collections.v 45.4 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2 3 4 5
(* This file is distributed under the terms of the BSD license. *)
(** This file collects definitions and theorems on collections. Most
importantly, it implements some tactics to automatically solve goals involving
collections. *)
6
From stdpp Require Export orders list.
7
Set Default Proof Using "Type*".
8

9 10
Instance collection_equiv `{ElemOf A C} : Equiv C := λ X Y,
   x, x  X  x  Y.
11 12
Instance collection_subseteq `{ElemOf A C} : SubsetEq C := λ X Y,
   x, x  X  x  Y.
13 14 15
Instance collection_disjoint `{ElemOf A C} : Disjoint C := λ X Y,
   x, x  X  x  Y  False.
Typeclasses Opaque collection_equiv collection_subseteq collection_disjoint.
16

17 18
(** * Setoids *)
Section setoids_simple.
19
  Context `{SimpleCollection A C}.
Robbert Krebbers's avatar
Robbert Krebbers committed
20

21
  Global Instance collection_equivalence: @Equivalence C ().
22
  Proof.
23 24 25 26
    split.
    - done.
    - intros X Y ? x. by symmetry.
    - intros X Y Z ?? x; by trans (x  Y).
27
  Qed.
28 29 30 31 32 33
  Global Instance singleton_proper : Proper ((=) ==> ()) (singleton (B:=C)).
  Proof. apply _. Qed.
  Global Instance elem_of_proper :
    Proper ((=) ==> () ==> iff) (@elem_of A C _) | 5.
  Proof. by intros x ? <- X Y. Qed.
  Global Instance disjoint_proper: Proper (() ==> () ==> iff) (@disjoint C _).
34
  Proof.
35
    intros X1 X2 HX Y1 Y2 HY; apply forall_proper; intros x. by rewrite HX, HY.
36
  Qed.
37 38 39 40 41 42 43 44 45 46 47 48
  Global Instance union_proper : Proper (() ==> () ==> ()) (@union C _).
  Proof. intros X1 X2 HX Y1 Y2 HY x. rewrite !elem_of_union. f_equiv; auto. Qed.
  Global Instance union_list_proper: Proper (() ==> ()) (union_list (A:=C)).
  Proof. by induction 1; simpl; try apply union_proper. Qed.
  Global Instance subseteq_proper : Proper (() ==> () ==> iff) (() : relation C).
  Proof.
    intros X1 X2 HX Y1 Y2 HY. apply forall_proper; intros x. by rewrite HX, HY.
  Qed.
End setoids_simple.

Section setoids.
  Context `{Collection A C}.
49

50 51 52
  (** * Setoids *)
  Global Instance intersection_proper :
    Proper (() ==> () ==> ()) (@intersection C _).
53
  Proof.
54
    intros X1 X2 HX Y1 Y2 HY x. by rewrite !elem_of_intersection, HX, HY.
55
  Qed.
56 57
  Global Instance difference_proper :
     Proper (() ==> () ==> ()) (@difference C _).
58
  Proof.
59
    intros X1 X2 HX Y1 Y2 HY x. by rewrite !elem_of_difference, HX, HY.
60
  Qed.
61
End setoids.
Robbert Krebbers's avatar
Robbert Krebbers committed
62

63 64 65 66 67
Section setoids_monad.
  Context `{CollectionMonad M}.

  Global Instance collection_fmap_proper {A B} :
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
68
  Proof.
69 70
    intros f1 f2 Hf X1 X2 HX x. rewrite !elem_of_fmap. f_equiv; intros z.
    by rewrite HX, Hf.
71
  Qed.
72 73 74 75 76 77 78 79 80 81 82 83
  Global Instance collection_bind_proper {A B} :
    Proper (((=) ==> ()) ==> () ==> ()) (@mbind M _ A B).
  Proof.
    intros f1 f2 Hf X1 X2 HX x. rewrite !elem_of_bind. f_equiv; intros z.
    by rewrite HX, (Hf z z).
  Qed.
  Global Instance collection_join_proper {A} :
    Proper (() ==> ()) (@mjoin M _ A).
  Proof.
    intros X1 X2 HX x. rewrite !elem_of_join. f_equiv; intros z. by rewrite HX.
  Qed.
End setoids_monad.
84

85 86 87 88 89
(** * Tactics *)
(** The tactic [set_unfold] transforms all occurrences of [(∪)], [(∩)], [(∖)],
[(<$>)], [∅], [{[_]}], [(≡)], and [(⊆)] into logically equivalent propositions
involving just [∈]. For example, [A → x ∈ X ∪ ∅] becomes [A → x ∈ X ∨ False].

90 91 92
This transformation is implemented using type classes instead of setoid
rewriting to ensure that we traverse each term at most once and to be able to
deal with occurences of the set operations under binders. *)
93 94 95 96 97 98 99
Class SetUnfold (P Q : Prop) := { set_unfold : P  Q }.
Arguments set_unfold _ _ {_}.
Hint Mode SetUnfold + - : typeclass_instances.

Class SetUnfoldSimpl (P Q : Prop) := { set_unfold_simpl : SetUnfold P Q }.
Hint Extern 0 (SetUnfoldSimpl _ _) => csimpl; constructor : typeclass_instances.

100
Instance set_unfold_default P : SetUnfold P P | 1000. done. Qed.
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
Definition set_unfold_1 `{SetUnfold P Q} : P  Q := proj1 (set_unfold P Q).
Definition set_unfold_2 `{SetUnfold P Q} : Q  P := proj2 (set_unfold P Q).

Lemma set_unfold_impl P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_and P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_or P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_iff P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_not P P' : SetUnfold P P'  SetUnfold (¬P) (¬P').
Proof. constructor. by rewrite (set_unfold P P'). Qed.
Lemma set_unfold_forall {A} (P P' : A  Prop) :
  ( x, SetUnfold (P x) (P' x))  SetUnfold ( x, P x) ( x, P' x).
Proof. constructor. naive_solver. Qed.
Lemma set_unfold_exist {A} (P P' : A  Prop) :
  ( x, SetUnfold (P x) (P' x))  SetUnfold ( x, P x) ( x, P' x).
Proof. constructor. naive_solver. Qed.

(* Avoid too eager application of the above instances (and thus too eager
unfolding of type class transparent definitions). *)
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_impl : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_and : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_or : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_iff : typeclass_instances.
Hint Extern 0 (SetUnfold (¬ _) _) =>
  class_apply set_unfold_not : typeclass_instances.
Hint Extern 1 (SetUnfold ( _, _) _) =>
  class_apply set_unfold_forall : typeclass_instances.
Hint Extern 0 (SetUnfold ( _, _) _) =>
  class_apply set_unfold_exist : typeclass_instances.

Section set_unfold_simple.
  Context `{SimpleCollection A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.

  Global Instance set_unfold_empty x : SetUnfold (x  ) False.
148
  Proof. constructor. split. apply not_elem_of_empty. done. Qed.
149 150 151 152 153 154 155 156 157 158 159 160 161
  Global Instance set_unfold_singleton x y : SetUnfold (x  {[ y ]}) (x = y).
  Proof. constructor; apply elem_of_singleton. Qed.
  Global Instance set_unfold_union x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
  Proof.
    intros ??; constructor.
    by rewrite elem_of_union, (set_unfold (x  X) P), (set_unfold (x  Y) Q).
  Qed.
  Global Instance set_unfold_equiv_same X : SetUnfold (X  X) True | 1.
  Proof. done. Qed.
  Global Instance set_unfold_equiv_empty_l X (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (  X) ( x, ¬P x) | 5.
  Proof.
162 163
    intros ?; constructor. unfold equiv, collection_equiv.
    pose proof not_elem_of_empty; naive_solver.
164 165 166
  Qed.
  Global Instance set_unfold_equiv_empty_r (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (X  ) ( x, ¬P x) | 5.
167 168 169 170
  Proof.
    intros ?; constructor. unfold equiv, collection_equiv.
    pose proof not_elem_of_empty; naive_solver.
  Qed.
171 172 173
  Global Instance set_unfold_equiv (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x) | 10.
174
  Proof. constructor. apply forall_proper; naive_solver. Qed.
175 176 177
  Global Instance set_unfold_subseteq (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x).
178
  Proof. constructor. apply forall_proper; naive_solver. Qed.
179 180
  Global Instance set_unfold_subset (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
181
    SetUnfold (X  Y) (( x, P x  Q x)  ¬∀ x, Q x  P x).
182
  Proof.
183 184
    constructor. unfold strict.
    repeat f_equiv; apply forall_proper; naive_solver.
185
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
186 187 188
  Global Instance set_unfold_disjoint (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x  False).
189
  Proof. constructor. unfold disjoint, collection_disjoint. naive_solver. Qed.
190 191 192 193 194 195

  Context `{!LeibnizEquiv C}.
  Global Instance set_unfold_equiv_same_L X : SetUnfold (X = X) True | 1.
  Proof. done. Qed.
  Global Instance set_unfold_equiv_empty_l_L X (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold ( = X) ( x, ¬P x) | 5.
196
  Proof. constructor. unfold_leibniz. by apply set_unfold_equiv_empty_l. Qed.
197 198
  Global Instance set_unfold_equiv_empty_r_L (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (X = ) ( x, ¬P x) | 5.
199
  Proof. constructor. unfold_leibniz. by apply set_unfold_equiv_empty_r. Qed.
200 201 202
  Global Instance set_unfold_equiv_L (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X = Y) ( x, P x  Q x) | 10.
203
  Proof. constructor. unfold_leibniz. by apply set_unfold_equiv. Qed.
204 205 206 207 208 209 210 211 212 213
End set_unfold_simple.

Section set_unfold.
  Context `{Collection A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.

  Global Instance set_unfold_intersection x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
  Proof.
214 215
    intros ??; constructor. rewrite elem_of_intersection.
    by rewrite (set_unfold (x  X) P), (set_unfold (x  Y) Q).
216 217 218 219
  Qed.
  Global Instance set_unfold_difference x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  ¬Q).
  Proof.
220 221
    intros ??; constructor. rewrite elem_of_difference.
    by rewrite (set_unfold (x  X) P), (set_unfold (x  Y) Q).
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
  Qed.
End set_unfold.

Section set_unfold_monad.
  Context `{CollectionMonad M} {A : Type}.
  Implicit Types x y : A.

  Global Instance set_unfold_ret x y : SetUnfold (x  mret y) (x = y).
  Proof. constructor; apply elem_of_ret. Qed.
  Global Instance set_unfold_bind {B} (f : A  M B) X (P Q : A  Prop) :
    ( y, SetUnfold (y  X) (P y))  ( y, SetUnfold (x  f y) (Q y)) 
    SetUnfold (x  X = f) ( y, Q y  P y).
  Proof. constructor. rewrite elem_of_bind; naive_solver. Qed.
  Global Instance set_unfold_fmap {B} (f : A  B) X (P : A  Prop) :
    ( y, SetUnfold (y  X) (P y)) 
    SetUnfold (x  f <$> X) ( y, x = f y  P y).
  Proof. constructor. rewrite elem_of_fmap; naive_solver. Qed.
  Global Instance set_unfold_join (X : M (M A)) (P : M A  Prop) :
    ( Y, SetUnfold (Y  X) (P Y))  SetUnfold (x  mjoin X) ( Y, x  Y  P Y).
  Proof. constructor. rewrite elem_of_join; naive_solver. Qed.
End set_unfold_monad.

Robbert Krebbers's avatar
Robbert Krebbers committed
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
Section set_unfold_list.
  Context {A : Type}.
  Implicit Types x : A.
  Implicit Types l : list A.

  Global Instance set_unfold_nil x : SetUnfold (x  []) False.
  Proof. constructor; apply elem_of_nil. Qed.
  Global Instance set_unfold_cons x y l P :
    SetUnfold (x  l) P  SetUnfold (x  y :: l) (x = y  P).
  Proof. constructor. by rewrite elem_of_cons, (set_unfold (x  l) P). Qed.
  Global Instance set_unfold_app x l k P Q :
    SetUnfold (x  l) P  SetUnfold (x  k) Q  SetUnfold (x  l ++ k) (P  Q).
  Proof.
    intros ??; constructor.
    by rewrite elem_of_app, (set_unfold (x  l) P), (set_unfold (x  k) Q).
  Qed.
  Global Instance set_unfold_included l k (P Q : A  Prop) :
    ( x, SetUnfold (x  l) (P x))  ( x, SetUnfold (x  k) (Q x)) 
    SetUnfold (l  k) ( x, P x  Q x).
  Proof.
    constructor; unfold subseteq, list_subseteq.
    apply forall_proper; naive_solver.
  Qed.
End set_unfold_list.

269 270 271 272 273 274 275 276 277
Ltac set_unfold :=
  let rec unfold_hyps :=
    try match goal with
    | H : _ |- _ =>
       apply set_unfold_1 in H; revert H;
       first [unfold_hyps; intros H | intros H; fail 1]
    end in
  apply set_unfold_2; unfold_hyps; csimpl in *.

278 279
(** Since [firstorder] already fails or loops on very small goals generated by
[set_solver], we use the [naive_solver] tactic as a substitute. *)
280
Tactic Notation "set_solver" "by" tactic3(tac) :=
281
  try fast_done;
282 283 284 285 286 287 288 289 290 291 292 293 294
  intros; setoid_subst;
  set_unfold;
  intros; setoid_subst;
  try match goal with |- _  _ => apply dec_stable end;
  naive_solver tac.
Tactic Notation "set_solver" "-" hyp_list(Hs) "by" tactic3(tac) :=
  clear Hs; set_solver by tac.
Tactic Notation "set_solver" "+" hyp_list(Hs) "by" tactic3(tac) :=
  clear -Hs; set_solver by tac.
Tactic Notation "set_solver" := set_solver by idtac.
Tactic Notation "set_solver" "-" hyp_list(Hs) := clear Hs; set_solver.
Tactic Notation "set_solver" "+" hyp_list(Hs) := clear -Hs; set_solver.

295 296 297 298
Hint Extern 1000 (_  _) => set_solver : set_solver.
Hint Extern 1000 (_  _) => set_solver : set_solver.
Hint Extern 1000 (_  _) => set_solver : set_solver.

299

300 301
(** * Collections with [∪], [∅] and [{[_]}] *)
Section simple_collection.
302
  Context `{SimpleCollection A C}.
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
  Implicit Types x y : A.
  Implicit Types X Y : C.
  Implicit Types Xs Ys : list C.

  (** Equality *)
  Lemma elem_of_equiv X Y : X  Y   x, x  X  x  Y.
  Proof. set_solver. Qed.
  Lemma collection_equiv_spec X Y : X  Y  X  Y  Y  X.
  Proof. set_solver. Qed.

  (** Subset relation *)
  Global Instance collection_subseteq_antisymm: AntiSymm () (() : relation C).
  Proof. intros ??. set_solver. Qed.

  Global Instance collection_subseteq_preorder: PreOrder (() : relation C).
  Proof. split. by intros ??. intros ???; set_solver. Qed.

  Lemma subseteq_union X Y : X  Y  X  Y  Y.
  Proof. set_solver. Qed.
  Lemma subseteq_union_1 X Y : X  Y  X  Y  Y.
  Proof. by rewrite subseteq_union. Qed.
  Lemma subseteq_union_2 X Y : X  Y  Y  X  Y.
  Proof. by rewrite subseteq_union. Qed.

  Lemma union_subseteq_l X Y : X  X  Y.
  Proof. set_solver. Qed.
  Lemma union_subseteq_r X Y : Y  X  Y.
  Proof. set_solver. Qed.
  Lemma union_least X Y Z : X  Z  Y  Z  X  Y  Z.
  Proof. set_solver. Qed.

  Lemma elem_of_subseteq X Y : X  Y   x, x  X  x  Y.
  Proof. done. Qed.
  Lemma elem_of_subset X Y : X  Y  ( x, x  X  x  Y)  ¬( x, x  Y  x  X).
  Proof. set_solver. Qed.

  (** Union *)
  Lemma not_elem_of_union x X Y : x  X  Y  x  X  x  Y.
  Proof. set_solver. Qed.
  Lemma elem_of_union_l x X Y : x  X  x  X  Y.
  Proof. set_solver. Qed.
  Lemma elem_of_union_r x X Y : x  Y  x  X  Y.
  Proof. set_solver. Qed.

  Lemma union_preserving_l X Y1 Y2 : Y1  Y2  X  Y1  X  Y2.
  Proof. set_solver. Qed.
  Lemma union_preserving_r X1 X2 Y : X1  X2  X1  Y  X2  Y.
  Proof. set_solver. Qed.
  Lemma union_preserving X1 X2 Y1 Y2 : X1  X2  Y1  Y2  X1  Y1  X2  Y2.
  Proof. set_solver. Qed.

  Global Instance union_idemp : IdemP (() : relation C) ().
  Proof. intros X. set_solver. Qed.
  Global Instance union_empty_l : LeftId (() : relation C)  ().
  Proof. intros X. set_solver. Qed.
  Global Instance union_empty_r : RightId (() : relation C)  ().
  Proof. intros X. set_solver. Qed.
  Global Instance union_comm : Comm (() : relation C) ().
  Proof. intros X Y. set_solver. Qed.
  Global Instance union_assoc : Assoc (() : relation C) ().
  Proof. intros X Y Z. set_solver. Qed.

  Lemma empty_union X Y : X  Y    X    Y  .
  Proof. set_solver. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
368 369 370 371 372
  Lemma union_cancel_l X Y Z : Z  X  Z  Y  Z  X  Z  Y  X  Y.
  Proof. set_solver. Qed.
  Lemma union_cancel_r X Y Z : X  Z  Y  Z  X  Z  Y  Z  X  Y.
  Proof. set_solver. Qed.

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
  (** Empty *)
  Lemma elem_of_equiv_empty X : X     x, x  X.
  Proof. set_solver. Qed.
  Lemma elem_of_empty x : x    False.
  Proof. set_solver. Qed.
  Lemma equiv_empty X : X    X  .
  Proof. set_solver. Qed.
  Lemma union_positive_l X Y : X  Y    X  .
  Proof. set_solver. Qed.
  Lemma union_positive_l_alt X Y : X    X  Y  .
  Proof. set_solver. Qed.
  Lemma non_empty_inhabited x X : x  X  X  .
  Proof. set_solver. Qed.

  (** Singleton *)
  Lemma elem_of_singleton_1 x y : x  {[y]}  x = y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma elem_of_singleton_2 x y : x = y  x  {[y]}.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma elem_of_subseteq_singleton x X : x  X  {[ x ]}  X.
  Proof. set_solver. Qed.
  Lemma non_empty_singleton x : ({[ x ]} : C)  .
  Proof. set_solver. Qed.
  Lemma not_elem_of_singleton x y : x  {[ y ]}  x  y.
  Proof. by rewrite elem_of_singleton. Qed.

  (** Disjointness *)
  Lemma elem_of_disjoint X Y : X  Y   x, x  X  x  Y  False.
  Proof. done. Qed.

  Global Instance disjoint_sym : Symmetric (@disjoint C _).
  Proof. intros X Y. set_solver. Qed.
  Lemma disjoint_empty_l Y :   Y.
  Proof. set_solver. Qed.
  Lemma disjoint_empty_r X : X  .
  Proof. set_solver. Qed.
  Lemma disjoint_singleton_l x Y : {[ x ]}  Y  x  Y.
  Proof. set_solver. Qed.
  Lemma disjoint_singleton_r y X : X  {[ y ]}  y  X.
  Proof. set_solver. Qed.
  Lemma disjoint_union_l X1 X2 Y : X1  X2  Y  X1  Y  X2  Y.
  Proof. set_solver. Qed.
  Lemma disjoint_union_r X Y1 Y2 : X  Y1  Y2  X  Y1  X  Y2.
  Proof. set_solver. Qed.

  (** Big unions *)
  Lemma elem_of_union_list Xs x : x   Xs   X, X  Xs  x  X.
420 421
  Proof.
    split.
422 423
    - induction Xs; simpl; intros HXs; [by apply elem_of_empty in HXs|].
      setoid_rewrite elem_of_cons. apply elem_of_union in HXs. naive_solver.
Ralf Jung's avatar
Ralf Jung committed
424
    - intros [X [Hx]]. induction Hx; simpl; [by apply elem_of_union_l |].
425
      intros. apply elem_of_union_r; auto.
426
  Qed.
427

428 429 430 431 432 433 434
  Lemma union_list_nil :  @nil C = .
  Proof. done. Qed.
  Lemma union_list_cons X Xs :  (X :: Xs) = X   Xs.
  Proof. done. Qed.
  Lemma union_list_singleton X :  [X]  X.
  Proof. simpl. by rewrite (right_id  _). Qed.
  Lemma union_list_app Xs1 Xs2 :  (Xs1 ++ Xs2)   Xs1   Xs2.
435
  Proof.
436 437
    induction Xs1 as [|X Xs1 IH]; simpl; [by rewrite (left_id  _)|].
    by rewrite IH, (assoc _).
438
  Qed.
439
  Lemma union_list_reverse Xs :  (reverse Xs)   Xs.
440
  Proof.
441 442 443
    induction Xs as [|X Xs IH]; simpl; [done |].
    by rewrite reverse_cons, union_list_app,
      union_list_singleton, (comm _), IH.
444
  Qed.
445 446 447
  Lemma union_list_preserving Xs Ys : Xs * Ys   Xs   Ys.
  Proof. induction 1; simpl; auto using union_preserving. Qed.
  Lemma empty_union_list Xs :  Xs    Forall ( ) Xs.
448
  Proof.
449 450 451
    split.
    - induction Xs; simpl; rewrite ?empty_union; intuition.
    - induction 1 as [|?? E1 ? E2]; simpl. done. by apply empty_union.
452
  Qed.
453

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
  Section leibniz.
    Context `{!LeibnizEquiv C}.

    Lemma elem_of_equiv_L X Y : X = Y   x, x  X  x  Y.
    Proof. unfold_leibniz. apply elem_of_equiv. Qed.
    Lemma collection_equiv_spec_L X Y : X = Y  X  Y  Y  X.
    Proof. unfold_leibniz. apply collection_equiv_spec. Qed.

    (** Subset relation *)
    Global Instance collection_subseteq_partialorder :
      PartialOrder (() : relation C).
    Proof. split. apply _. intros ??. unfold_leibniz. apply (anti_symm _). Qed.

    Lemma subseteq_union_L X Y : X  Y  X  Y = Y.
    Proof. unfold_leibniz. apply subseteq_union. Qed.
    Lemma subseteq_union_1_L X Y : X  Y  X  Y = Y.
    Proof. unfold_leibniz. apply subseteq_union_1. Qed.
    Lemma subseteq_union_2_L X Y : X  Y = Y  X  Y.
    Proof. unfold_leibniz. apply subseteq_union_2. Qed.

    (** Union *)
    Global Instance union_idemp_L : IdemP (@eq C) ().
    Proof. intros ?. unfold_leibniz. apply (idemp _). Qed.
    Global Instance union_empty_l_L : LeftId (@eq C)  ().
    Proof. intros ?. unfold_leibniz. apply (left_id _ _). Qed.
    Global Instance union_empty_r_L : RightId (@eq C)  ().
    Proof. intros ?. unfold_leibniz. apply (right_id _ _). Qed.
    Global Instance union_comm_L : Comm (@eq C) ().
    Proof. intros ??. unfold_leibniz. apply (comm _). Qed.
    Global Instance union_assoc_L : Assoc (@eq C) ().
    Proof. intros ???. unfold_leibniz. apply (assoc _). Qed.

    Lemma empty_union_L X Y : X  Y =   X =   Y = .
    Proof. unfold_leibniz. apply empty_union. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
489 490 491 492 493
    Lemma union_cancel_l_L X Y Z : Z  X  Z  Y  Z  X = Z  Y  X = Y.
    Proof. unfold_leibniz. apply union_cancel_l. Qed.
    Lemma union_cancel_r_L X Y Z : X  Z  Y  Z  X  Z = Y  Z  X = Y.
    Proof. unfold_leibniz. apply union_cancel_r. Qed.

494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
    (** Empty *)
    Lemma elem_of_equiv_empty_L X : X =    x, x  X.
    Proof. unfold_leibniz. apply elem_of_equiv_empty. Qed.
    Lemma equiv_empty_L X : X    X = .
    Proof. unfold_leibniz. apply equiv_empty. Qed.
    Lemma union_positive_l_L X Y : X  Y =   X = .
    Proof. unfold_leibniz. apply union_positive_l. Qed.
    Lemma union_positive_l_alt_L X Y : X    X  Y  .
    Proof. unfold_leibniz. apply union_positive_l_alt. Qed.
    Lemma non_empty_inhabited_L x X : x  X  X  .
    Proof. unfold_leibniz. apply non_empty_inhabited. Qed.

    (** Singleton *)
    Lemma non_empty_singleton_L x : {[ x ]}  .
    Proof. unfold_leibniz. apply non_empty_singleton. Qed.

    (** Big unions *)
    Lemma union_list_singleton_L X :  [X] = X.
    Proof. unfold_leibniz. apply union_list_singleton. Qed.
    Lemma union_list_app_L Xs1 Xs2 :  (Xs1 ++ Xs2) =  Xs1   Xs2.
    Proof. unfold_leibniz. apply union_list_app. Qed.
    Lemma union_list_reverse_L Xs :  (reverse Xs) =  Xs.
    Proof. unfold_leibniz. apply union_list_reverse. Qed.
    Lemma empty_union_list_L Xs :  Xs =   Forall (= ) Xs.
    Proof. unfold_leibniz. by rewrite empty_union_list. Qed. 
  End leibniz.

  Section dec.
    Context `{ (X Y : C), Decision (X  Y)}.
    Lemma collection_subseteq_inv X Y : X  Y  X  Y  X  Y.
    Proof. destruct (decide (X  Y)); [by right|left;set_solver]. Qed.
    Lemma collection_not_subset_inv X Y : X  Y  X  Y  X  Y.
    Proof. destruct (decide (X  Y)); [by right|left;set_solver]. Qed.

    Lemma non_empty_union X Y : X  Y    X    Y  .
    Proof. rewrite empty_union. destruct (decide (X  )); intuition. Qed.
    Lemma non_empty_union_list Xs :  Xs    Exists ( ) Xs.
    Proof. rewrite empty_union_list. apply (not_Forall_Exists _). Qed.

    Context `{!LeibnizEquiv C}.
    Lemma collection_subseteq_inv_L X Y : X  Y  X  Y  X = Y.
    Proof. unfold_leibniz. apply collection_subseteq_inv. Qed.
    Lemma collection_not_subset_inv_L X Y : X  Y  X  Y  X = Y.
    Proof. unfold_leibniz. apply collection_not_subset_inv. Qed.
    Lemma non_empty_union_L X Y : X  Y    X    Y  .
    Proof. unfold_leibniz. apply non_empty_union. Qed.
    Lemma non_empty_union_list_L Xs :  Xs    Exists ( ) Xs.
    Proof. unfold_leibniz. apply non_empty_union_list. Qed.
  End dec.
End simple_collection.


(** * Collections with [∪], [∩], [∖], [∅] and [{[_]}] *)
Robbert Krebbers's avatar
Robbert Krebbers committed
547 548
Section collection.
  Context `{Collection A C}.
549
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
550

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
  (** Intersection *)
  Lemma subseteq_intersection X Y : X  Y  X  Y  X.
  Proof. set_solver. Qed. 
  Lemma subseteq_intersection_1 X Y : X  Y  X  Y  X.
  Proof. apply subseteq_intersection. Qed.
  Lemma subseteq_intersection_2 X Y : X  Y  X  X  Y.
  Proof. apply subseteq_intersection. Qed.

  Lemma intersection_subseteq_l X Y : X  Y  X.
  Proof. set_solver. Qed.
  Lemma intersection_subseteq_r X Y : X  Y  Y.
  Proof. set_solver. Qed.
  Lemma intersection_greatest X Y Z : Z  X  Z  Y  Z  X  Y.
  Proof. set_solver. Qed.

  Lemma intersection_preserving_l X Y1 Y2 : Y1  Y2  X  Y1  X  Y2.
  Proof. set_solver. Qed.
  Lemma intersection_preserving_r X1 X2 Y : X1  X2  X1  Y  X2  Y.
  Proof. set_solver. Qed.
  Lemma intersection_preserving X1 X2 Y1 Y2 :
    X1  X2  Y1  Y2  X1  Y1  X2  Y2.
572
  Proof. set_solver. Qed.
573 574 575 576 577 578 579 580 581 582 583 584

  Global Instance intersection_idemp : IdemP (() : relation C) ().
  Proof. intros X; set_solver. Qed.
  Global Instance intersection_comm : Comm (() : relation C) ().
  Proof. intros X Y; set_solver. Qed.
  Global Instance intersection_assoc : Assoc (() : relation C) ().
  Proof. intros X Y Z; set_solver. Qed.
  Global Instance intersection_empty_l : LeftAbsorb (() : relation C)  ().
  Proof. intros X; set_solver. Qed.
  Global Instance intersection_empty_r: RightAbsorb (() : relation C)  ().
  Proof. intros X; set_solver. Qed.

585
  Lemma intersection_singletons x : ({[x]} : C)  {[x]}  {[x]}.
586
  Proof. set_solver. Qed.
587 588 589 590 591 592 593 594 595 596 597

  Lemma union_intersection_l X Y Z : X  (Y  Z)  (X  Y)  (X  Z).
  Proof. set_solver. Qed.
  Lemma union_intersection_r X Y Z : (X  Y)  Z  (X  Z)  (Y  Z).
  Proof. set_solver. Qed.
  Lemma intersection_union_l X Y Z : X  (Y  Z)  (X  Y)  (X  Z).
  Proof. set_solver. Qed.
  Lemma intersection_union_r X Y Z : (X  Y)  Z  (X  Z)  (Y  Z).
  Proof. set_solver. Qed.

  (** Difference *)
Robbert Krebbers's avatar
Robbert Krebbers committed
598
  Lemma difference_twice X Y : (X  Y)  Y  X  Y.
599
  Proof. set_solver. Qed.
600
  Lemma subseteq_empty_difference X Y : X  Y  X  Y  .
601
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
602
  Lemma difference_diag X : X  X  .
603
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
604
  Lemma difference_union_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
605
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
606
  Lemma difference_union_distr_r X Y Z : Z  (X  Y)  (Z  X)  (Z  Y).
607
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
608
  Lemma difference_intersection_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
609
  Proof. set_solver. Qed.
610
  Lemma difference_disjoint X Y : X  Y  X  Y  X.
611
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
612

613 614 615 616
  (** Disjointness *)
  Lemma disjoint_intersection X Y : X  Y  X  Y  .
  Proof. set_solver. Qed.

617 618
  Section leibniz.
    Context `{!LeibnizEquiv C}.
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638

    (** Intersection *)
    Lemma subseteq_intersection_L X Y : X  Y  X  Y = X.
    Proof. unfold_leibniz. apply subseteq_intersection. Qed.
    Lemma subseteq_intersection_1_L X Y : X  Y  X  Y = X.
    Proof. unfold_leibniz. apply subseteq_intersection_1. Qed.
    Lemma subseteq_intersection_2_L X Y : X  Y = X  X  Y.
    Proof. unfold_leibniz. apply subseteq_intersection_2. Qed.

    Global Instance intersection_idemp_L : IdemP ((=) : relation C) ().
    Proof. intros ?. unfold_leibniz. apply (idemp _). Qed.
    Global Instance intersection_comm_L : Comm ((=) : relation C) ().
    Proof. intros ??. unfold_leibniz. apply (comm _). Qed.
    Global Instance intersection_assoc_L : Assoc ((=) : relation C) ().
    Proof. intros ???. unfold_leibniz. apply (assoc _). Qed.
    Global Instance intersection_empty_l_L: LeftAbsorb ((=) : relation C)  ().
    Proof. intros ?. unfold_leibniz. apply (left_absorb _ _). Qed.
    Global Instance intersection_empty_r_L: RightAbsorb ((=) : relation C)  ().
    Proof. intros ?. unfold_leibniz. apply (right_absorb _ _). Qed.

639 640
    Lemma intersection_singletons_L x : {[x]}  {[x]} = {[x]}.
    Proof. unfold_leibniz. apply intersection_singletons. Qed.
641 642 643 644 645

    Lemma union_intersection_l_L X Y Z : X  (Y  Z) = (X  Y)  (X  Z).
    Proof. unfold_leibniz; apply union_intersection_l. Qed.
    Lemma union_intersection_r_L X Y Z : (X  Y)  Z = (X  Z)  (Y  Z).
    Proof. unfold_leibniz; apply union_intersection_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
646
    Lemma intersection_union_l_L X Y Z : X  (Y  Z) = (X  Y)  (X  Z).
647
    Proof. unfold_leibniz; apply intersection_union_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
648
    Lemma intersection_union_r_L X Y Z : (X  Y)  Z = (X  Z)  (Y  Z).
649 650 651
    Proof. unfold_leibniz; apply intersection_union_r. Qed.

    (** Difference *)
652 653
    Lemma difference_twice_L X Y : (X  Y)  Y = X  Y.
    Proof. unfold_leibniz. apply difference_twice. Qed.
654 655
    Lemma subseteq_empty_difference_L X Y : X  Y  X  Y = .
    Proof. unfold_leibniz. apply subseteq_empty_difference. Qed.
656 657 658 659
    Lemma difference_diag_L X : X  X = .
    Proof. unfold_leibniz. apply difference_diag. Qed.
    Lemma difference_union_distr_l_L X Y Z : (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_union_distr_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
660 661
    Lemma difference_union_distr_r_L X Y Z : Z  (X  Y) = (Z  X)  (Z  Y).
    Proof. unfold_leibniz. apply difference_union_distr_r. Qed.
662 663 664
    Lemma difference_intersection_distr_l_L X Y Z :
      (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_intersection_distr_l. Qed.
665 666
    Lemma difference_disjoint_L X Y : X  Y  X  Y = X.
    Proof. unfold_leibniz. apply difference_disjoint. Qed.
667 668 669 670

    (** Disjointness *)
    Lemma disjoint_intersection_L X Y : X  Y  X  Y = .
    Proof. unfold_leibniz. apply disjoint_intersection. Qed.
671 672 673
  End leibniz.

  Section dec.
Robbert Krebbers's avatar
Robbert Krebbers committed
674
    Context `{ (x : A) (X : C), Decision (x  X)}.
675
    Lemma not_elem_of_intersection x X Y : x  X  Y  x  X  x  Y.
676
    Proof. rewrite elem_of_intersection. destruct (decide (x  X)); tauto. Qed.
677
    Lemma not_elem_of_difference x X Y : x  X  Y  x  X  x  Y.
678
    Proof. rewrite elem_of_difference. destruct (decide (x  Y)); tauto. Qed.
679 680
    Lemma union_difference X Y : X  Y  Y  X  Y  X.
    Proof.
681
      intros ? x; split; rewrite !elem_of_union, elem_of_difference; [|intuition].
682
      destruct (decide (x  X)); intuition.
683
    Qed.
684 685 686 687 688
    Lemma subseteq_disjoint_union X Y : X  Y   Z, Y  X  Z  X  Z.
    Proof.
      split; [|set_solver].
      exists (Y  X); split; [auto using union_difference|set_solver].
    Qed.
689
    Lemma non_empty_difference X Y : X  Y  Y  X  .
690
    Proof. intros [HXY1 HXY2] Hdiff. destruct HXY2. set_solver. Qed.
691
    Lemma empty_difference_subseteq X Y : X  Y    X  Y.
692
    Proof. set_solver. Qed.
693

694 695 696 697 698
    Context `{!LeibnizEquiv C}.
    Lemma union_difference_L X Y : X  Y  Y = X  Y  X.
    Proof. unfold_leibniz. apply union_difference. Qed.
    Lemma non_empty_difference_L X Y : X  Y  Y  X  .
    Proof. unfold_leibniz. apply non_empty_difference. Qed.
699 700
    Lemma empty_difference_subseteq_L X Y : X  Y =   X  Y.
    Proof. unfold_leibniz. apply empty_difference_subseteq. Qed.
701 702
    Lemma subseteq_disjoint_union_L X Y : X  Y   Z, Y = X  Z  X  Z.
    Proof. unfold_leibniz. apply subseteq_disjoint_union. Qed.
703 704 705
  End dec.
End collection.

706 707 708 709 710 711 712 713 714

(** * Conversion of option and list *)
Definition of_option `{Singleton A C, Empty C} (mx : option A) : C :=
  match mx with None =>  | Some x => {[ x ]} end.
Fixpoint of_list `{Singleton A C, Empty C, Union C} (l : list A) : C :=
  match l with [] =>  | x :: l => {[ x ]}  of_list l end.

Section of_option_list.
  Context `{SimpleCollection A C}.
Robbert Krebbers's avatar
Robbert Krebbers committed
715 716
  Implicit Types l : list A.

717 718
  Lemma elem_of_of_option (x : A) mx: x  of_option mx  mx = Some x.
  Proof. destruct mx; set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
719 720 721
  Lemma not_elem_of_of_option (x : A) mx: x  of_option mx  mx  Some x.
  Proof. by rewrite elem_of_of_option. Qed.

722 723 724 725 726 727 728
  Lemma elem_of_of_list (x : A) l : x  of_list l  x  l.
  Proof.
    split.
    - induction l; simpl; [by rewrite elem_of_empty|].
      rewrite elem_of_union,elem_of_singleton; intros [->|?]; constructor; auto.
    - induction 1; simpl; rewrite elem_of_union, elem_of_singleton; auto.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
729 730 731
  Lemma not_elem_of_of_list (x : A) l : x  of_list l  x  l.
  Proof. by rewrite elem_of_of_list. Qed.

732 733 734 735 736 737 738
  Global Instance set_unfold_of_option (mx : option A) x :
    SetUnfold (x  of_option mx) (mx = Some x).
  Proof. constructor; apply elem_of_of_option. Qed.
  Global Instance set_unfold_of_list (l : list A) x P :
    SetUnfold (x  l) P  SetUnfold (x  of_list l) P.
  Proof. constructor. by rewrite elem_of_of_list, (set_unfold (x  l) P). Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
739 740 741 742 743 744 745 746
  Lemma of_list_nil : of_list (C:=C) [] = .
  Proof. done. Qed.
  Lemma of_list_cons x l : of_list (C:=C) (x :: l) = {[ x ]}  of_list l.
  Proof. done. Qed.
  Lemma of_list_app l1 l2 : of_list (C:=C) (l1 ++ l2)  of_list l1  of_list l2.
  Proof. set_solver. Qed.
  Global Instance of_list_perm : Proper (() ==> ()) (of_list (C:=C)).
  Proof. induction 1; set_solver. Qed.
747

Robbert Krebbers's avatar
Robbert Krebbers committed
748 749 750 751 752 753
  Context `{!LeibnizEquiv C}.
  Lemma of_list_app_L l1 l2 : of_list (C:=C) (l1 ++ l2) = of_list l1  of_list l2.
  Proof. set_solver. Qed.
  Global Instance of_list_perm_L : Proper (() ==> (=)) (of_list (C:=C)).
  Proof. induction 1; set_solver. Qed.
End of_option_list.
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784


(** * Guard *)
Global Instance collection_guard `{CollectionMonad M} : MGuard M :=
  λ P dec A x, match dec with left H => x H | _ =>  end.

Section collection_monad_base.
  Context `{CollectionMonad M}.
  Lemma elem_of_guard `{Decision P} {A} (x : A) (X : M A) :
    x  guard P; X  P  x  X.
  Proof.
    unfold mguard, collection_guard; simpl; case_match;
      rewrite ?elem_of_empty; naive_solver.
  Qed.
  Lemma elem_of_guard_2 `{Decision P} {A} (x : A) (X : M A) :
    P  x  X  x  guard P; X.
  Proof. by rewrite elem_of_guard. Qed.
  Lemma guard_empty `{Decision P} {A} (X : M A) : guard P; X    ¬P  X  .
  Proof.
    rewrite !elem_of_equiv_empty; setoid_rewrite elem_of_guard.
    destruct (decide P); naive_solver.
  Qed.
  Global Instance set_unfold_guard `{Decision P} {A} (x : A) X Q :
    SetUnfold (x  X) Q  SetUnfold (x  guard P; X) (P  Q).
  Proof. constructor. by rewrite elem_of_guard, (set_unfold (x  X) Q). Qed.
  Lemma bind_empty {A B} (f : A  M B) X :
    X = f    X     x, x  X  f x  .
  Proof. set_solver. Qed.
End collection_monad_base.


785
(** * Quantifiers *)
786 787 788
Definition set_Forall `{ElemOf A C} (P : A  Prop) (X : C) :=  x, x  X  P x.
Definition set_Exists `{ElemOf A C} (P : A  Prop) (X : C) :=  x, x  X  P x.

Robbert Krebbers's avatar
Robbert Krebbers committed
789
Section quantifiers.
790
  Context `{SimpleCollection A B} (P : A  Prop).
Robbert Krebbers's avatar
Robbert Krebbers committed
791

792
  Lemma set_Forall_empty : set_Forall P .
793
  Proof. unfold set_Forall. set_solver. Qed.
794
  Lemma set_Forall_singleton x : set_Forall P {[ x ]}  P x.
795
  Proof. unfold set_Forall. set_solver. Qed.
796 797
  Lemma set_Forall_union X Y :
    set_Forall P X  set_Forall P Y  set_Forall P (X  Y).
798
  Proof. unfold set_Forall. set_solver. Qed.
799
  Lemma set_Forall_union_inv_1 X Y : set_Forall P (X  Y)  set_Forall P X.
800
  Proof. unfold set_Forall. set_solver. Qed.
801
  Lemma set_Forall_union_inv_2 X Y : set_Forall P (X  Y)  set_Forall P Y.
802
  Proof. unfold set_Forall. set_solver. Qed.
803

804
  Lemma set_Exists_empty : ¬set_Exists P .
805
  Proof. unfold set_Exists. set_solver. Qed.
806
  Lemma set_Exists_singleton x : set_Exists P {[ x ]}  P x.
807
  Proof. unfold set_Exists. set_solver. Qed.
808
  Lemma set_Exists_union_1 X Y : set_Exists P X  set_Exists P (X  Y).
809
  Proof. unfold set_Exists. set_solver. Qed.
810
  Lemma set_Exists_union_2 X Y : set_Exists P Y  set_Exists P (X  Y).
811
  Proof. unfold set_Exists. set_solver. Qed.
812
  Lemma set_Exists_union_inv X Y :
813
    set_Exists P (X  Y)  set_Exists P X  set_Exists P Y.
814
  Proof. unfold set_Exists. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
815 816
End quantifiers.

817
Section more_quantifiers.
818
  Context `{SimpleCollection A B}.
819

820 821 822 823 824 825
  Lemma set_Forall_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Forall P X  set_Forall Q X.
  Proof. unfold set_Forall. naive_solver. Qed.
  Lemma set_Exists_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Exists P X  set_Exists Q X.
  Proof. unfold set_Exists. naive_solver. Qed.
826 827
End more_quantifiers.

828 829 830
(** * Fresh elements *)
(** We collect some properties on the [fresh] operation. In particular we
generalize [fresh] to generate lists of fresh elements. *)
831 832 833 834 835 836 837 838 839 840
Fixpoint fresh_list `{Fresh A C, Union C, Singleton A C}
    (n : nat) (X : C) : list A :=
  match n with
  | 0 => []
  | S n => let x := fresh X in x :: fresh_list n ({[ x ]}  X)
  end.
Inductive Forall_fresh `{ElemOf A C} (X : C) : list A  Prop :=
  | Forall_fresh_nil : Forall_fresh X []
  | Forall_fresh_cons x xs :
     x  xs  x  X  Forall_fresh X xs  Forall_fresh X (x :: xs).
841

842 843
Section fresh.
  Context `{FreshSpec A C}.
844
  Implicit Types X Y : C.
845

846
  Global Instance fresh_proper: Proper (() ==> (=)) (fresh (C:=C)).
847
  Proof. intros ???. by apply fresh_proper_alt, elem_of_equiv. Qed.
848 849
  Global Instance fresh_list_proper:
    Proper ((=) ==> () ==> (=)) (fresh_list (C:=C)).
850
  Proof.
851
    intros ? n ->. induction n as [|n IH]; intros ?? E; f_equal/=; [by rewrite E|].
852
    apply IH. by rewrite E.
853
  Qed.
854

855 856
  Lemma exist_fresh X :  x, x  X.
  Proof. exists (fresh X). apply is_fresh. Qed.
857 858 859 860
  Lemma Forall_fresh_NoDup X xs : Forall_fresh X xs  NoDup xs.
  Proof. induction 1; by constructor. Qed.
  Lemma Forall_fresh_elem_of X xs x : Forall_fresh X xs  x  xs  x  X.
  Proof.
861
    intros HX; revert x; rewrite <-Forall_forall. by induction HX; constructor.
862 863 864 865 866 867 868 869
  Qed.
  Lemma Forall_fresh_alt X xs :
    Forall_fresh X xs  NoDup xs   x, x  xs  x  X.
  Proof.
    split; eauto using Forall_fresh_NoDup, Forall_fresh_elem_of.
    rewrite <-Forall_forall.
    intros [Hxs Hxs']. induction Hxs; decompose_Forall_hyps; constructor; auto.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
870 871
  Lemma Forall_fresh_subseteq X Y xs :
    Forall_fresh X xs  Y  X  Forall_fresh Y xs.
872
  Proof. rewrite !Forall_fresh_alt; set_solver. Qed.
873

874 875
  Lemma fresh_list_length n X : length (fresh_list n X) = n.
  Proof. revert X. induction n; simpl; auto. Qed.
876
  Lemma fresh_list_is_fresh n X x : x  fresh_list n X  x  X.
877
  Proof.
878
    revert X. induction n as [|n IH]; intros X; simpl;[by rewrite elem_of_nil|].
879
    rewrite elem_of_cons; intros [->| Hin]; [apply is_fresh|].
880
    apply IH in Hin; set_solver.
881
  Qed.
882
  Lemma NoDup_fresh_list n X : NoDup (fresh_list n X).
883
  Proof.
884
    revert X. induction n; simpl; constructor; auto.
885
    intros Hin; apply fresh_list_is_fresh in Hin; set_solver.
886 887 888 889
  Qed.
  Lemma Forall_fresh_list X n : Forall_fresh X (fresh_list n X).
  Proof.
    rewrite Forall_fresh_alt; eauto using NoDup_fresh_list, fresh_list_is_fresh.
890 891
  Qed.
End fresh.
892

893
(** * Properties of implementations of collections that form a monad *)
894 895 896
Section collection_monad.
  Context `{CollectionMonad M}.

897 898
  Global Instance collection_fmap_mono {A B} :
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
899
  Proof. intros f g ? X Y ?; set_solver by eauto. Qed.
900 901
  Global Instance collection_bind_mono {A B} :
    Proper (((=) ==> ()) ==> () ==> ()) (@mbind M _ A B).
902
  Proof. unfold respectful; intros f g Hfg X Y ?; set_solver. Qed.
903 904
  Global Instance collection_join_mono {A} :
    Proper (() ==> ()) (@mjoin M _ A).
905
  Proof. intros X Y ?; set_solver. Qed.
906

907
  Lemma collection_bind_singleton {A B} (f : A  M B) x : {[ x ]} = f  f x.
908
  Proof. set_solver. Qed.
909
  Lemma collection_guard_True {A} `{Decision P} (X : M A) : P  guard P; X  X.
910
  Proof. set_solver. Qed.
911
  Lemma collection_fmap_compose {A B C} (f : A  B) (g : B  C) (X : M A) :
912
    g  f <$> X  g <$> (f <$> X).
913
  Proof. set_solver. Qed.
914 915
  Lemma elem_of_fmap_1 {A B} (f : A  B) (X : M A) (y : B) :
    y  f <$> X   x, y = f x  x  X.
916
  Proof. set_solver. Qed.
917 918
  Lemma elem_of_fmap_2 {A B} (f : A  B) (X : M A) (x : A) :
    x  X  f x  f <$> X.
919
  Proof. set_solver. Qed.
920 921
  Lemma elem_of_fmap_2_alt {A B} (f : A  B) (X : M A) (x : A) (y : B) :
    x  X  y = f x  y  f <$> X.
922
  Proof. set_solver. Qed.
923 924 925 926 927

  Lemma elem_of_mapM {A B} (f : A  M B) l k :
    l  mapM f k  Forall2 (λ x y, x  f y) l k.
  Proof.
    split.
928
    - revert l. induction k; set_solver by eauto.
929
    - induction 1; set_solver.
930
  Qed.
931
  Lemma collection_mapM_length {A B} (f : A  M B) l k :
932
    l  mapM f k  length l = length k.
933
  Proof. revert l; induction k; set_solver by eauto. Qed.
934
  Lemma elem_of_mapM_fmap {A B} (f : A  B) (g : B  M A) l k :
935
    Forall (λ x,  y, y  g x  f y = x) l  k  mapM g l  fmap f k = l.
936
  Proof. intros Hl. revert k. induction Hl; set_solver. Qed.
937
  Lemma elem_of_mapM_Forall {A B} (f : A  M B) (P : B  Prop) l k :
938
    l  mapM f k  Forall (λ x,  y, y  f x  P y) k  Forall P l.
Robbert Krebbers's avatar
Robbert Krebbers committed
939
  Proof. rewrite elem_of_mapM. apply Forall2_Forall_l. Qed.
940 941
  Lemma elem_of_mapM_Forall2_l {A B C} (f : A  M B) (P: B  C  Prop) l1 l2 k :
    l1  mapM f k  Forall2 (λ x y,  z, z  f x  P z y) k l2 
Robbert Krebbers's avatar
Robbert Krebbers committed
942 943 944 945 946
    Forall2 P l1 l2.
  Proof.
    rewrite elem_of_mapM. intros Hl1. revert l2.
    induction Hl1; inversion_clear 1; constructor; auto.
  Qed.
947
End collection_monad.
948 949 950 951 952 953

(** Finite collections *)
Definition set_finite `{ElemOf A B} (X : B) :=  l : list A,  x, x  X  x  l.

Section finite.
  Context `{SimpleCollection A B}.
954 955
  Global Instance set_finite_subseteq