list.v 159 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
5
From Coq Require Export Permutation.
6
From stdpp Require Export numbers base option.
Robbert Krebbers's avatar
Robbert Krebbers committed
7

8
Arguments length {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
9
10
Arguments cons {_} _ _.
Arguments app {_} _ _.
11
12
13
14

Instance: Params (@length) 1.
Instance: Params (@cons) 1.
Instance: Params (@app) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
15

16
17
18
Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.
19

20
Arguments tail {_} _.
21
22
23
Arguments take {_} !_ !_ /.
Arguments drop {_} !_ !_ /.

24
25
26
27
28
29
30
Instance: Params (@tail) 1.
Instance: Params (@take) 1.
Instance: Params (@drop) 1.

Arguments Permutation {_} _ _.
Arguments Forall_cons {_} _ _ _ _ _.

Robbert Krebbers's avatar
Robbert Krebbers committed
31
32
33
34
35
36
37
Notation "(::)" := cons (only parsing) : C_scope.
Notation "( x ::)" := (cons x) (only parsing) : C_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : C_scope.
Notation "(++)" := app (only parsing) : C_scope.
Notation "( l ++)" := (app l) (only parsing) : C_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : C_scope.

38
39
40
41
42
43
44
45
46
Infix "≡ₚ" := Permutation (at level 70, no associativity) : C_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : C_scope.
Notation "( x ≡ₚ)" := (Permutation x) (only parsing) : C_scope.
Notation "(≡ₚ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢ₚ)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ₚ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢ₚ)" := (λ y, x ≢ₚ y) (only parsing) : C_scope.
Notation "(≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
47
48
49
Instance maybe_cons {A} : Maybe2 (@cons A) := λ l,
  match l with x :: l => Some (x,l) | _ => None end.

50
(** * Definitions *)
51
52
53
54
55
56
(** Setoid equality lifted to lists *)
Inductive list_equiv `{Equiv A} : Equiv (list A) :=
  | nil_equiv : []  []
  | cons_equiv x y l k : x  y  l  k  x :: l  y :: k.
Existing Instance list_equiv.

57
58
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
59
Instance list_lookup {A} : Lookup nat A (list A) :=
60
  fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
61
  match l with
62
  | [] => None | x :: l => match i with 0 => Some x | S i => l !! i end
63
  end.
64
65
66

(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
67
68
Instance list_alter {A} : Alter nat A (list A) := λ f,
  fix go i l {struct l} :=
69
70
  match l with
  | [] => []
71
  | x :: l => match i with 0 => f x :: l | S i => x :: go i l end
72
  end.
73

74
75
(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
76
77
78
79
80
81
Instance list_insert {A} : Insert nat A (list A) :=
  fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
  match l with
  | [] => []
  | x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end
  end.
82
83
84
85
86
Fixpoint list_inserts {A} (i : nat) (k l : list A) : list A :=
  match k with
  | [] => l
  | y :: k => <[i:=y]>(list_inserts (S i) k l)
  end.
87
Instance: Params (@list_inserts) 1.
88

89
90
91
(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
92
93
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
94
95
  match l with
  | [] => []
96
  | x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end
97
  end.
98
99
100

(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
101
Definition option_list {A} : option A  list A := option_rect _ (λ x, [x]) [].
102
103
Instance: Params (@option_list) 1.
Instance maybe_list_singleton {A} : Maybe (λ x : A, [x]) := λ l,
104
  match l with [x] => Some x | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
105
106
107
108

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
109
  fix go P _ l := let _ : Filter _ _ := @go in
Robbert Krebbers's avatar
Robbert Krebbers committed
110
111
  match l with
  | [] => []
112
  | x :: l => if decide (P x) then x :: filter P l else filter P l
113
114
115
116
  end.

(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
117
Definition list_find {A} P `{ x, Decision (P x)} : list A  option (nat * A) :=
118
119
  fix go l :=
  match l with
120
121
  | [] => None
  | x :: l => if decide (P x) then Some (0,x) else prod_map S id <$> go l
122
  end.
123
Instance: Params (@list_find) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
124
125
126
127

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
128
  match n with 0 => [] | S n => x :: replicate n x end.
129
Instance: Params (@replicate) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
130
131
132

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].
133
Instance: Params (@reverse) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
134

135
136
137
138
(** The function [last l] returns the last element of the list [l], or [None]
if the list [l] is empty. *)
Fixpoint last {A} (l : list A) : option A :=
  match l with [] => None | [x] => Some x | _ :: l => last l end.
139
Instance: Params (@last) 1.
140

Robbert Krebbers's avatar
Robbert Krebbers committed
141
142
143
144
145
146
(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
147
  | x :: l => match n with 0 => [] | S n => x :: resize n y l end
Robbert Krebbers's avatar
Robbert Krebbers committed
148
149
  end.
Arguments resize {_} !_ _ !_.
150
Instance: Params (@resize) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
151

152
153
154
(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
155
156
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
157
  | [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
158
  end.
159
Instance: Params (@reshape) 2.
160

161
Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
162
163
164
165
  guard (i + n  length l); Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A  list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.
166

167
168
169
170
(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.
Definition foldl {A B} (f : A  B  A) : A  list B  A :=
171
  fix go a l := match l with [] => a | x :: l => go (f a x) l end.
172
173
174

(** The monadic operations. *)
Instance list_ret: MRet list := λ A x, x :: @nil A.
175
176
Instance list_fmap : FMap list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x :: go l end.
177
178
179
180
181
182
Instance list_omap : OMap list := λ A B f,
  fix go (l : list A) :=
  match l with
  | [] => []
  | x :: l => match f x with Some y => y :: go l | None => go l end
  end.
183
184
Instance list_bind : MBind list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x ++ go l end.
185
186
Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
187
  match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.
188
Definition mapM `{MBind M, MRet M} {A B} (f : A  M B) : list A  M (list B) :=
189
  fix go l :=
190
  match l with [] => mret [] | x :: l => y  f x; k  go l; mret (y :: k) end.
191
192
193
194
195

(** We define stronger variants of map and fold that allow the mapped
function to use the index of the elements. *)
Definition imap_go {A B} (f : nat  A  B) : nat  list A  list B :=
  fix go (n : nat) (l : list A) :=
196
  match l with [] => [] | x :: l => f n x :: go (S n) l end.
197
Definition imap {A B} (f : nat  A  B) : list A  list B := imap_go f 0.
198
199
200
201
Definition zipped_map {A B} (f : list A  list A  A  B) :
  list A  list A  list B := fix go l k :=
  match k with [] => [] | x :: k => f l k x :: go (x :: l) k end.

Robbert Krebbers's avatar
Robbert Krebbers committed
202
203
204
205
206
207
208
209
210
Definition imap2_go {A B C} (f : nat  A  B  C) :
    nat  list A  list B  list C:=
  fix go (n : nat) (l : list A) (k : list B) :=
  match l, k with
  | [], _ |_, [] => [] | x :: l, y :: k => f n x y :: go (S n) l k
  end.
Definition imap2 {A B C} (f : nat  A  B  C) :
  list A  list B  list C := imap2_go f 0.

211
212
213
214
215
216
217
Inductive zipped_Forall {A} (P : list A  list A  A  Prop) :
    list A  list A  Prop :=
  | zipped_Forall_nil l : zipped_Forall P l []
  | zipped_Forall_cons l k x :
     P l k x  zipped_Forall P (x :: l) k  zipped_Forall P l (x :: k).
Arguments zipped_Forall_nil {_ _} _.
Arguments zipped_Forall_cons {_ _} _ _ _ _ _.
218

219
220
221
222
223
224
225
(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A  A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l => (if β then f x else x) :: mask f βs l
  | _, _ => l
  end.
226
227
228
229

(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
230
  | [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::) <$> interleave x l)
231
232
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
233
  match l with [] => [[]] | x :: l => permutations l = interleave x end.
234

235
236
(** The predicate [suffix_of] holds if the first list is a suffix of the second.
The predicate [prefix_of] holds if the first list is a prefix of the second. *)
237
238
Definition suffix_of {A} : relation (list A) := λ l1 l2,  k, l2 = k ++ l1.
Definition prefix_of {A} : relation (list A) := λ l1 l2,  k, l2 = l1 ++ k.
239
240
Infix "`suffix_of`" := suffix_of (at level 70) : C_scope.
Infix "`prefix_of`" := prefix_of (at level 70) : C_scope.
241
242
Hint Extern 0 (_ `prefix_of` _) => reflexivity.
Hint Extern 0 (_ `suffix_of` _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
243

244
245
246
247
248
249
250
251
Section prefix_suffix_ops.
  Context `{ x y : A, Decision (x = y)}.
  Definition max_prefix_of : list A  list A  list A * list A * list A :=
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
252
      if decide_rel (=) x1 x2
253
      then prod_map id (x1 ::) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
254
255
256
257
258
    end.
  Definition max_suffix_of (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix_of (reverse l1) (reverse l2) with
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.
259
260
  Definition strip_prefix (l1 l2 : list A) := (max_prefix_of l1 l2).1.2.
  Definition strip_suffix (l1 l2 : list A) := (max_suffix_of l1 l2).1.2.
261
End prefix_suffix_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
262

263
(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
264
265
266
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
267
  | sublist_skip x l1 l2 : sublist l1 l2  sublist (x :: l1) (x :: l2)
268
  | sublist_cons x l1 l2 : sublist l1 l2  sublist l1 (x :: l2).
269
Infix "`sublist`" := sublist (at level 70) : C_scope.
270
Hint Extern 0 (_ `sublist` _) => reflexivity.
271
272

(** A list [l2] contains a list [l1] if [l2] is obtained by removing elements
273
from [l1] while possiblity changing the order. *)
274
275
276
277
Inductive contains {A} : relation (list A) :=
  | contains_nil : contains [] []
  | contains_skip x l1 l2 : contains l1 l2  contains (x :: l1) (x :: l2)
  | contains_swap x y l : contains (y :: x :: l) (x :: y :: l)
278
  | contains_cons x l1 l2 : contains l1 l2  contains l1 (x :: l2)
279
280
  | contains_trans l1 l2 l3 : contains l1 l2  contains l2 l3  contains l1 l3.
Infix "`contains`" := contains (at level 70) : C_scope.
281
Hint Extern 0 (_ `contains` _) => reflexivity.
282
283
284
285
286
287
288
289
290
291

Section contains_dec_help.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Fixpoint list_remove (x : A) (l : list A) : option (list A) :=
    match l with
    | [] => None
    | y :: l => if decide (x = y) then Some l else (y ::) <$> list_remove x l
    end.
  Fixpoint list_remove_list (k : list A) (l : list A) : option (list A) :=
    match k with
292
    | [] => Some l | x :: k => list_remove x l = list_remove_list k
293
294
    end.
End contains_dec_help.
295

296
297
298
299
300
Inductive Forall3 {A B C} (P : A  B  C  Prop) :
     list A  list B  list C  Prop :=
  | Forall3_nil : Forall3 P [] [] []
  | Forall3_cons x y z l k k' :
     P x y z  Forall3 P l k k'  Forall3 P (x :: l) (y :: k) (z :: k').
301
302

(** Set operations on lists *)
303
304
305
Definition included {A} (l1 l2 : list A) :=  x, x  l1  x  l2.
Infix "`included`" := included (at level 70) : C_scope.

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
Section list_set.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Global Instance elem_of_list_dec {dec :  x y : A, Decision (x = y)}
    (x : A) :  l, Decision (x  l).
  Proof.
   refine (
    fix go l :=
    match l return Decision (x  l) with
    | [] => right _
    | y :: l => cast_if_or (decide (x = y)) (go l)
    end); clear go dec; subst; try (by constructor); abstract by inversion 1.
  Defined.
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x l then remove_dups l else x :: remove_dups l
    end.
  Fixpoint list_difference (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
329
      then list_difference l k else x :: list_difference l k
330
    end.
331
  Definition list_union (l k : list A) : list A := list_difference l k ++ k.
332
333
334
335
336
  Fixpoint list_intersection (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
337
      then x :: list_intersection l k else list_intersection l k
338
339
340
341
342
343
344
345
346
    end.
  Definition list_intersection_with (f : A  A  option A) :
    list A  list A  list A := fix go l k :=
    match l with
    | [] => []
    | x :: l => foldr (λ y,
        match f x y with None => id | Some z => (z ::) end) (go l k) k
    end.
End list_set.
347
348

(** * Basic tactics on lists *)
349
(** The tactic [discriminate_list] discharges a goal if it contains
350
351
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
352
Tactic Notation "discriminate_list" hyp(H) :=
353
  apply (f_equal length) in H;
354
  repeat (csimpl in H || rewrite app_length in H); exfalso; lia.
355
356
Tactic Notation "discriminate_list" :=
  match goal with H : @eq (list _) _ _ |- _ => discriminate_list H end.
357

358
(** The tactic [simplify_list_eq] simplifies hypotheses involving
359
360
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
361
Lemma app_inj_1 {A} (l1 k1 l2 k2 : list A) :
362
363
  length l1 = length k1  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
364
Lemma app_inj_2 {A} (l1 k1 l2 k2 : list A) :
365
366
  length l2 = length k2  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof.
367
  intros ? Hl. apply app_inj_1; auto.
368
369
  apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
Qed.
370
Ltac simplify_list_eq :=
371
  repeat match goal with
372
  | _ => progress simplify_eq/=
373
  | H : _ ++ _ = _ ++ _ |- _ => first
374
    [ apply app_inv_head in H | apply app_inv_tail in H
375
376
    | apply app_inj_1 in H; [destruct H|done]
    | apply app_inj_2 in H; [destruct H|done] ]
Robbert Krebbers's avatar
Robbert Krebbers committed
377
  | H : [?x] !! ?i = Some ?y |- _ =>
378
    destruct i; [change (Some x = Some y) in H | discriminate]
379
  end.
380

381
382
(** * General theorems *)
Section general_properties.
Robbert Krebbers's avatar
Robbert Krebbers committed
383
Context {A : Type}.
384
385
Implicit Types x y z : A.
Implicit Types l k : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
386

387
Global Instance: Inj2 (=) (=) (=) (@cons A).
388
Proof. by injection 1. Qed.
389
Global Instance:  k, Inj (=) (=) (k ++).
390
Proof. intros ???. apply app_inv_head. Qed.
391
Global Instance:  k, Inj (=) (=) (++ k).
392
Proof. intros ???. apply app_inv_tail. Qed.
393
Global Instance: Assoc (=) (@app A).
394
395
396
397
398
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.
399

400
Lemma app_nil l1 l2 : l1 ++ l2 = []  l1 = []  l2 = [].
401
Proof. split. apply app_eq_nil. by intros [-> ->]. Qed.
402
403
Lemma app_singleton l1 l2 x :
  l1 ++ l2 = [x]  l1 = []  l2 = [x]  l1 = [x]  l2 = [].
404
Proof. split. apply app_eq_unit. by intros [[-> ->]|[-> ->]]. Qed.
405
406
407
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : ( i, l1 !! i = l2 !! i)  l1 = l2.
408
Proof.
409
  revert l2. induction l1 as [|x l1 IH]; intros [|y l2] H.
410
411
412
  - done.
  - discriminate (H 0).
  - discriminate (H 0).
413
  - f_equal; [by injection (H 0)|]. apply (IH _ $ λ i, H (S i)).
414
Qed.
415
Global Instance list_eq_dec {dec :  x y, Decision (x = y)} :  l k,
416
  Decision (l = k) := list_eq_dec dec.
417
418
419
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with [] => left _ | _ => right _ end. Defined.
Lemma list_singleton_reflect l :
420
  option_reflect (λ x, l = [x]) (length l  1) (maybe (λ x, [x]) l).
421
422
423
424
Proof. by destruct l as [|? []]; constructor. Defined.

Definition nil_length : length (@nil A) = 0 := eq_refl.
Definition cons_length x l : length (x :: l) = S (length l) := eq_refl.
425
Lemma nil_or_length_pos l : l = []  length l  0.
426
Proof. destruct l; simpl; auto with lia. Qed.
427
Lemma nil_length_inv l : length l = 0  l = [].
428
429
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
430
Proof. by destruct i. Qed.
431
Lemma lookup_tail l i : tail l !! i = l !! S i.
432
Proof. by destruct l. Qed.
433
Lemma lookup_lt_Some l i x : l !! i = Some x  i < length l.
434
Proof. revert i. induction l; intros [|?] ?; naive_solver auto with arith. Qed.
435
436
437
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i)  i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l  is_Some (l !! i).
438
Proof. revert i. induction l; intros [|?] ?; naive_solver eauto with lia. Qed.
439
440
441
442
443
444
445
446
Lemma lookup_lt_is_Some l i : is_Some (l !! i)  i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None  length l  i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None  length l  i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l  i  l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
447
448
449
Lemma list_eq_same_length l1 l2 n :
  length l2 = n  length l1 = n 
  ( i x y, i < n  l1 !! i = Some x  l2 !! i = Some y  x = y)  l1 = l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
450
Proof.
451
  intros <- Hlen Hl; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
452
  - destruct (lookup_lt_is_Some_2 l1 i) as [y Hy].
453
454
    { rewrite Hlen; eauto using lookup_lt_Some. }
    rewrite Hy; f_equal; apply (Hl i); eauto using lookup_lt_Some.
455
  - by rewrite lookup_ge_None, Hlen, <-lookup_ge_None.
Robbert Krebbers's avatar
Robbert Krebbers committed
456
Qed.
457
Lemma lookup_app_l l1 l2 i : i < length l1  (l1 ++ l2) !! i = l1 !! i.
458
Proof. revert i. induction l1; intros [|?]; naive_solver auto with lia. Qed.
459
460
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x  (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
461
Lemma lookup_app_r l1 l2 i :
462
  length l1  i  (l1 ++ l2) !! i = l2 !! (i - length l1).
463
464
465
466
467
468
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
Lemma lookup_app_Some l1 l2 i x :
  (l1 ++ l2) !! i = Some x 
    l1 !! i = Some x  length l1  i  l2 !! (i - length l1) = Some x.
Proof.
  split.
469
  - revert i. induction l1 as [|y l1 IH]; intros [|i] ?;
470
      simplify_eq/=; auto with lia.
471
    destruct (IH i) as [?|[??]]; auto with lia.
472
  - intros [?|[??]]; auto using lookup_app_l_Some. by rewrite lookup_app_r.
473
Qed.
474
475
476
Lemma list_lookup_middle l1 l2 x n :
  n = length l1  (l1 ++ x :: l2) !! n = Some x.
Proof. intros ->. by induction l1. Qed.
477

478
Lemma list_insert_alter l i x : <[i:=x]>l = alter (λ _, x) i l.
479
Proof. by revert i; induction l; intros []; intros; f_equal/=. Qed.
480
Lemma alter_length f l i : length (alter f i l) = length l.
481
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
482
Lemma insert_length l i x : length (<[i:=x]>l) = length l.
483
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
484
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
485
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
486
Lemma list_lookup_alter_ne f l i j : i  j  alter f i l !! j = l !! j.
487
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
488
Lemma list_lookup_insert l i x : i < length l  <[i:=x]>l !! i = Some x.
489
Proof. revert i. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
490
Lemma list_lookup_insert_ne l i j x : i  j  <[i:=x]>l !! j = l !! j.
491
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
492
493
494
495
496
497
Lemma list_lookup_insert_Some l i x j y :
  <[i:=x]>l !! j = Some y 
    i = j  x = y  j < length l  i  j  l !! j = Some y.
Proof.
  destruct (decide (i = j)) as [->|];
    [split|rewrite list_lookup_insert_ne by done; tauto].
498
  - intros Hy. assert (j < length l).
499
500
    { rewrite <-(insert_length l j x); eauto using lookup_lt_Some. }
    rewrite list_lookup_insert in Hy by done; naive_solver.
501
  - intros [(?&?&?)|[??]]; rewrite ?list_lookup_insert; naive_solver.
502
503
504
Qed.
Lemma list_insert_commute l i j x y :
  i  j  <[i:=x]>(<[j:=y]>l) = <[j:=y]>(<[i:=x]>l).
505
Proof. revert i j. by induction l; intros [|?] [|?] ?; f_equal/=; auto. Qed.
506
507
Lemma list_lookup_other l i x :
  length l  1  l !! i = Some x   j y, j  i  l !! j = Some y.
Robbert Krebbers's avatar
Robbert Krebbers committed
508
Proof.
509
  intros. destruct i, l as [|x0 [|x1 l]]; simplify_eq/=.
510
511
  - by exists 1, x1.
  - by exists 0, x0.
Robbert Krebbers's avatar
Robbert Krebbers committed
512
Qed.
513
514
Lemma alter_app_l f l1 l2 i :
  i < length l1  alter f i (l1 ++ l2) = alter f i l1 ++ l2.
515
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
516
Lemma alter_app_r f l1 l2 i :
517
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
518
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
519
520
Lemma alter_app_r_alt f l1 l2 i :
  length l1  i  alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
521
522
523
524
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
525
Lemma list_alter_id f l i : ( x, f x = x)  alter f i l = l.
526
Proof. intros ?. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
527
528
Lemma list_alter_ext f g l k i :
  ( x, l !! i = Some x  f x = g x)  l = k  alter f i l = alter g i k.
529
Proof. intros H ->. revert i H. induction k; intros [|?] ?; f_equal/=; auto. Qed.
530
531
Lemma list_alter_compose f g l i :
  alter (f  g) i l = alter f i (alter g i l).
532
Proof. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
533
534
Lemma list_alter_commute f g l i j :
  i  j  alter f i (alter g j l) = alter g j (alter f i l).
535
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal/=; auto with lia. Qed.
536
537
Lemma insert_app_l l1 l2 i x :
  i < length l1  <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
538
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
539
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
540
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
541
542
Lemma insert_app_r_alt l1 l2 i x :
  length l1  i  <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
543
544
545
546
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply insert_app_r.
Qed.
547
Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
548
Proof. induction l1; f_equal/=; auto. Qed.
549

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
Lemma inserts_length l i k : length (list_inserts i k l) = length l.
Proof.
  revert i. induction k; intros ?; csimpl; rewrite ?insert_length; auto.
Qed.
Lemma list_lookup_inserts l i k j :
  i  j < i + length k  j < length l 
  list_inserts i k l !! j = k !! (j - i).
Proof.
  revert i j. induction k as [|y k IH]; csimpl; intros i j ??; [lia|].
  destruct (decide (i = j)) as [->|].
  { by rewrite list_lookup_insert, Nat.sub_diag
      by (rewrite inserts_length; lia). }
  rewrite list_lookup_insert_ne, IH by lia.
  by replace (j - i) with (S (j - S i)) by lia.
Qed.
Lemma list_lookup_inserts_lt l i k j :
  j < i  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; intros i j ?; csimpl;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_ge l i k j :
  i + length k  j  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; csimpl; intros i j ?;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_Some l i k j y :
  list_inserts i k l !! j = Some y 
    (j < i  i + length k  j)  l !! j = Some y 
    i  j < i + length k  j < length l  k !! (j - i) = Some y.
Proof.
  destruct (decide (j < i)).
  { rewrite list_lookup_inserts_lt by done; intuition lia. }
  destruct (decide (i + length k  j)).
  { rewrite list_lookup_inserts_ge by done; intuition lia. }
  split.
587
  - intros Hy. assert (j < length l).
588
589
    { rewrite <-(inserts_length l i k); eauto using lookup_lt_Some. }
    rewrite list_lookup_inserts in Hy by lia. intuition lia.
590
  - intuition. by rewrite list_lookup_inserts by lia.
591
592
593
594
595
596
597
598
Qed.
Lemma list_insert_inserts_lt l i j x k :
  i < j  <[i:=x]>(list_inserts j k l) = list_inserts j k (<[i:=x]>l).
Proof.
  revert i j. induction k; intros i j ?; simpl;
    rewrite 1?list_insert_commute by lia; auto with f_equal.
Qed.

599
(** ** Properties of the [elem_of] predicate *)
600
Lemma not_elem_of_nil x : x  [].
601
Proof. by inversion 1. Qed.
602
Lemma elem_of_nil x : x  []  False.
603
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
604
Lemma elem_of_nil_inv l : ( x, x  l)  l = [].
605
Proof. destruct l. done. by edestruct 1; constructor. Qed.
606
607
Lemma elem_of_not_nil x l : x  l  l  [].
Proof. intros ? ->. by apply (elem_of_nil x). Qed.
608
Lemma elem_of_cons l x y : x  y :: l  x = y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
609
Proof. by split; [inversion 1; subst|intros [->|?]]; constructor. Qed.
610
Lemma not_elem_of_cons l x y : x  y :: l  x  y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
611
Proof. rewrite elem_of_cons. tauto. Qed.
612
Lemma elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
613
Proof.
614
  induction l1.
615
616
  - split; [by right|]. intros [Hx|]; [|done]. by destruct (elem_of_nil x).
  - simpl. rewrite !elem_of_cons, IHl1. tauto.
617
Qed.
618
Lemma not_elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
619
Proof. rewrite elem_of_app. tauto. Qed.
620
Lemma elem_of_list_singleton x y : x  [y]  x = y.
621
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
622
Global Instance elem_of_list_permutation_proper x : Proper (() ==> iff) (x ).
623
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
624
Lemma elem_of_list_split l x : x  l   l1 l2, l = l1 ++ x :: l2.
625
Proof.
626
  induction 1 as [x l|x y l ? [l1 [l2 ->]]]; [by eexists [], l|].
627
  by exists (y :: l1), l2.
628
Qed.
629
Lemma elem_of_list_lookup_1 l x : x  l   i, l !! i = Some x.
630
Proof.
631
632
  induction 1 as [|???? IH]; [by exists 0 |].
  destruct IH as [i ?]; auto. by exists (S i).
633
Qed.
634
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x  x  l.
635
Proof.
636
  revert i. induction l; intros [|i] ?; simplify_eq/=; constructor; eauto.
637
Qed.
638
639
Lemma elem_of_list_lookup l x : x  l   i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.
640
641
642
643
Lemma elem_of_list_omap {B} (f : A  option B) l (y : B) :
  y  omap f l   x, x  l  f x = Some y.
Proof.
  split.
644
  - induction l as [|x l]; csimpl; repeat case_match; inversion 1; subst;
645
      setoid_rewrite elem_of_cons; naive_solver.
646
  - intros (x&Hx&?). by induction Hx; csimpl; repeat case_match;
647
      simplify_eq; try constructor; auto.
648
Qed.
649

650
(** ** Properties of the [NoDup] predicate *)
651
652
Lemma NoDup_nil : NoDup (@nil A)  True.
Proof. split; constructor. Qed.
653
Lemma NoDup_cons x l : NoDup (x :: l)  x  l  NoDup l.
654
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
655
Lemma NoDup_cons_11 x l : NoDup (x :: l)  x  l.
656
Proof. rewrite NoDup_cons. by intros [??]. Qed.
657
Lemma NoDup_cons_12 x l : NoDup (x :: l)  NoDup l.
658
Proof. rewrite NoDup_cons. by intros [??]. Qed.
659
Lemma NoDup_singleton x : NoDup [x].
660
Proof. constructor. apply not_elem_of_nil. constructor. Qed.
661
Lemma NoDup_app l k : NoDup (l ++ k)  NoDup l  ( x, x  l  x  k)  NoDup k.
Robbert Krebbers's avatar
Robbert Krebbers committed
662
Proof.
663
  induction l; simpl.
664
665
  - rewrite NoDup_nil. setoid_rewrite elem_of_nil. naive_solver.
  - rewrite !NoDup_cons.
Robbert Krebbers's avatar
Robbert Krebbers committed
666
    setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app. naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
667
Qed.
668
Global Instance NoDup_proper: Proper (() ==> iff) (@NoDup A).
669
670
Proof.
  induction 1 as [|x l k Hlk IH | |].
671
672
673
674
  - by rewrite !NoDup_nil.
  - by rewrite !NoDup_cons, IH, Hlk.
  - rewrite !NoDup_cons, !elem_of_cons. intuition.
  - intuition.
675
Qed.
676
677
Lemma NoDup_lookup l i j x :
  NoDup l  l !! i = Some x  l !! j = Some x  i = j.
678
679
Proof.
  intros Hl. revert i j. induction Hl as [|x' l Hx Hl IH].
Robbert Krebbers's avatar