fin_maps.v 61.4 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2014, Robbert Krebbers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5 6
induction principles for finite maps and implements the tactic
[simplify_map_equality] to simplify goals involving finite maps. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7
Require Import Permutation.
8 9
Require Export ars vector orders.

10 11
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
12 13 14 15 16
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
17

Robbert Krebbers's avatar
Robbert Krebbers committed
18 19
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
20
prove well founded recursion on finite maps. *)
21

22 23 24
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
25

26
Class FinMapToList K A M := map_to_list: M  list (K * A).
Robbert Krebbers's avatar
Robbert Krebbers committed
27

28 29 30
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
     i j : K, Decision (i = j)} := {
31 32
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
33 34 35 36
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
37
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
38
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
39 40
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
41
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
42 43 44
  lookup_merge {A B C} (f : option A  option B  option C)
      `{!PropHolds (f None None = None)} m1 m2 i :
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
45 46
}.

47 48 49
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
50 51
significant performance loss to make including them in the finite map interface
worthwhile. *)
52 53 54 55 56
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
57
  partial_alter (λ _, None).
58 59
Instance map_singleton `{PartialAlter K A M, Empty M} :
  Singleton (K * A) M := λ p, <[p.1:=p.2]> .
Robbert Krebbers's avatar
Robbert Krebbers committed
60

61
Definition map_of_list `{Insert K A M, Empty M} : list (K * A)  M :=
62
  fold_right (λ p, <[p.1:=p.2]>) .
63 64 65
Definition map_of_collection `{Elements K C, Insert K A M, Empty M}
    (f : K  option A) (X : C) : M :=
  map_of_list (omap (λ i, (i,) <$> f i) (elements X)).
Robbert Krebbers's avatar
Robbert Krebbers committed
66

67 68 69 70 71 72
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
73

74 75
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
76
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
77
  λ m,  i x, m !! i = Some x  P i x.
78 79 80 81 82 83 84 85 86
Definition map_Forall2 `{ A, Lookup K A (M A)} {A B}
    (R : A  B  Prop) (P : A  Prop) (Q : B  Prop)
    (m1 : M A) (m2 : M B) : Prop :=  i,
  match m1 !! i, m2 !! i with
  | Some x, Some y => R x y
  | Some x, None => P x
  | None, Some y => Q y
  | None, None => True
  end.
87

88 89 90 91
Instance map_disjoint `{ A, Lookup K A (M A)} {A} : Disjoint (M A) :=
  map_Forall2 (λ _ _, False) (λ _, True) (λ _, True).
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
  map_Forall2 (=) (λ _, False) (λ _, True).
Robbert Krebbers's avatar
Robbert Krebbers committed
92 93 94 95 96

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
97
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
98 99 100
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

101 102
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
103
Instance map_difference `{Merge M} {A} : Difference (M A) :=
104
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
105

106 107 108 109
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

110 111 112 113 114 115 116 117
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
  unfold subseteq, map_subseteq, map_Forall2. split; intros Hm i;
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
118
Global Instance: BoundedPreOrder (M A).
119 120 121 122 123 124
Proof.
  repeat split.
  * intros m. by rewrite map_subseteq_spec.
  * intros m1 m2 m3. rewrite !map_subseteq_spec. naive_solver.
  * intros m. rewrite !map_subseteq_spec. intros i x. by rewrite lookup_empty.
Qed.
125
Global Instance : PartialOrder (@subseteq (M A) _).
126
Proof.
127 128
  split; [apply _ |]. intros ??. rewrite !map_subseteq_spec.
  intros ??. apply map_eq; intros i. apply option_eq. naive_solver.
129 130 131
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
132
Proof. rewrite !map_subseteq_spec. auto. Qed.
133 134 135 136 137 138
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
139 140
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
141 142
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
143 144
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
145 146 147 148 149 150 151 152 153
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬ !! i = Some x.
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
154 155 156
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
157 158

(** ** Properties of the [partial_alter] operation *)
159 160 161
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
162 163
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
164 165
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
166 167
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
168 169
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
170
Qed.
171
Lemma partial_alter_commute {A} f g (m : M A) i j :
172
  i  j  partial_alter f i (partial_alter g j m) =
173 174
    partial_alter g j (partial_alter f i m).
Proof.
175 176 177 178 179 180 181
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
  * by rewrite lookup_partial_alter,
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
  * by rewrite !lookup_partial_alter_ne by congruence.
182 183 184 185
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
186 187
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
188
Qed.
189
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
190
Proof. by apply partial_alter_self_alt. Qed.
191
Lemma partial_alter_subseteq {A} f (m : M A) i :
192
  m !! i = None  m  partial_alter f i m.
193 194 195 196
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
197
Lemma partial_alter_subset {A} f (m : M A) i :
198
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
199
Proof.
200 201 202 203
  intros Hi Hfi. split; [by apply partial_alter_subseteq|].
  rewrite !map_subseteq_spec. inversion Hfi as [x Hx]. intros Hm.
  apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
  by rewrite lookup_partial_alter.
204 205 206
Qed.

(** ** Properties of the [alter] operation *)
207 208
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
209
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal'; auto. Qed.
210
Lemma lookup_alter {A} (f : A  A) m i : alter f i m !! i = f <$> m !! i.
211
Proof. unfold alter. apply lookup_partial_alter. Qed.
212
Lemma lookup_alter_ne {A} (f : A  A) m i j : i  j  alter f i m !! j = m !! j.
213
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
214 215 216 217 218 219 220 221 222
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
223 224 225 226
Lemma lookup_alter_Some {A} (f : A  A) m i j y :
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
227
  destruct (decide (i = j)) as [->|?].
228 229 230 231 232 233
  * rewrite lookup_alter. naive_solver (simplify_option_equality; eauto).
  * rewrite lookup_alter_ne by done. naive_solver.
Qed.
Lemma lookup_alter_None {A} (f : A  A) m i j :
  alter f i m !! j = None  m !! j = None.
Proof.
234 235
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
236
Qed.
237
Lemma alter_None {A} (f : A  A) m i : m !! i = None  alter f i m = m.
238
Proof.
239 240
  intros Hi. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?Hi, ?lookup_alter_ne.
241 242 243 244 245 246 247 248 249 250 251
Qed.

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
252
  * destruct (decide (i = j)) as [->|?];
253 254 255 256 257 258
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
  * intros [??]. by rewrite lookup_delete_ne.
Qed.
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
259 260
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
261 262 263
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
264
Lemma delete_singleton {A} i (x : A) : delete i {[i, x]} = .
265 266 267 268 269 270 271
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
272
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
273
Proof.
274 275
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
Qed.
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
Lemma insert_delete {A} (m : M A) i x :
  m !! i = Some x  <[i:=x]>(delete i m) = m.
Proof.
  intros Hmi. unfold delete, map_delete, insert, map_insert.
  rewrite <-partial_alter_compose. unfold compose. rewrite <-Hmi.
  by apply partial_alter_self_alt.
Qed.
293
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
294 295 296
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
297
Lemma delete_subseteq_compat {A} (m1 m2 : M A) i :
298
  m1  m2  delete i m1  delete i m2.
299 300 301 302
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
Qed.
303
Lemma delete_subset_alt {A} (m : M A) i x : m !! i = Some x  delete i m  m.
304
Proof.
305 306 307
  split; [apply delete_subseteq|].
  rewrite !map_subseteq_spec. intros Hi. apply (None_ne_Some x).
  by rewrite <-(lookup_delete m i), (Hi i x).
308
Qed.
309
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
310 311 312 313 314
Proof. inversion 1. eauto using delete_subset_alt. Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
315
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
316
Proof. rewrite lookup_insert. congruence. Qed.
317
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
318 319 320 321 322 323 324 325
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
326
  * destruct (decide (i = j)) as [->|?];
327
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
328
  * intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
329 330 331 332
Qed.
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
333 334 335
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
336
Qed.
337
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
338
Proof. apply partial_alter_subseteq. Qed.
339
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
340 341
Proof. intro. apply partial_alter_subset; eauto. Qed.
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
342
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
343
Proof.
344 345 346
  rewrite !map_subseteq_spec. intros ?? j ?.
  destruct (decide (j = i)) as [->|?]; [congruence|].
  rewrite lookup_insert_ne; auto.
347 348
Qed.
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
349
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
350
Proof.
351 352 353 354
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
355 356
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
357
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
358
Proof.
359 360
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
361
  * rewrite lookup_insert. congruence.
362
  * rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
363 364
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
365
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
366
Proof.
367 368 369
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
370 371
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
372
  m1 !! i = None  <[i:=x]> m1  m2 
373 374 375
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
  intros Hi Hm1m2. exists (delete i m2). split_ands.
376
  * rewrite insert_delete. done. eapply lookup_weaken, strict_include; eauto.
377 378 379 380
    by rewrite lookup_insert.
  * eauto using insert_delete_subset.
  * by rewrite lookup_delete.
Qed.
381 382 383 384 385 386 387
Lemma fmap_insert {A B} (f : A  B) (m : M A) i x :
  f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  * by rewrite lookup_fmap, !lookup_insert.
  * by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
Qed.
388 389 390

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
391
  {[i, x]} !! j = Some y  i = j  x = y.
392 393
Proof.
  unfold singleton, map_singleton.
394
  rewrite lookup_insert_Some, lookup_empty. simpl. intuition congruence.
395
Qed.
396
Lemma lookup_singleton_None {A} i j (x : A) : {[i, x]} !! j = None  i  j.
397 398 399 400
Proof.
  unfold singleton, map_singleton.
  rewrite lookup_insert_None, lookup_empty. simpl. tauto.
Qed.
401
Lemma lookup_singleton {A} i (x : A) : {[i, x]} !! i = Some x.
402
Proof. by rewrite lookup_singleton_Some. Qed.
403
Lemma lookup_singleton_ne {A} i j (x : A) : i  j  {[i, x]} !! j = None.
404
Proof. by rewrite lookup_singleton_None. Qed.
405
Lemma map_non_empty_singleton {A} i (x : A) : {[i,x]}  .
406 407 408 409
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
410
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i, x]} = {[i, y]}.
411 412 413 414
Proof.
  unfold singleton, map_singleton, insert, map_insert.
  by rewrite <-partial_alter_compose.
Qed.
415
Lemma alter_singleton {A} (f : A  A) i x : alter f i {[i,x]} = {[i, f x]}.
416
Proof.
417
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
418 419 420 421
  * by rewrite lookup_alter, !lookup_singleton.
  * by rewrite lookup_alter_ne, !lookup_singleton_ne.
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
422
  i  j  alter f i {[j,x]} = {[j,x]}.
423
Proof.
424 425
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
426 427
Qed.

428 429 430 431 432 433
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.

434 435
(** ** Properties of conversion to lists *)
Lemma map_to_list_unique {A} (m : M A) i x y :
436
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
437
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
438 439
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup (fst <$> map_to_list m).
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
440
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
441
  NoDup (fst <$> l)  (i,x)  l  map_of_list l !! i = Some x.
442
Proof.
443
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
444
  rewrite NoDup_cons, elem_of_cons, elem_of_list_fmap.
445 446 447
  intros [Hl ?] [?|?]; simplify_equality; [by rewrite lookup_insert|].
  destruct (decide (i = j)) as [->|]; [|rewrite lookup_insert_ne; auto].
  destruct Hl. by exists (j,x).
448 449
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
450
  map_of_list l !! i = Some x  (i,x)  l.
451
Proof.
452 453 454
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
455 456
Qed.
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
457 458
  NoDup (fst <$> l)  (i,x)  l  map_of_list l !! i = Some x.
Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
459
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
460
  i  fst <$> l  map_of_list l !! i = None.
461
Proof.
462 463
  rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
  exists (i,x); simpl; auto using elem_of_map_of_list_2.
464 465
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
466
  map_of_list l !! i = None  i  fst <$> l.
467
Proof.
468
  induction l as [|[j y] l IH]; csimpl; [rewrite elem_of_nil; tauto|].
469 470 471 472 473 474
  rewrite elem_of_cons. destruct (decide (i = j)); simplify_equality.
  * by rewrite lookup_insert.
  * by rewrite lookup_insert_ne; intuition.
Qed.
Lemma not_elem_of_map_of_list {A} (l : list (K * A)) i :
  i  fst <$> l  map_of_list l !! i = None.
475
Proof. red; auto using not_elem_of_map_of_list_1,not_elem_of_map_of_list_2. Qed.
476
Lemma map_of_list_proper {A} (l1 l2 : list (K * A)) :
477
  NoDup (fst <$> l1)  l1  l2  map_of_list l1 = map_of_list l2.
478 479 480 481 482
Proof.
  intros ? Hperm. apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-!elem_of_map_of_list; rewrite <-?Hperm.
Qed.
Lemma map_of_list_inj {A} (l1 l2 : list (K * A)) :
483 484
  NoDup (fst <$> l1)  NoDup (fst <$> l2) 
  map_of_list l1 = map_of_list l2  l1  l2.
485
Proof.
486
  intros ?? Hl1l2. apply NoDup_Permutation; auto using (NoDup_fmap_1 fst).
487 488
  intros [i x]. by rewrite !elem_of_map_of_list, Hl1l2.
Qed.
489
Lemma map_of_to_list {A} (m : M A) : map_of_list (map_to_list m) = m.
490 491 492
Proof.
  apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-elem_of_map_of_list, elem_of_map_to_list
493
    by auto using NoDup_fst_map_to_list.
494 495
Qed.
Lemma map_to_of_list {A} (l : list (K * A)) :
496
  NoDup (fst <$> l)  map_to_list (map_of_list l)  l.
497
Proof. auto using map_of_list_inj, NoDup_fst_map_to_list, map_of_to_list. Qed.
498
Lemma map_to_list_inj {A} (m1 m2 : M A) :
499
  map_to_list m1  map_to_list m2  m1 = m2.
500
Proof.
501
  intros. rewrite <-(map_of_to_list m1), <-(map_of_to_list m2).
502
  auto using map_of_list_proper, NoDup_fst_map_to_list.
503
Qed.
504
Lemma map_to_list_empty {A} : map_to_list  = @nil (K * A).
505 506 507 508 509
Proof.
  apply elem_of_nil_inv. intros [i x].
  rewrite elem_of_map_to_list. apply lookup_empty_Some.
Qed.
Lemma map_to_list_insert {A} (m : M A) i x :
510
  m !! i = None  map_to_list (<[i:=x]>m)  (i,x) :: map_to_list m.
511
Proof.
512
  intros. apply map_of_list_inj; csimpl.
513 514
  * apply NoDup_fst_map_to_list.
  * constructor; auto using NoDup_fst_map_to_list.
515
    rewrite elem_of_list_fmap. intros [[??] [? Hlookup]]; subst; simpl in *.
516 517 518
    rewrite elem_of_map_to_list in Hlookup. congruence.
  * by rewrite !map_of_to_list.
Qed.
519
Lemma map_of_list_nil {A} : map_of_list (@nil (K * A)) = .
520 521 522 523
Proof. done. Qed.
Lemma map_of_list_cons {A} (l : list (K * A)) i x :
  map_of_list ((i, x) :: l) = <[i:=x]>(map_of_list l).
Proof. done. Qed.
524
Lemma map_to_list_empty_inv_alt {A}  (m : M A) : map_to_list m  []  m = .
525
Proof. rewrite <-map_to_list_empty. apply map_to_list_inj. Qed.
526
Lemma map_to_list_empty_inv {A} (m : M A) : map_to_list m = []  m = .
527 528
Proof. intros Hm. apply map_to_list_empty_inv_alt. by rewrite Hm. Qed.
Lemma map_to_list_insert_inv {A} (m : M A) l i x :
529
  map_to_list m  (i,x) :: l  m = <[i:=x]>(map_of_list l).
530 531 532
Proof.
  intros Hperm. apply map_to_list_inj.
  assert (NoDup (fst <$> (i, x) :: l)) as Hnodup.
533
  { rewrite <-Hperm. auto using NoDup_fst_map_to_list. }
534
  csimpl in *. rewrite NoDup_cons in Hnodup. destruct Hnodup.
535 536 537
  rewrite Hperm, map_to_list_insert, map_to_of_list;
    auto using not_elem_of_map_of_list_1.
Qed.
538 539 540 541 542 543
Lemma map_choose {A} (m : M A) : m     i x, m !! i = Some x.
Proof.
  intros Hemp. destruct (map_to_list m) as [|[i x] l] eqn:Hm.
  { destruct Hemp; eauto using map_to_list_empty_inv. }
  exists i x. rewrite <-elem_of_map_to_list, Hm. by left.
Qed.
544

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
(** ** Properties of conversion from collections *)
Lemma lookup_map_of_collection {A} `{FinCollection K C}
    (f : K  option A) X i x :
  map_of_collection f X !! i = Some x  i  X  f i = Some x.
Proof.
  assert (NoDup (fst <$> omap (λ i, (i,) <$> f i) (elements X))).
  { induction (NoDup_elements X) as [|i' l]; csimpl; [constructor|].
    destruct (f i') as [x'|]; csimpl; auto; constructor; auto.
    rewrite elem_of_list_fmap. setoid_rewrite elem_of_list_omap.
    by intros (?&?&?&?&?); simplify_option_equality. }
  unfold map_of_collection; rewrite <-elem_of_map_of_list by done.
  rewrite elem_of_list_omap. setoid_rewrite elem_of_elements; split.
  * intros (?&?&?); simplify_option_equality; eauto.
  * intros [??]; exists i; simplify_option_equality; eauto.
Qed.

(** ** Induction principles *)
562
Lemma map_ind {A} (P : M A  Prop) :
563
  P   ( i x m, m !! i = None  P m  P (<[i:=x]>m))   m, P m.
564
Proof.
565
  intros ? Hins. cut ( l, NoDup (fst <$> l)   m, map_to_list m  l  P m).
566
  { intros help m.
567
    apply (help (map_to_list m)); auto using NoDup_fst_map_to_list. }
568 569 570
  induction l as [|[i x] l IH]; intros Hnodup m Hml.
  { apply map_to_list_empty_inv_alt in Hml. by subst. }
  inversion_clear Hnodup.
571
  apply map_to_list_insert_inv in Hml; subst m. apply Hins.
572 573 574 575
  * by apply not_elem_of_map_of_list_1.
  * apply IH; auto using map_to_of_list.
Qed.
Lemma map_to_list_length {A} (m1 m2 : M A) :
576
  m1  m2  length (map_to_list m1) < length (map_to_list m2).
577 578 579 580
Proof.
  revert m2. induction m1 as [|i x m ? IH] using map_ind.
  { intros m2 Hm2. rewrite map_to_list_empty. simpl.
    apply neq_0_lt. intros Hlen. symmetry in Hlen.
581
    apply nil_length_inv, map_to_list_empty_inv in Hlen.
582 583 584 585 586
    rewrite Hlen in Hm2. destruct (irreflexivity ()  Hm2). }
  intros m2 Hm2.
  destruct (insert_subset_inv m m2 i x) as (m2'&?&?&?); auto; subst.
  rewrite !map_to_list_insert; simpl; auto with arith.
Qed.
587
Lemma map_wf {A} : wf (strict (@subseteq (M A) _)).
588 589 590 591 592 593
Proof.
  apply (wf_projected (<) (length  map_to_list)).
  * by apply map_to_list_length.
  * by apply lt_wf.
Qed.

594
(** ** Properties of the [map_Forall] predicate *)
595
Section map_Forall.
596 597
Context {A} (P : K  A  Prop).

598
Lemma map_Forall_to_list m : map_Forall P m  Forall (curry P) (map_to_list m).
599 600
Proof.
  rewrite Forall_forall. split.
601 602
  * intros Hforall [i x]. rewrite elem_of_map_to_list. by apply (Hforall i x).
  * intros Hforall i x. rewrite <-elem_of_map_to_list. by apply (Hforall (i,x)).
603 604 605
Qed.

Context `{ i x, Decision (P i x)}.
606
Global Instance map_Forall_dec m : Decision (map_Forall P m).
607 608
Proof.
  refine (cast_if (decide (Forall (curry P) (map_to_list m))));
609
    by rewrite map_Forall_to_list.
610
Defined.
611 612
Lemma map_not_Forall (m : M A) :
  ¬map_Forall P m   i x, m !! i = Some x  ¬P i x.
613 614
Proof.
  split.
615
  * rewrite map_Forall_to_list. intros Hm.
616 617 618 619
    apply (not_Forall_Exists _), Exists_exists in Hm.
    destruct Hm as ([i x]&?&?). exists i x. by rewrite <-elem_of_map_to_list.
  * intros (i&x&?&?) Hm. specialize (Hm i x). tauto.
Qed.
620
End map_Forall.
621 622 623 624 625 626

(** ** Properties of the [merge] operation *)
Lemma merge_Some {A B C} (f : option A  option B  option C)
    `{!PropHolds (f None None = None)} m1 m2 m :
  ( i, m !! i = f (m1 !! i) (m2 !! i))  merge f m1 m2 = m.
Proof.
627 628
  split; [|intros <-; apply (lookup_merge _) ].
  intros Hlookup. apply map_eq; intros. rewrite Hlookup. apply (lookup_merge _).
629 630 631 632 633 634 635 636
Qed.

Section merge.
Context {A} (f : option A  option A  option A).

Global Instance: LeftId (=) None f  LeftId (=)  (merge f).
Proof.
  intros ??. apply map_eq. intros.
637
  by rewrite !(lookup_merge f), lookup_empty, (left_id_L None f).
638 639 640 641
Qed.
Global Instance: RightId (=) None f  RightId (=)  (merge f).
Proof.
  intros ??. apply map_eq. intros.
642
  by rewrite !(lookup_merge f), lookup_empty, (right_id_L None f).
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
Qed.

Context `{!PropHolds (f None None = None)}.

Lemma merge_commutative m1 m2 :
  ( i, f (m1 !! i) (m2 !! i) = f (m2 !! i) (m1 !! i)) 
  merge f m1 m2 = merge f m2 m1.
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
Global Instance: Commutative (=) f  Commutative (=) (merge f).
Proof.
  intros ???. apply merge_commutative. intros. by apply (commutative f).
Qed.
Lemma merge_associative m1 m2 m3 :
  ( i, f (m1 !! i) (f (m2 !! i) (m3 !! i)) =
        f (f (m1 !! i) (m2 !! i)) (m3 !! i)) 
  merge f m1 (merge f m2 m3) = merge f (merge f m1 m2) m3.
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
Global Instance: Associative (=) f  Associative (=) (merge f).
Proof.
662
  intros ????. apply merge_associative. intros. by apply (associative_L f).
663 664
Qed.
Lemma merge_idempotent m1 :
665
  ( i, f (m1 !! i) (m1 !! i) = m1 !! i)  merge f m1 m1 = m1.
666 667
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
Global Instance: Idempotent (=) f  Idempotent (=) (merge f).
668
Proof. intros ??. apply merge_idempotent. intros. by apply (idempotent f). Qed.
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711

Lemma partial_alter_merge (g g1 g2 : option A  option A) m1 m2 i :
  g (f (m1 !! i) (m2 !! i)) = f (g1 (m1 !! i)) (g2 (m2 !! i)) 
  partial_alter g i (merge f m1 m2) =
    merge f (partial_alter g1 i m1) (partial_alter g2 i m2).
Proof.
  intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
  * by rewrite (lookup_merge _), !lookup_partial_alter, !(lookup_merge _).
  * by rewrite (lookup_merge _), !lookup_partial_alter_ne, (lookup_merge _).
Qed.
Lemma partial_alter_merge_l (g g1 : option A  option A) m1 m2 i :
  g (f (m1 !! i) (m2 !! i)) = f (g1 (m1 !! i)) (m2 !! i) 
  partial_alter g i (merge f m1 m2) = merge f (partial_alter g1 i m1) m2.
Proof.
  intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
  * by rewrite (lookup_merge _), !lookup_partial_alter, !(lookup_merge _).
  * by rewrite (lookup_merge _), !lookup_partial_alter_ne, (lookup_merge _).
Qed.
Lemma partial_alter_merge_r (g g2 : option A  option A) m1 m2 i :
  g (f (m1 !! i) (m2 !! i)) = f (m1 !! i) (g2 (m2 !! i)) 
  partial_alter g i (merge f m1 m2) = merge f m1 (partial_alter g2 i m2).
Proof.
  intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
  * by rewrite (lookup_merge _), !lookup_partial_alter, !(lookup_merge _).
  * by rewrite (lookup_merge _), !lookup_partial_alter_ne, (lookup_merge _).
Qed.

Lemma insert_merge_l m1 m2 i x :
  f (Some x) (m2 !! i) = Some x 
  <[i:=x]>(merge f m1 m2) = merge f (<[i:=x]>m1) m2.
Proof.
  intros. unfold insert, map_insert, alter, map_alter.
  by apply partial_alter_merge_l.
Qed.
Lemma insert_merge_r m1 m2 i x :
  f (m1 !! i) (Some x) = Some x 
  <[i:=x]>(merge f m1 m2) = merge f m1 (<[i:=x]>m2).
Proof.
  intros. unfold insert, map_insert, alter, map_alter.
  by apply partial_alter_merge_r.
Qed.
End merge.

712 713 714 715 716 717 718 719 720 721 722 723 724 725
(** ** Properties on the [map_Forall2] relation *)
Section Forall2.
Context {A B} (R : A  B  Prop) (P : A  Prop) (Q : B  Prop).
Context `{ x y, Decision (R x y),  x, Decision (P x),  y, Decision (Q y)}.

Let f (mx : option A) (my : option B) : option bool :=
  match mx, my with
  | Some x, Some y => Some (bool_decide (R x y))
  | Some x, None => Some (bool_decide (P x))
  | None, Some y => Some (bool_decide (Q y))
  | None, None => None
  end.
Lemma map_Forall2_alt (m1 : M A) (m2 : M B) :
  map_Forall2 R P Q m1 m2  map_Forall (λ _ P, Is_true P) (merge f m1 m2).
726 727
Proof.
  split.
728 729 730 731 732 733 734 735 736 737 738 739 740
  * intros Hm i P'; rewrite lookup_merge by done; intros.
    specialize (Hm i). destruct (m1 !! i), (m2 !! i);
      simplify_equality; auto using bool_decide_pack.
  * intros Hm i. specialize (Hm i). rewrite lookup_merge in Hm by done.
    destruct (m1 !! i), (m2 !! i); simplify_equality'; auto;
      by eapply bool_decide_unpack, Hm.
Qed.
Global Instance map_Forall2_dec `{ x y, Decision (R x y),  x, Decision (P x),
   y, Decision (Q y)} m1 m2 : Decision (map_Forall2 R P Q m1 m2).
Proof.
  refine (cast_if (decide (map_Forall (λ _ P, Is_true P) (merge f m1 m2))));
    abstract by rewrite map_Forall2_alt.
Defined.
741 742
(** Due to the finiteness of finite maps, we can extract a witness if the
relation does not hold. *)
743 744 745 746 747
Lemma map_not_Forall2 (m1 : M A) (m2 : M B) :
  ¬map_Forall2 R P Q m1 m2   i,
    ( x y, m1 !! i = Some x  m2 !! i = Some y  ¬R x y)
     ( x, m1 !! i = Some x  m2 !! i = None  ¬P x)
     ( y, m1 !! i = None  m2 !! i = Some y  ¬Q y).