list.v 147 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2014, Robbert Krebbers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
5
Require Export Permutation.
6
Require Export numbers base decidable option.
Robbert Krebbers's avatar
Robbert Krebbers committed
7

8
Arguments length {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
9 10 11
Arguments cons {_} _ _.
Arguments app {_} _ _.
Arguments Permutation {_} _ _.
12
Arguments Forall_cons {_} _ _ _ _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
13

14 15 16
Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.
17

18 19 20
Arguments take {_} !_ !_ /.
Arguments drop {_} !_ !_ /.

Robbert Krebbers's avatar
Robbert Krebbers committed
21 22 23 24 25 26 27
Notation "(::)" := cons (only parsing) : C_scope.
Notation "( x ::)" := (cons x) (only parsing) : C_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : C_scope.
Notation "(++)" := app (only parsing) : C_scope.
Notation "( l ++)" := (app l) (only parsing) : C_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : C_scope.

28 29 30 31 32 33 34 35 36
Infix "≡ₚ" := Permutation (at level 70, no associativity) : C_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : C_scope.
Notation "( x ≡ₚ)" := (Permutation x) (only parsing) : C_scope.
Notation "(≡ₚ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢ₚ)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ₚ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢ₚ)" := (λ y, x ≢ₚ y) (only parsing) : C_scope.
Notation "(≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : C_scope.

37 38 39
(** * Definitions *)
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
40
Instance list_lookup {A} : Lookup nat A (list A) :=
41
  fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
42
  match l with
43
  | [] => None | x :: l => match i with 0 => Some x | S i => l !! i end
44
  end.
45 46 47

(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
48 49
Instance list_alter {A} : Alter nat A (list A) := λ f,
  fix go i l {struct l} :=
50 51
  match l with
  | [] => []
52
  | x :: l => match i with 0 => f x :: l | S i => x :: go i l end
53
  end.
54

55 56
(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
57 58 59 60 61 62
Instance list_insert {A} : Insert nat A (list A) :=
  fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
  match l with
  | [] => []
  | x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end
  end.
63

64 65 66
(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
67 68
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
69 70
  match l with
  | [] => []
71
  | x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end
72
  end.
73 74 75

(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
76
Definition option_list {A} : option A  list A := option_rect _ (λ x, [x]) [].
77 78
Definition list_singleton {A} (l : list A) : option A :=
  match l with [x] => Some x | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
79 80 81 82

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
83
  fix go P _ l := let _ : Filter _ _ := @go in
Robbert Krebbers's avatar
Robbert Krebbers committed
84 85
  match l with
  | [] => []
86
  | x :: l => if decide (P x) then x :: filter P l else filter P l
87 88 89 90 91 92 93
  end.

(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
Definition list_find {A} P `{ x, Decision (P x)} : list A  option nat :=
  fix go l :=
  match l with
94
  | [] => None | x :: l => if decide (P x) then Some 0 else S <$> go l
95
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
96 97 98 99

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
100
  match n with 0 => [] | S n => x :: replicate n x end.
Robbert Krebbers's avatar
Robbert Krebbers committed
101 102 103 104

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].

105 106 107 108
(** The function [last l] returns the last element of the list [l], or [None]
if the list [l] is empty. *)
Fixpoint last {A} (l : list A) : option A :=
  match l with [] => None | [x] => Some x | _ :: l => last l end.
109

Robbert Krebbers's avatar
Robbert Krebbers committed
110 111 112 113 114 115
(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
116
  | x :: l => match n with 0 => [] | S n => x :: resize n y l end
Robbert Krebbers's avatar
Robbert Krebbers committed
117 118 119
  end.
Arguments resize {_} !_ _ !_.

120 121 122
(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
123 124
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
125
  | [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
126 127
  end.

128
Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
129 130 131 132
  guard (i + n  length l); Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A  list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.
133

134 135 136 137
(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.
Definition foldl {A B} (f : A  B  A) : A  list B  A :=
138
  fix go a l := match l with [] => a | x :: l => go (f a x) l end.
139 140 141

(** The monadic operations. *)
Instance list_ret: MRet list := λ A x, x :: @nil A.
142 143
Instance list_fmap : FMap list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x :: go l end.
144 145 146 147 148 149
Instance list_omap : OMap list := λ A B f,
  fix go (l : list A) :=
  match l with
  | [] => []
  | x :: l => match f x with Some y => y :: go l | None => go l end
  end.
150 151
Instance list_bind : MBind list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x ++ go l end.
152 153
Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
154
  match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.
155
Definition mapM `{MBind M, MRet M} {A B} (f : A  M B) : list A  M (list B) :=
156
  fix go l :=
157
  match l with [] => mret [] | x :: l => y  f x; k  go l; mret (y :: k) end.
158 159 160 161 162

(** We define stronger variants of map and fold that allow the mapped
function to use the index of the elements. *)
Definition imap_go {A B} (f : nat  A  B) : nat  list A  list B :=
  fix go (n : nat) (l : list A) :=
163
  match l with [] => [] | x :: l => f n x :: go (S n) l end.
164
Definition imap {A B} (f : nat  A  B) : list A  list B := imap_go f 0.
165 166 167 168 169 170 171 172 173 174 175
Definition zipped_map {A B} (f : list A  list A  A  B) :
  list A  list A  list B := fix go l k :=
  match k with [] => [] | x :: k => f l k x :: go (x :: l) k end.

Inductive zipped_Forall {A} (P : list A  list A  A  Prop) :
    list A  list A  Prop :=
  | zipped_Forall_nil l : zipped_Forall P l []
  | zipped_Forall_cons l k x :
     P l k x  zipped_Forall P (x :: l) k  zipped_Forall P l (x :: k).
Arguments zipped_Forall_nil {_ _} _.
Arguments zipped_Forall_cons {_ _} _ _ _ _ _.
176

177 178 179 180 181 182 183
(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A  A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l => (if β then f x else x) :: mask f βs l
  | _, _ => l
  end.
184 185 186 187

(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
188
  | [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::) <$> interleave x l)
189 190
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
191
  match l with [] => [[]] | x :: l => permutations l = interleave x end.
192

193 194
(** The predicate [suffix_of] holds if the first list is a suffix of the second.
The predicate [prefix_of] holds if the first list is a prefix of the second. *)
195 196
Definition suffix_of {A} : relation (list A) := λ l1 l2,  k, l2 = k ++ l1.
Definition prefix_of {A} : relation (list A) := λ l1 l2,  k, l2 = l1 ++ k.
197 198
Infix "`suffix_of`" := suffix_of (at level 70) : C_scope.
Infix "`prefix_of`" := prefix_of (at level 70) : C_scope.
199 200
Hint Extern 0 (?x `prefix_of` ?y) => reflexivity.
Hint Extern 0 (?x `suffix_of` ?y) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
201

202 203 204 205 206 207 208 209
Section prefix_suffix_ops.
  Context `{ x y : A, Decision (x = y)}.
  Definition max_prefix_of : list A  list A  list A * list A * list A :=
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
210
      if decide_rel (=) x1 x2
211
      then prod_map id (x1 ::) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
212 213 214 215 216
    end.
  Definition max_suffix_of (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix_of (reverse l1) (reverse l2) with
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.
217 218
  Definition strip_prefix (l1 l2 : list A) := (max_prefix_of l1 l2).1.2.
  Definition strip_suffix (l1 l2 : list A) := (max_suffix_of l1 l2).1.2.
219
End prefix_suffix_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
220

221
(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
222 223 224
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
225
  | sublist_skip x l1 l2 : sublist l1 l2  sublist (x :: l1) (x :: l2)
226
  | sublist_cons x l1 l2 : sublist l1 l2  sublist l1 (x :: l2).
227
Infix "`sublist`" := sublist (at level 70) : C_scope.
228
Hint Extern 0 (?x `sublist` ?y) => reflexivity.
229 230

(** A list [l2] contains a list [l1] if [l2] is obtained by removing elements
231
from [l1] while possiblity changing the order. *)
232 233 234 235
Inductive contains {A} : relation (list A) :=
  | contains_nil : contains [] []
  | contains_skip x l1 l2 : contains l1 l2  contains (x :: l1) (x :: l2)
  | contains_swap x y l : contains (y :: x :: l) (x :: y :: l)
236
  | contains_cons x l1 l2 : contains l1 l2  contains l1 (x :: l2)
237 238
  | contains_trans l1 l2 l3 : contains l1 l2  contains l2 l3  contains l1 l3.
Infix "`contains`" := contains (at level 70) : C_scope.
239
Hint Extern 0 (?x `contains` ?y) => reflexivity.
240 241 242 243 244 245 246 247 248 249

Section contains_dec_help.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Fixpoint list_remove (x : A) (l : list A) : option (list A) :=
    match l with
    | [] => None
    | y :: l => if decide (x = y) then Some l else (y ::) <$> list_remove x l
    end.
  Fixpoint list_remove_list (k : list A) (l : list A) : option (list A) :=
    match k with
250
    | [] => Some l | x :: k => list_remove x l = list_remove_list k
251 252
    end.
End contains_dec_help.
253

254 255 256 257 258
Inductive Forall3 {A B C} (P : A  B  C  Prop) :
     list A  list B  list C  Prop :=
  | Forall3_nil : Forall3 P [] [] []
  | Forall3_cons x y z l k k' :
     P x y z  Forall3 P l k k'  Forall3 P (x :: l) (y :: k) (z :: k').
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283

(** Set operations on lists *)
Section list_set.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Global Instance elem_of_list_dec {dec :  x y : A, Decision (x = y)}
    (x : A) :  l, Decision (x  l).
  Proof.
   refine (
    fix go l :=
    match l return Decision (x  l) with
    | [] => right _
    | y :: l => cast_if_or (decide (x = y)) (go l)
    end); clear go dec; subst; try (by constructor); abstract by inversion 1.
  Defined.
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x l then remove_dups l else x :: remove_dups l
    end.
  Fixpoint list_difference (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
284
      then list_difference l k else x :: list_difference l k
285
    end.
286
  Definition list_union (l k : list A) : list A := list_difference l k ++ k.
287 288 289 290 291
  Fixpoint list_intersection (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
292
      then x :: list_intersection l k else list_intersection l k
293 294 295 296 297 298 299 300 301
    end.
  Definition list_intersection_with (f : A  A  option A) :
    list A  list A  list A := fix go l k :=
    match l with
    | [] => []
    | x :: l => foldr (λ y,
        match f x y with None => id | Some z => (z ::) end) (go l k) k
    end.
End list_set.
302 303

(** * Basic tactics on lists *)
304 305 306
(** The tactic [discriminate_list_equality] discharges a goal if it contains
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
307 308
Tactic Notation "discriminate_list_equality" hyp(H) :=
  apply (f_equal length) in H;
309
  repeat (csimpl in H || rewrite app_length in H); exfalso; lia.
310
Tactic Notation "discriminate_list_equality" :=
311 312 313
  match goal with
  | H : @eq (list _) _ _ |- _ => discriminate_list_equality H
  end.
314

315 316 317
(** The tactic [simplify_list_equality] simplifies hypotheses involving
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
318 319 320 321 322 323 324 325 326
Lemma app_injective_1 {A} (l1 k1 l2 k2 : list A) :
  length l1 = length k1  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
Lemma app_injective_2 {A} (l1 k1 l2 k2 : list A) :
  length l2 = length k2  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof.
  intros ? Hl. apply app_injective_1; auto.
  apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
Qed.
327
Ltac simplify_list_equality :=
328
  repeat match goal with
329
  | _ => progress simplify_equality'
330
  | H : _ ++ _ = _ ++ _ |- _ => first
331 332 333
    [ apply app_inv_head in H | apply app_inv_tail in H
    | apply app_injective_1 in H; [destruct H|done]
    | apply app_injective_2 in H; [destruct H|done] ]
Robbert Krebbers's avatar
Robbert Krebbers committed
334
  | H : [?x] !! ?i = Some ?y |- _ =>
335
    destruct i; [change (Some x = Some y) in H | discriminate]
336
  end.
337

338 339
(** * General theorems *)
Section general_properties.
Robbert Krebbers's avatar
Robbert Krebbers committed
340
Context {A : Type}.
341 342
Implicit Types x y z : A.
Implicit Types l k : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
343

344 345 346
Global Instance: Injective2 (=) (=) (=) (@cons A).
Proof. by injection 1. Qed.
Global Instance:  k, Injective (=) (=) (k ++).
347
Proof. intros ???. apply app_inv_head. Qed.
348
Global Instance:  k, Injective (=) (=) (++ k).
349
Proof. intros ???. apply app_inv_tail. Qed.
350 351 352 353 354 355
Global Instance: Associative (=) (@app A).
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.
356

357
Lemma app_nil l1 l2 : l1 ++ l2 = []  l1 = []  l2 = [].
358
Proof. split. apply app_eq_nil. by intros [-> ->]. Qed.
359 360
Lemma app_singleton l1 l2 x :
  l1 ++ l2 = [x]  l1 = []  l2 = [x]  l1 = [x]  l2 = [].
361
Proof. split. apply app_eq_unit. by intros [[-> ->]|[-> ->]]. Qed.
362 363 364
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : ( i, l1 !! i = l2 !! i)  l1 = l2.
365 366
Proof.
  revert l2. induction l1; intros [|??] H.
367
  * done.
368 369
  * discriminate (H 0).
  * discriminate (H 0).
370
  * f_equal; [by injection (H 0)|]. apply (IHl1 _ $ λ i, H (S i)).
371
Qed.
372
Global Instance list_eq_dec {dec :  x y, Decision (x = y)} :  l k,
373
  Decision (l = k) := list_eq_dec dec.
374 375 376 377 378 379 380 381
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with [] => left _ | _ => right _ end. Defined.
Lemma list_singleton_reflect l :
  option_reflect (λ x, l = [x]) (length l  1) (list_singleton l).
Proof. by destruct l as [|? []]; constructor. Defined.

Definition nil_length : length (@nil A) = 0 := eq_refl.
Definition cons_length x l : length (x :: l) = S (length l) := eq_refl.
382
Lemma nil_or_length_pos l : l = []  length l  0.
383
Proof. destruct l; simpl; auto with lia. Qed.
384
Lemma nil_length_inv l : length l = 0  l = [].
385 386
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
387
Proof. by destruct i. Qed.
388
Lemma lookup_tail l i : tail l !! i = l !! S i.
389
Proof. by destruct l. Qed.
390 391
Lemma lookup_lt_Some l i x : l !! i = Some x  i < length l.
Proof.
392
  revert i. induction l; intros [|?] ?; simplify_equality'; auto with arith.
393 394 395 396 397
Qed.
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i)  i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l  is_Some (l !! i).
Proof.
398
  revert i. induction l; intros [|?] ?; simplify_equality'; eauto with lia.
399 400 401 402 403 404 405 406 407
Qed.
Lemma lookup_lt_is_Some l i : is_Some (l !! i)  i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None  length l  i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None  length l  i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l  i  l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
408 409 410
Lemma list_eq_same_length l1 l2 n :
  length l2 = n  length l1 = n 
  ( i x y, i < n  l1 !! i = Some x  l2 !! i = Some y  x = y)  l1 = l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
411
Proof.
412 413 414 415 416
  intros <- Hlen Hl; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
  * destruct (lookup_lt_is_Some_2 l1 i) as [y Hy].
    { rewrite Hlen; eauto using lookup_lt_Some. }
    rewrite Hy; f_equal; apply (Hl i); eauto using lookup_lt_Some.
  * by rewrite lookup_ge_None, Hlen, <-lookup_ge_None.
Robbert Krebbers's avatar
Robbert Krebbers committed
417
Qed.
418
Lemma lookup_app_l l1 l2 i : i < length l1  (l1 ++ l2) !! i = l1 !! i.
419
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
420 421
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x  (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
422
Lemma lookup_app_r l1 l2 i :
423
  length l1  i  (l1 ++ l2) !! i = l2 !! (i - length l1).
424 425 426 427 428 429 430 431 432 433 434
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
Lemma lookup_app_Some l1 l2 i x :
  (l1 ++ l2) !! i = Some x 
    l1 !! i = Some x  length l1  i  l2 !! (i - length l1) = Some x.
Proof.
  split.
  * revert i. induction l1 as [|y l1 IH]; intros [|i] ?;
      simplify_equality'; auto with lia.
    destruct (IH i) as [?|[??]]; auto with lia.
  * intros [?|[??]]; auto using lookup_app_l_Some. by rewrite lookup_app_r.
Qed.
435 436 437
Lemma list_lookup_middle l1 l2 x n :
  n = length l1  (l1 ++ x :: l2) !! n = Some x.
Proof. intros ->. by induction l1. Qed.
438

439 440
Lemma list_insert_alter l i x : <[i:=x]>l = alter (λ _, x) i l.
Proof. by revert i; induction l; intros []; intros; f_equal'. Qed.
441
Lemma alter_length f l i : length (alter f i l) = length l.
442
Proof. revert i. by induction l; intros [|?]; f_equal'. Qed.
443
Lemma insert_length l i x : length (<[i:=x]>l) = length l.
444
Proof. revert i. by induction l; intros [|?]; f_equal'. Qed.
445
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
446
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
447
Lemma list_lookup_alter_ne f l i j : i  j  alter f i l !! j = l !! j.
448
Proof.
449
  revert i j. induction l; [done|]. intros [][] ?; csimpl; auto with congruence.
450
Qed.
451
Lemma list_lookup_insert l i x : i < length l  <[i:=x]>l !! i = Some x.
452 453
Proof. revert i. induction l; intros [|?] ?; f_equal'; auto with lia. Qed.
Lemma list_lookup_insert_ne l i j x : i  j  <[i:=x]>l !! j = l !! j.
454
Proof.
455
  revert i j. induction l; [done|]. intros [] [] ?; simpl; auto with congruence.
456
Qed.
457 458
Lemma list_lookup_other l i x :
  length l  1  l !! i = Some x   j y, j  i  l !! j = Some y.
Robbert Krebbers's avatar
Robbert Krebbers committed
459
Proof.
460
  intros. destruct i, l as [|x0 [|x1 l]]; simplify_equality'.
Robbert Krebbers's avatar
Robbert Krebbers committed
461 462 463
  * by exists 1 x1.
  * by exists 0 x0.
Qed.
464 465
Lemma alter_app_l f l1 l2 i :
  i < length l1  alter f i (l1 ++ l2) = alter f i l1 ++ l2.
466
Proof. revert i. induction l1; intros [|?] ?; f_equal'; auto with lia. Qed.
467
Lemma alter_app_r f l1 l2 i :
468
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
469
Proof. revert i. induction l1; intros [|?]; f_equal'; auto. Qed.
470 471
Lemma alter_app_r_alt f l1 l2 i :
  length l1  i  alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
472 473 474 475
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
476 477
Lemma list_alter_id f l i : ( x, f x = x)  alter f i l = l.
Proof. intros ?. revert i. induction l; intros [|?]; f_equal'; auto. Qed.
478 479 480
Lemma list_alter_ext f g l k i :
  ( x, l !! i = Some x  f x = g x)  l = k  alter f i l = alter g i k.
Proof. intros H ->. revert i H. induction k; intros [|?] ?; f_equal'; auto. Qed.
481 482
Lemma list_alter_compose f g l i :
  alter (f  g) i l = alter f i (alter g i l).
483
Proof. revert i. induction l; intros [|?]; f_equal'; auto. Qed.
484 485
Lemma list_alter_commute f g l i j :
  i  j  alter f i (alter g j l) = alter g j (alter f i l).
486
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal'; auto with lia. Qed.
487 488
Lemma insert_app_l l1 l2 i x :
  i < length l1  <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
489
Proof. revert i. induction l1; intros [|?] ?; f_equal'; auto with lia. Qed.
490
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
491
Proof. revert i. induction l1; intros [|?]; f_equal'; auto. Qed.
492 493
Lemma insert_app_r_alt l1 l2 i x :
  length l1  i  <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
494 495 496 497
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply insert_app_r.
Qed.
498
Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
499
Proof. induction l1; f_equal'; auto. Qed.
500

501
(** ** Properties of the [elem_of] predicate *)
502
Lemma not_elem_of_nil x : x  [].
503
Proof. by inversion 1. Qed.
504
Lemma elem_of_nil x : x  []  False.
505
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
506
Lemma elem_of_nil_inv l : ( x, x  l)  l = [].
507
Proof. destruct l. done. by edestruct 1; constructor. Qed.
508 509
Lemma elem_of_not_nil x l : x  l  l  [].
Proof. intros ? ->. by apply (elem_of_nil x). Qed.
510
Lemma elem_of_cons l x y : x  y :: l  x = y  x  l.
511
Proof. split; [inversion 1; subst|intros [->|?]]; constructor (done). Qed.
512
Lemma not_elem_of_cons l x y : x  y :: l  x  y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
513
Proof. rewrite elem_of_cons. tauto. Qed.
514
Lemma elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
515
Proof.
516
  induction l1.
517
  * split; [by right|]. intros [Hx|]; [|done]. by destruct (elem_of_nil x).
518
  * simpl. rewrite !elem_of_cons, IHl1. tauto.
519
Qed.
520
Lemma not_elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
521
Proof. rewrite elem_of_app. tauto. Qed.
522
Lemma elem_of_list_singleton x y : x  [y]  x = y.
523
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
524
Global Instance elem_of_list_permutation_proper x : Proper (() ==> iff) (x ).
525
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
526
Lemma elem_of_list_split l x : x  l   l1 l2, l = l1 ++ x :: l2.
527
Proof.
528 529
  induction 1 as [x l|x y l ? [l1 [l2 ->]]]; [by eexists [], l|].
  by exists (y :: l1) l2.
530
Qed.
531
Lemma elem_of_list_lookup_1 l x : x  l   i, l !! i = Some x.
532
Proof.
533 534
  induction 1 as [|???? IH]; [by exists 0 |].
  destruct IH as [i ?]; auto. by exists (S i).
535
Qed.
536
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x  x  l.
537
Proof.
538
  revert i. induction l; intros [|i] ?; simplify_equality'; constructor; eauto.
539
Qed.
540 541
Lemma elem_of_list_lookup l x : x  l   i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.
542 543 544 545 546 547 548 549 550
Lemma elem_of_list_omap {B} (f : A  option B) l (y : B) :
  y  omap f l   x, x  l  f x = Some y.
Proof.
  split.
  * induction l as [|x l]; csimpl; repeat case_match; inversion 1; subst;
      setoid_rewrite elem_of_cons; naive_solver.
  * intros (x&Hx&?). induction Hx; csimpl; repeat case_match;
      simplify_equality; auto; constructor (by auto).
Qed.
551

552
(** ** Properties of the [NoDup] predicate *)
553 554
Lemma NoDup_nil : NoDup (@nil A)  True.
Proof. split; constructor. Qed.
555
Lemma NoDup_cons x l : NoDup (x :: l)  x  l  NoDup l.
556
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
557
Lemma NoDup_cons_11 x l : NoDup (x :: l)  x  l.
558
Proof. rewrite NoDup_cons. by intros [??]. Qed.
559
Lemma NoDup_cons_12 x l : NoDup (x :: l)  NoDup l.
560
Proof. rewrite NoDup_cons. by intros [??]. Qed.
561
Lemma NoDup_singleton x : NoDup [x].
562
Proof. constructor. apply not_elem_of_nil. constructor. Qed.
563
Lemma NoDup_app l k : NoDup (l ++ k)  NoDup l  ( x, x  l  x  k)  NoDup k.
Robbert Krebbers's avatar
Robbert Krebbers committed
564
Proof.
565
  induction l; simpl.
566
  * rewrite NoDup_nil. setoid_rewrite elem_of_nil. naive_solver.
567
  * rewrite !NoDup_cons.
Robbert Krebbers's avatar
Robbert Krebbers committed
568
    setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app. naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
569
Qed.
570
Global Instance NoDup_proper: Proper (() ==> iff) (@NoDup A).
571 572 573 574 575 576 577
Proof.
  induction 1 as [|x l k Hlk IH | |].
  * by rewrite !NoDup_nil.
  * by rewrite !NoDup_cons, IH, Hlk.
  * rewrite !NoDup_cons, !elem_of_cons. intuition.
  * intuition.
Qed.
578 579
Lemma NoDup_lookup l i j x :
  NoDup l  l !! i = Some x  l !! j = Some x  i = j.
580 581 582 583 584 585
Proof.
  intros Hl. revert i j. induction Hl as [|x' l Hx Hl IH].
  { intros; simplify_equality. }
  intros [|i] [|j] ??; simplify_equality'; eauto with f_equal;
    exfalso; eauto using elem_of_list_lookup_2.
Qed.
586 587
Lemma NoDup_alt l :
  NoDup l   i j x, l !! i = Some x  l !! j = Some x  i = j.
588
Proof.
589 590 591 592 593
  split; eauto using NoDup_lookup.
  induction l as [|x l IH]; intros Hl; constructor.
  * rewrite elem_of_list_lookup. intros [i ?].
    by feed pose proof (Hl (S i) 0 x); auto.
  * apply IH. intros i j x' ??. by apply (injective S), (Hl (S i) (S j) x').
594
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
595

596 597 598 599 600 601
Section no_dup_dec.
  Context `{! x y, Decision (x = y)}.
  Global Instance NoDup_dec:  l, Decision (NoDup l) :=
    fix NoDup_dec l :=
    match l return Decision (NoDup l) with
    | [] => left NoDup_nil_2
602
    | x :: l =>
603 604 605 606 607 608 609 610
      match decide_rel () x l with
      | left Hin => right (λ H, NoDup_cons_11 _ _ H Hin)
      | right Hin =>
        match NoDup_dec l with
        | left H => left (NoDup_cons_2 _ _ Hin H)
        | right H => right (H  NoDup_cons_12 _ _)
        end
      end
611
    end.
612
  Lemma elem_of_remove_dups l x : x  remove_dups l  x  l.
613 614 615 616
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_cons; intuition (simplify_equality; auto).
  Qed.
617
  Lemma NoDup_remove_dups l : NoDup (remove_dups l).
618 619 620 621
  Proof.
    induction l; simpl; repeat case_decide; try constructor; auto.
    by rewrite elem_of_remove_dups.
  Qed.
622
End no_dup_dec.
623

624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
(** ** Set operations on lists *)
Section list_set.
  Context {dec :  x y, Decision (x = y)}.
  Lemma elem_of_list_difference l k x : x  list_difference l k  x  l  x  k.
  Proof.
    split; induction l; simpl; try case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_difference l k : NoDup l  NoDup (list_difference l k).
  Proof.
    induction 1; simpl; try case_decide.
    * constructor.
    * done.
    * constructor. rewrite elem_of_list_difference; intuition. done.
  Qed.
  Lemma elem_of_list_union l k x : x  list_union l k  x  l  x  k.
  Proof.
    unfold list_union. rewrite elem_of_app, elem_of_list_difference.
    intuition. case (decide (x  k)); intuition.
  Qed.
  Lemma NoDup_list_union l k : NoDup l  NoDup k  NoDup (list_union l k).
  Proof.
    intros. apply NoDup_app. repeat split.
    * by apply NoDup_list_difference.
    * intro. rewrite elem_of_list_difference. intuition.
    * done.
  Qed.
  Lemma elem_of_list_intersection l k x :
    x  list_intersection l k  x  l  x  k.
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_intersection l k : NoDup l  NoDup (list_intersection l k).
  Proof.
    induction 1; simpl; try case_decide.
    * constructor.
    * constructor. rewrite elem_of_list_intersection; intuition. done.
    * done.
  Qed.
  Lemma elem_of_list_intersection_with f l k x :
    x  list_intersection_with f l k   x1 x2,
      x1  l  x2  k  f x1 x2 = Some x.
  Proof.
    split.
    * induction l as [|x1 l IH]; simpl; [by rewrite elem_of_nil|].
      intros Hx. setoid_rewrite elem_of_cons.
      cut (( x2, x2  k  f x1 x2 = Some x)
         x  list_intersection_with f l k); [naive_solver|].
      clear IH. revert Hx. generalize (list_intersection_with f l k).
      induction k; simpl; [by auto|].
      case_match; setoid_rewrite elem_of_cons; naive_solver.
    * intros (x1&x2&Hx1&Hx2&Hx). induction Hx1 as [x1|x1 ? l ? IH]; simpl.
      + generalize (list_intersection_with f l k).
        induction Hx2; simpl; [by rewrite Hx; left |].
        case_match; simpl; try setoid_rewrite elem_of_cons; auto.
      + generalize (IH Hx). clear Hx IH Hx2.
        generalize (list_intersection_with f l k).
        induction k; simpl; intros; [done|].
        case_match; simpl; rewrite ?elem_of_cons; auto.
  Qed.
End list_set.

687
(** ** Properties of the [filter] function *)
688 689 690 691 692 693 694
Section filter.
  Context (P : A  Prop) `{ x, Decision (P x)}.
  Lemma elem_of_list_filter l x : x  filter P l  P x  x  l.
  Proof.
    unfold filter. induction l; simpl; repeat case_decide;
       rewrite ?elem_of_nil, ?elem_of_cons; naive_solver.
  Qed.
695
  Lemma NoDup_filter l : NoDup l  NoDup (filter P l).
696 697 698 699 700
  Proof.
    unfold filter. induction 1; simpl; repeat case_decide;
      rewrite ?NoDup_nil, ?NoDup_cons, ?elem_of_list_filter; tauto.
  Qed.
End filter.
Robbert Krebbers's avatar
Robbert Krebbers committed
701

702 703 704
(** ** Properties of the [find] function *)
Section find.
  Context (P : A  Prop) `{ x, Decision (P x)}.
705 706
  Lemma list_find_Some l i :
    list_find P l = Some i   x, l !! i = Some x  P x.
707
  Proof.
708
    revert i. induction l; intros [] ?; simplify_option_equality; eauto.
709 710 711
  Qed.
  Lemma list_find_elem_of l x : x  l  P x   i, list_find P l = Some i.
  Proof.
712 713
    induction 1 as [|x y l ? IH]; intros; simplify_option_equality; eauto.
    by destruct IH as [i ->]; [|exists (S i)].
714 715 716 717 718 719 720
  Qed.
End find.

Section find_eq.
  Context `{ x y, Decision (x = y)}.
  Lemma list_find_eq_Some l i x : list_find (x =) l = Some i  l !! i = Some x.
  Proof.
721 722
    intros.
    destruct (list_find_Some (x =) l i) as (?&?&?); auto with congruence.
723 724 725 726 727
  Qed.
  Lemma list_find_eq_elem_of l x : x  l   i, list_find (x=) l = Some i.
  Proof. eauto using list_find_elem_of. Qed.
End find_eq.

728
(** ** Properties of the [reverse] function *)
729 730
Lemma reverse_nil : reverse [] = @nil A.
Proof. done. Qed.
731
Lemma reverse_singleton x : reverse [x] = [x].
732
Proof. done. Qed.
733
Lemma reverse_cons l x : reverse (x :: l) = reverse l ++ [x].