gmultiset.v 14.3 KB
Newer Older
1
(* Copyright (c) 2012-2017, Coq-std++ developers. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
2 3
(* This file is distributed under the terms of the BSD license. *)
From stdpp Require Import gmap.
4
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed
5 6

Record gmultiset A `{Countable A} := GMultiSet { gmultiset_car : gmap A nat }.
7 8
Arguments GMultiSet {_ _ _} _ : assert.
Arguments gmultiset_car {_ _ _} _ : assert.
Robbert Krebbers's avatar
Robbert Krebbers committed
9

10
Lemma gmultiset_eq_dec `{Countable A} : EqDecision (gmultiset A).
Robbert Krebbers's avatar
Robbert Krebbers committed
11
Proof. solve_decision. Defined.
12 13
Hint Extern 1 (Decision (@eq (gmultiset _) _ _)) =>
  eapply @gmultiset_eq_dec : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
14

15
Program Definition gmultiset_countable `{Countable A} :
Robbert Krebbers's avatar
Robbert Krebbers committed
16 17 18 19
    Countable (gmultiset A) := {|
  encode X := encode (gmultiset_car X);  decode p := GMultiSet <$> decode p
|}.
Next Obligation. intros A ?? [X]; simpl. by rewrite decode_encode. Qed.
20 21
Hint Extern 1 (Countable (gmultiset _)) =>
  eapply @gmultiset_countable : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
22 23 24 25 26 27

Section definitions.
  Context `{Countable A}.

  Definition multiplicity (x : A) (X : gmultiset A) : nat :=
    match gmultiset_car X !! x with Some n => S n | None => 0 end.
28
  Global Instance gmultiset_elem_of : ElemOf A (gmultiset A) := λ x X,
Robbert Krebbers's avatar
Robbert Krebbers committed
29
    0 < multiplicity x X.
30
  Global Instance gmultiset_subseteq : SubsetEq (gmultiset A) := λ X Y,  x,
Robbert Krebbers's avatar
Robbert Krebbers committed
31 32
    multiplicity x X  multiplicity x Y.

33
  Global Instance gmultiset_elements : Elements A (gmultiset A) := λ X,
Robbert Krebbers's avatar
Robbert Krebbers committed
34
    let (X) := X in '(x,n)  map_to_list X; replicate (S n) x.
35
  Global Instance gmultiset_size : Size (gmultiset A) := length  elements.
Robbert Krebbers's avatar
Robbert Krebbers committed
36

37 38
  Global Instance gmultiset_empty : Empty (gmultiset A) := GMultiSet .
  Global Instance gmultiset_singleton : Singleton A (gmultiset A) := λ x,
Robbert Krebbers's avatar
Robbert Krebbers committed
39
    GMultiSet {[ x := 0 ]}.
40
  Global Instance gmultiset_union : Union (gmultiset A) := λ X Y,
Robbert Krebbers's avatar
Robbert Krebbers committed
41 42
    let (X) := X in let (Y) := Y in
    GMultiSet $ union_with (λ x y, Some (S (x + y))) X Y.
43
  Global Instance gmultiset_difference : Difference (gmultiset A) := λ X Y,
Robbert Krebbers's avatar
Robbert Krebbers committed
44 45 46
    let (X) := X in let (Y) := Y in
    GMultiSet $ difference_with (λ x y,
      let z := x - y in guard (0 < z); Some (pred z)) X Y.
47

48
  Global Instance gmultiset_dom : Dom (gmultiset A) (gset A) := λ X,
49
    let (X) := X in dom _ X.
Robbert Krebbers's avatar
Robbert Krebbers committed
50 51
End definitions.

52 53 54
Typeclasses Opaque gmultiset_elem_of gmultiset_subseteq.
Typeclasses Opaque gmultiset_elements gmultiset_size gmultiset_empty.
Typeclasses Opaque gmultiset_singleton gmultiset_union gmultiset_difference.
55
Typeclasses Opaque gmultiset_dom.
56

Robbert Krebbers's avatar
Robbert Krebbers committed
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
Section lemmas.
Context `{Countable A}.
Implicit Types x y : A.
Implicit Types X Y : gmultiset A.

Lemma gmultiset_eq X Y : X = Y   x, multiplicity x X = multiplicity x Y.
Proof.
  split; [by intros ->|intros HXY].
  destruct X as [X], Y as [Y]; f_equal; apply map_eq; intros x.
  specialize (HXY x); unfold multiplicity in *; simpl in *.
  repeat case_match; naive_solver.
Qed.

(* Multiplicity *)
Lemma multiplicity_empty x : multiplicity x  = 0.
Proof. done. Qed.
Lemma multiplicity_singleton x : multiplicity x {[ x ]} = 1.
Proof. unfold multiplicity; simpl. by rewrite lookup_singleton. Qed.
Lemma multiplicity_singleton_ne x y : x  y  multiplicity x {[ y ]} = 0.
Proof. intros. unfold multiplicity; simpl. by rewrite lookup_singleton_ne. Qed.
Lemma multiplicity_union X Y x :
  multiplicity x (X  Y) = multiplicity x X + multiplicity x Y.
Proof.
  destruct X as [X], Y as [Y]; unfold multiplicity; simpl.
  rewrite lookup_union_with. destruct (X !! _), (Y !! _); simpl; omega.
Qed.
Lemma multiplicity_difference X Y x :
  multiplicity x (X  Y) = multiplicity x X - multiplicity x Y.
Proof.
  destruct X as [X], Y as [Y]; unfold multiplicity; simpl.
  rewrite lookup_difference_with.
  destruct (X !! _), (Y !! _); simplify_option_eq; omega.
Qed.

91
(* Collection *)
92 93 94 95 96 97 98 99 100 101 102 103 104
Lemma elem_of_multiplicity x X : x  X  0 < multiplicity x X.
Proof. done. Qed.

Global Instance gmultiset_simple_collection : SimpleCollection A (gmultiset A).
Proof.
  split.
  - intros x. rewrite elem_of_multiplicity, multiplicity_empty. omega.
  - intros x y. destruct (decide (x = y)) as [->|].
    + rewrite elem_of_multiplicity, multiplicity_singleton. split; auto with lia.
    + rewrite elem_of_multiplicity, multiplicity_singleton_ne by done.
      by split; auto with lia.
  - intros X Y x. rewrite !elem_of_multiplicity, multiplicity_union. omega.
Qed.
105 106
Global Instance gmultiset_elem_of_dec x X : Decision (x  X).
Proof. unfold elem_of, gmultiset_elem_of. apply _. Defined.
107

108
(* Algebraic laws *)
Robbert Krebbers's avatar
Robbert Krebbers committed
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
Global Instance gmultiset_comm : Comm (@eq (gmultiset A)) ().
Proof.
  intros X Y. apply gmultiset_eq; intros x. rewrite !multiplicity_union; omega.
Qed.
Global Instance gmultiset_assoc : Assoc (@eq (gmultiset A)) ().
Proof.
  intros X Y Z. apply gmultiset_eq; intros x. rewrite !multiplicity_union; omega.
Qed.
Global Instance gmultiset_left_id : LeftId (@eq (gmultiset A))  ().
Proof.
  intros X. apply gmultiset_eq; intros x.
  by rewrite multiplicity_union, multiplicity_empty.
Qed.
Global Instance gmultiset_right_id : RightId (@eq (gmultiset A))  ().
Proof. intros X. by rewrite (comm_L ()), (left_id_L _ _). Qed.

Global Instance gmultiset_union_inj_1 X : Inj (=) (=) (X ).
Proof.
  intros Y1 Y2. rewrite !gmultiset_eq. intros HX x; generalize (HX x).
  rewrite !multiplicity_union. omega.
Qed.
Global Instance gmultiset_union_inj_2 X : Inj (=) (=) ( X).
Proof. intros Y1 Y2. rewrite <-!(comm_L _ X). apply (inj _). Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
133
Lemma gmultiset_non_empty_singleton x : {[ x ]}  ( : gmultiset A).
Robbert Krebbers's avatar
Robbert Krebbers committed
134
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
135 136
  rewrite gmultiset_eq. intros Hx; generalize (Hx x).
  by rewrite multiplicity_singleton, multiplicity_empty.
Robbert Krebbers's avatar
Robbert Krebbers committed
137 138
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
(* Properties of the elements operation *)
Lemma gmultiset_elements_empty : elements ( : gmultiset A) = [].
Proof.
  unfold elements, gmultiset_elements; simpl. by rewrite map_to_list_empty.
Qed.
Lemma gmultiset_elements_empty_inv X : elements X = []  X = .
Proof.
  destruct X as [X]; unfold elements, gmultiset_elements; simpl.
  intros; apply (f_equal GMultiSet). destruct (map_to_list X)
    as [|[]] eqn:?; naive_solver eauto using map_to_list_empty_inv.
Qed.
Lemma gmultiset_elements_empty' X : elements X = []  X = .
Proof.
  split; intros HX; [by apply gmultiset_elements_empty_inv|].
  by rewrite HX, gmultiset_elements_empty.
Qed.
Lemma gmultiset_elements_singleton x : elements ({[ x ]} : gmultiset A) = [ x ].
Proof.
  unfold elements, gmultiset_elements; simpl. by rewrite map_to_list_singleton.
Qed.
Lemma gmultiset_elements_union X Y :
  elements (X  Y)  elements X ++ elements Y.
Proof.
  destruct X as [X], Y as [Y]; unfold elements, gmultiset_elements.
  set (f xn := let '(x, n) := xn in replicate (S n) x); simpl.
  revert Y; induction X as [|x n X HX IH] using map_ind; intros Y.
165
  { by rewrite (left_id_L _ _ Y), map_to_list_empty. }
Robbert Krebbers's avatar
Robbert Krebbers committed
166 167 168 169 170 171
  destruct (Y !! x) as [n'|] eqn:HY.
  - rewrite <-(insert_id Y x n'), <-(insert_delete Y) by done.
    erewrite <-insert_union_with by done.
    rewrite !map_to_list_insert, !bind_cons
      by (by rewrite ?lookup_union_with, ?lookup_delete, ?HX).
    rewrite (assoc_L _), <-(comm (++) (f (_,n'))), <-!(assoc_L _), <-IH.
172 173
    rewrite (assoc_L _). f_equiv.
    rewrite (comm _); simpl. by rewrite replicate_plus, Permutation_middle.
Robbert Krebbers's avatar
Robbert Krebbers committed
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
  - rewrite <-insert_union_with_l, !map_to_list_insert, !bind_cons
      by (by rewrite ?lookup_union_with, ?HX, ?HY).
    by rewrite <-(assoc_L (++)), <-IH.
Qed.
Lemma gmultiset_elem_of_elements x X : x  elements X  x  X.
Proof.
  destruct X as [X]. unfold elements, gmultiset_elements.
  set (f xn := let '(x, n) := xn in replicate (S n) x); simpl.
  unfold elem_of at 2, gmultiset_elem_of, multiplicity; simpl.
  rewrite elem_of_list_bind. split.
  - intros [[??] [[<- ?]%elem_of_replicate ->%elem_of_map_to_list]]; lia.
  - intros. destruct (X !! x) as [n|] eqn:Hx; [|omega].
    exists (x,n); split; [|by apply elem_of_map_to_list].
    apply elem_of_replicate; auto with omega.
Qed.
189 190 191 192 193 194
Lemma gmultiset_elem_of_dom x X : x  dom (gset A) X  x  X.
Proof.
  unfold dom, gmultiset_dom, elem_of at 2, gmultiset_elem_of, multiplicity.
  destruct X as [X]; simpl; rewrite elem_of_dom, <-not_eq_None_Some.
  destruct (X !! x); naive_solver omega.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

(* Properties of the size operation *)
Lemma gmultiset_size_empty : size ( : gmultiset A) = 0.
Proof. done. Qed.
Lemma gmultiset_size_empty_inv X : size X = 0  X = .
Proof.
  unfold size, gmultiset_size; simpl. rewrite length_zero_iff_nil.
  apply gmultiset_elements_empty_inv.
Qed.
Lemma gmultiset_size_empty_iff X : size X = 0  X = .
Proof.
  split; [apply gmultiset_size_empty_inv|].
  by intros ->; rewrite gmultiset_size_empty.
Qed.
Lemma gmultiset_size_non_empty_iff X : size X  0  X  .
Proof. by rewrite gmultiset_size_empty_iff. Qed.

Lemma gmultiset_choose_or_empty X : ( x, x  X)  X = .
Proof.
  destruct (elements X) as [|x l] eqn:HX; [right|left].
  - by apply gmultiset_elements_empty_inv.
  - exists x. rewrite <-gmultiset_elem_of_elements, HX. by left.
Qed.
Lemma gmultiset_choose X : X     x, x  X.
Proof. intros. by destruct (gmultiset_choose_or_empty X). Qed.
Lemma gmultiset_size_pos_elem_of X : 0 < size X   x, x  X.
Proof.
  intros Hsz. destruct (gmultiset_choose_or_empty X) as [|HX]; [done|].
  contradict Hsz. rewrite HX, gmultiset_size_empty; lia.
Qed.

Lemma gmultiset_size_singleton x : size ({[ x ]} : gmultiset A) = 1.
Proof.
  unfold size, gmultiset_size; simpl. by rewrite gmultiset_elements_singleton.
Qed.
Lemma gmultiset_size_union X Y : size (X  Y) = size X + size Y.
Proof.
  unfold size, gmultiset_size; simpl.
  by rewrite gmultiset_elements_union, app_length.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
235 236 237 238 239 240 241 242 243 244

(* Order stuff *)
Global Instance gmultiset_po : PartialOrder (@subseteq (gmultiset A) _).
Proof.
  split; [split|].
  - by intros X x.
  - intros X Y Z HXY HYZ x. by trans (multiplicity x Y).
  - intros X Y HXY HYX; apply gmultiset_eq; intros x. by apply (anti_symm ()).
Qed.

245 246 247 248 249 250 251 252 253 254 255 256 257 258
Lemma gmultiset_subseteq_alt X Y :
  X  Y 
  map_relation () (λ _, False) (λ _, True) (gmultiset_car X) (gmultiset_car Y).
Proof.
  apply forall_proper; intros x. unfold multiplicity.
  destruct (gmultiset_car X !! x), (gmultiset_car Y !! x); naive_solver omega.
Qed.
Global Instance gmultiset_subseteq_dec X Y : Decision (X  Y).
Proof.
 refine (cast_if (decide (map_relation ()
   (λ _, False) (λ _, True) (gmultiset_car X) (gmultiset_car Y))));
   by rewrite gmultiset_subseteq_alt.
Defined.

Robbert Krebbers's avatar
Robbert Krebbers committed
259 260 261 262 263 264 265 266 267 268 269
Lemma gmultiset_subset_subseteq X Y : X  Y  X  Y.
Proof. apply strict_include. Qed.
Hint Resolve gmultiset_subset_subseteq.

Lemma gmultiset_empty_subseteq X :   X.
Proof. intros x. rewrite multiplicity_empty. omega. Qed.

Lemma gmultiset_union_subseteq_l X Y : X  X  Y.
Proof. intros x. rewrite multiplicity_union. omega. Qed.
Lemma gmultiset_union_subseteq_r X Y : Y  X  Y.
Proof. intros x. rewrite multiplicity_union. omega. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
270
Lemma gmultiset_union_mono X1 X2 Y1 Y2 : X1  X2  Y1  Y2  X1  Y1  X2  Y2.
Robbert Krebbers's avatar
Robbert Krebbers committed
271
Proof. intros ?? x. rewrite !multiplicity_union. by apply Nat.add_le_mono. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
272 273 274 275
Lemma gmultiset_union_mono_l X Y1 Y2 : Y1  Y2  X  Y1  X  Y2.
Proof. intros. by apply gmultiset_union_mono. Qed.
Lemma gmultiset_union_mono_r X1 X2 Y : X1  X2  X1  Y  X2  Y.
Proof. intros. by apply gmultiset_union_mono. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
276 277 278 279 280 281 282 283 284 285 286 287

Lemma gmultiset_subset X Y : X  Y  size X < size Y  X  Y.
Proof. intros. apply strict_spec_alt; split; naive_solver auto with omega. Qed.
Lemma gmultiset_union_subset_l X Y : Y    X  X  Y.
Proof.
  intros HY%gmultiset_size_non_empty_iff.
  apply gmultiset_subset; auto using gmultiset_union_subseteq_l.
  rewrite gmultiset_size_union; omega.
Qed.
Lemma gmultiset_union_subset_r X Y : X    Y  X  Y.
Proof. rewrite (comm_L ()). apply gmultiset_union_subset_l. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
288
Lemma gmultiset_elem_of_singleton_subseteq x X : x  X  {[ x ]}  X.
Robbert Krebbers's avatar
Robbert Krebbers committed
289
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
290 291 292 293 294
  rewrite elem_of_multiplicity. split.
  - intros Hx y; destruct (decide (x = y)) as [->|].
    + rewrite multiplicity_singleton; omega.
    + rewrite multiplicity_singleton_ne by done; omega.
  - intros Hx. generalize (Hx x). rewrite multiplicity_singleton. omega.
Robbert Krebbers's avatar
Robbert Krebbers committed
295 296
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
297 298 299
Lemma gmultiset_elem_of_subseteq X1 X2 x : x  X1  X1  X2  x  X2.
Proof. rewrite !gmultiset_elem_of_singleton_subseteq. by intros ->. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
300 301 302 303 304 305
Lemma gmultiset_union_difference X Y : X  Y  Y = X  Y  X.
Proof.
  intros HXY. apply gmultiset_eq; intros x; specialize (HXY x).
  rewrite multiplicity_union, multiplicity_difference; omega.
Qed.
Lemma gmultiset_union_difference' x Y : x  Y  Y = {[ x ]}  Y  {[ x ]}.
Robbert Krebbers's avatar
Robbert Krebbers committed
306 307 308 309
Proof.
  intros. by apply gmultiset_union_difference,
    gmultiset_elem_of_singleton_subseteq.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
310

Robbert Krebbers's avatar
Robbert Krebbers committed
311 312 313 314 315 316
Lemma gmultiset_size_difference X Y : Y  X  size (X  Y) = size X - size Y.
Proof.
  intros HX%gmultiset_union_difference.
  rewrite HX at 2; rewrite gmultiset_size_union. omega.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
317 318 319 320 321 322 323 324 325 326 327 328 329
Lemma gmultiset_non_empty_difference X Y : X  Y  Y  X  .
Proof.
  intros [_ HXY2] Hdiff; destruct HXY2; intros x.
  generalize (f_equal (multiplicity x) Hdiff).
  rewrite multiplicity_difference, multiplicity_empty; omega.
Qed.

Lemma gmultiset_difference_subset X Y : X    X  Y  Y  X  Y.
Proof.
  intros. eapply strict_transitive_l; [by apply gmultiset_union_subset_r|].
  by rewrite <-(gmultiset_union_difference X Y).
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
330
(* Mononicity *)
Robbert Krebbers's avatar
Robbert Krebbers committed
331
Lemma gmultiset_elements_submseteq X Y : X  Y  elements X + elements Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
332 333
Proof.
  intros ->%gmultiset_union_difference. rewrite gmultiset_elements_union.
Robbert Krebbers's avatar
Robbert Krebbers committed
334
  by apply submseteq_inserts_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
335 336
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
337
Lemma gmultiset_subseteq_size X Y : X  Y  size X  size Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
338
Proof. intros. by apply submseteq_length, gmultiset_elements_submseteq. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
339 340 341 342

Lemma gmultiset_subset_size X Y : X  Y  size X < size Y.
Proof.
  intros HXY. assert (size (Y  X)  0).
Robbert Krebbers's avatar
Robbert Krebbers committed
343
  { by apply gmultiset_size_non_empty_iff, gmultiset_non_empty_difference. }
Robbert Krebbers's avatar
Robbert Krebbers committed
344 345 346 347 348 349 350 351
  rewrite (gmultiset_union_difference X Y), gmultiset_size_union by auto. lia.
Qed.

(* Well-foundedness *)
Lemma gmultiset_wf : wf (strict (@subseteq (gmultiset A) _)).
Proof.
  apply (wf_projected (<) size); auto using gmultiset_subset_size, lt_wf.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
352 353 354 355 356 357 358

Lemma gmultiset_ind (P : gmultiset A  Prop) :
  P   ( x X, P X  P ({[ x ]}  X))   X, P X.
Proof.
  intros Hemp Hinsert X. induction (gmultiset_wf X) as [X _ IH].
  destruct (gmultiset_choose_or_empty X) as [[x Hx]| ->]; auto.
  rewrite (gmultiset_union_difference' x X) by done.
Robbert Krebbers's avatar
Robbert Krebbers committed
359 360
  apply Hinsert, IH, gmultiset_difference_subset,
    gmultiset_elem_of_singleton_subseteq; auto using gmultiset_non_empty_singleton.
Robbert Krebbers's avatar
Robbert Krebbers committed
361
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
362
End lemmas.