_nat; simpl; rewrite IH, <-(assoc_L _).
225
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
226
227
228
229
230
231
232
233
234
Lemma list_encode_app `{Countable A} (l1 l2 : list A) :
  encode (l1 ++ l2)%list = encode l1 ++ encode l2.
Proof. apply list_encode_app'. Qed.
Lemma list_encode_cons `{Countable A} x (l : list A) :
  encode (x :: l) = Nat.iter (encode_nat x) (~0) 3 ++ encode l.
Proof. apply (list_encode_app' [_]). Qed.
Lemma list_encode_suffix `{Countable A} (l k : list A) :
  l `suffix_of` k   q, encode k = q ++ encode l.
Proof. intros [l' ->]; exists (encode l'); apply list_encode_app. Qed.
235
236
237
Lemma list_encode_suffix_eq `{Countable A} q1 q2 (l1 l2 : list A) :
  length l1 = length l2  q1 ++ encode l1 = q2 ++ encode l2  l1 = l2.
Proof.
238
  revert q1 q2 l2; induction l1 as [|a1 l1 IH];
239
    intros q1 q2 [|a2 l2] ?; simplify_eq/=; auto.
240
241
242
243
244
  rewrite !list_encode_cons, !(assoc _); intros Hl.
  assert (l1 = l2) as <- by eauto; clear IH; f_equal.
  apply (inj encode_nat); apply (inj (++ encode l1)) in Hl; revert Hl; clear.
  generalize (encode_nat a2).
  induction (encode_nat a1); intros [|?] ?; naive_solver.
245
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
246
247
248
249

(** ** Numbers *)
Instance pos_countable : Countable positive :=
  {| encode := id; decode := Some; decode_encode x := eq_refl |}.
250
251
252
253
254
Program Instance N_countable : Countable N := {|
  encode x := match x with N0 => 1 | Npos p => Pos.succ p end;
  decode p := if decide (p = 1) then Some 0%N else Some (Npos (Pos.pred p))
|}.
Next Obligation.
Robbert Krebbers's avatar
Robbert Krebbers committed
255
  by intros [|p];simpl;[|rewrite decide_False,Pos.pred_succ by (by destruct p)].
256
257
Qed.
Program Instance Z_countable : Countable Z := {|
Robbert Krebbers's avatar
Robbert Krebbers committed
258
259
  encode x := match x with Z0 => 1 | Zpos p => p~0 | Zneg p => p~1 end;
  decode p := Some match p with 1 => Z0 | p~0 => Zpos p | p~1 => Zneg p end
260
261
|}.
Next Obligation. by intros [|p|p]. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
262
263
Program Instance nat_countable : Countable nat :=
  {| encode x := encode (N.of_nat x); decode p := N.to_nat <$> decode p |}.
264
Next Obligation.
Robbert Krebbers's avatar
Robbert Krebbers committed
265
  by intros x; lazy beta; rewrite decode_encode; csimpl; rewrite Nat2N.id.
266
Qed.