gmultiset.v 14.2 KB
Newer Older
1
(* Copyright (c) 2012-2017, Coq-std++ developers. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
2 3
(* This file is distributed under the terms of the BSD license. *)
From stdpp Require Import gmap.
4
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed
5 6

Record gmultiset A `{Countable A} := GMultiSet { gmultiset_car : gmap A nat }.
7 8
Arguments GMultiSet {_ _ _} _ : assert.
Arguments gmultiset_car {_ _ _} _ : assert.
Robbert Krebbers's avatar
Robbert Krebbers committed
9

10
Instance gmultiset_eq_dec `{Countable A} : EqDecision (gmultiset A).
Robbert Krebbers's avatar
Robbert Krebbers committed
11 12
Proof. solve_decision. Defined.

13
Program Instance gmultiset_countable `{Countable A} :
Robbert Krebbers's avatar
Robbert Krebbers committed
14 15 16 17 18 19 20 21 22 23
    Countable (gmultiset A) := {|
  encode X := encode (gmultiset_car X);  decode p := GMultiSet <$> decode p
|}.
Next Obligation. intros A ?? [X]; simpl. by rewrite decode_encode. Qed.

Section definitions.
  Context `{Countable A}.

  Definition multiplicity (x : A) (X : gmultiset A) : nat :=
    match gmultiset_car X !! x with Some n => S n | None => 0 end.
24
  Global Instance gmultiset_elem_of : ElemOf A (gmultiset A) := λ x X,
Robbert Krebbers's avatar
Robbert Krebbers committed
25
    0 < multiplicity x X.
26
  Global Instance gmultiset_subseteq : SubsetEq (gmultiset A) := λ X Y,  x,
Robbert Krebbers's avatar
Robbert Krebbers committed
27 28
    multiplicity x X  multiplicity x Y.

29
  Global Instance gmultiset_elements : Elements A (gmultiset A) := λ X,
Robbert Krebbers's avatar
Robbert Krebbers committed
30
    let (X) := X in '(x,n)  map_to_list X; replicate (S n) x.
31
  Global Instance gmultiset_size : Size (gmultiset A) := length  elements.
Robbert Krebbers's avatar
Robbert Krebbers committed
32

33 34
  Global Instance gmultiset_empty : Empty (gmultiset A) := GMultiSet .
  Global Instance gmultiset_singleton : Singleton A (gmultiset A) := λ x,
Robbert Krebbers's avatar
Robbert Krebbers committed
35
    GMultiSet {[ x := 0 ]}.
36
  Global Instance gmultiset_union : Union (gmultiset A) := λ X Y,
Robbert Krebbers's avatar
Robbert Krebbers committed
37 38
    let (X) := X in let (Y) := Y in
    GMultiSet $ union_with (λ x y, Some (S (x + y))) X Y.
39
  Global Instance gmultiset_difference : Difference (gmultiset A) := λ X Y,
Robbert Krebbers's avatar
Robbert Krebbers committed
40 41 42
    let (X) := X in let (Y) := Y in
    GMultiSet $ difference_with (λ x y,
      let z := x - y in guard (0 < z); Some (pred z)) X Y.
43

44
  Global Instance gmultiset_dom : Dom (gmultiset A) (gset A) := λ X,
45
    let (X) := X in dom _ X.
Robbert Krebbers's avatar
Robbert Krebbers committed
46 47
End definitions.

48 49 50
Typeclasses Opaque gmultiset_elem_of gmultiset_subseteq.
Typeclasses Opaque gmultiset_elements gmultiset_size gmultiset_empty.
Typeclasses Opaque gmultiset_singleton gmultiset_union gmultiset_difference.
51
Typeclasses Opaque gmultiset_dom.
52

Robbert Krebbers's avatar
Robbert Krebbers committed
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
Section lemmas.
Context `{Countable A}.
Implicit Types x y : A.
Implicit Types X Y : gmultiset A.

Lemma gmultiset_eq X Y : X = Y   x, multiplicity x X = multiplicity x Y.
Proof.
  split; [by intros ->|intros HXY].
  destruct X as [X], Y as [Y]; f_equal; apply map_eq; intros x.
  specialize (HXY x); unfold multiplicity in *; simpl in *.
  repeat case_match; naive_solver.
Qed.

(* Multiplicity *)
Lemma multiplicity_empty x : multiplicity x  = 0.
Proof. done. Qed.
Lemma multiplicity_singleton x : multiplicity x {[ x ]} = 1.
Proof. unfold multiplicity; simpl. by rewrite lookup_singleton. Qed.
Lemma multiplicity_singleton_ne x y : x  y  multiplicity x {[ y ]} = 0.
Proof. intros. unfold multiplicity; simpl. by rewrite lookup_singleton_ne. Qed.
Lemma multiplicity_union X Y x :
  multiplicity x (X  Y) = multiplicity x X + multiplicity x Y.
Proof.
  destruct X as [X], Y as [Y]; unfold multiplicity; simpl.
  rewrite lookup_union_with. destruct (X !! _), (Y !! _); simpl; omega.
Qed.
Lemma multiplicity_difference X Y x :
  multiplicity x (X  Y) = multiplicity x X - multiplicity x Y.
Proof.
  destruct X as [X], Y as [Y]; unfold multiplicity; simpl.
  rewrite lookup_difference_with.
  destruct (X !! _), (Y !! _); simplify_option_eq; omega.
Qed.

87
(* Collection *)
88 89 90 91 92 93 94 95 96 97 98 99 100
Lemma elem_of_multiplicity x X : x  X  0 < multiplicity x X.
Proof. done. Qed.

Global Instance gmultiset_simple_collection : SimpleCollection A (gmultiset A).
Proof.
  split.
  - intros x. rewrite elem_of_multiplicity, multiplicity_empty. omega.
  - intros x y. destruct (decide (x = y)) as [->|].
    + rewrite elem_of_multiplicity, multiplicity_singleton. split; auto with lia.
    + rewrite elem_of_multiplicity, multiplicity_singleton_ne by done.
      by split; auto with lia.
  - intros X Y x. rewrite !elem_of_multiplicity, multiplicity_union. omega.
Qed.
101 102
Global Instance gmultiset_elem_of_dec : RelDecision (@elem_of _ (gmultiset A) _).
Proof. refine (λ x X, cast_if (decide (0 < multiplicity x X))); done. Defined.
103

104
(* Algebraic laws *)
Robbert Krebbers's avatar
Robbert Krebbers committed
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
Global Instance gmultiset_comm : Comm (@eq (gmultiset A)) ().
Proof.
  intros X Y. apply gmultiset_eq; intros x. rewrite !multiplicity_union; omega.
Qed.
Global Instance gmultiset_assoc : Assoc (@eq (gmultiset A)) ().
Proof.
  intros X Y Z. apply gmultiset_eq; intros x. rewrite !multiplicity_union; omega.
Qed.
Global Instance gmultiset_left_id : LeftId (@eq (gmultiset A))  ().
Proof.
  intros X. apply gmultiset_eq; intros x.
  by rewrite multiplicity_union, multiplicity_empty.
Qed.
Global Instance gmultiset_right_id : RightId (@eq (gmultiset A))  ().
Proof. intros X. by rewrite (comm_L ()), (left_id_L _ _). Qed.

Global Instance gmultiset_union_inj_1 X : Inj (=) (=) (X ).
Proof.
  intros Y1 Y2. rewrite !gmultiset_eq. intros HX x; generalize (HX x).
  rewrite !multiplicity_union. omega.
Qed.
Global Instance gmultiset_union_inj_2 X : Inj (=) (=) ( X).
Proof. intros Y1 Y2. rewrite <-!(comm_L _ X). apply (inj _). Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
129
Lemma gmultiset_non_empty_singleton x : {[ x ]}  ( : gmultiset A).
Robbert Krebbers's avatar
Robbert Krebbers committed
130
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
131 132
  rewrite gmultiset_eq. intros Hx; generalize (Hx x).
  by rewrite multiplicity_singleton, multiplicity_empty.
Robbert Krebbers's avatar
Robbert Krebbers committed
133 134
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
135 136 137 138 139 140 141 142
(* Properties of the elements operation *)
Lemma gmultiset_elements_empty : elements ( : gmultiset A) = [].
Proof.
  unfold elements, gmultiset_elements; simpl. by rewrite map_to_list_empty.
Qed.
Lemma gmultiset_elements_empty_inv X : elements X = []  X = .
Proof.
  destruct X as [X]; unfold elements, gmultiset_elements; simpl.
143 144 145
  intros; apply (f_equal GMultiSet). destruct (map_to_list X) as [|[]] eqn:?.
  - by apply map_to_list_empty_inv.
  - naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
Qed.
Lemma gmultiset_elements_empty' X : elements X = []  X = .
Proof.
  split; intros HX; [by apply gmultiset_elements_empty_inv|].
  by rewrite HX, gmultiset_elements_empty.
Qed.
Lemma gmultiset_elements_singleton x : elements ({[ x ]} : gmultiset A) = [ x ].
Proof.
  unfold elements, gmultiset_elements; simpl. by rewrite map_to_list_singleton.
Qed.
Lemma gmultiset_elements_union X Y :
  elements (X  Y)  elements X ++ elements Y.
Proof.
  destruct X as [X], Y as [Y]; unfold elements, gmultiset_elements.
  set (f xn := let '(x, n) := xn in replicate (S n) x); simpl.
  revert Y; induction X as [|x n X HX IH] using map_ind; intros Y.
162
  { by rewrite (left_id_L _ _ Y), map_to_list_empty. }
Robbert Krebbers's avatar
Robbert Krebbers committed
163 164 165 166 167 168
  destruct (Y !! x) as [n'|] eqn:HY.
  - rewrite <-(insert_id Y x n'), <-(insert_delete Y) by done.
    erewrite <-insert_union_with by done.
    rewrite !map_to_list_insert, !bind_cons
      by (by rewrite ?lookup_union_with, ?lookup_delete, ?HX).
    rewrite (assoc_L _), <-(comm (++) (f (_,n'))), <-!(assoc_L _), <-IH.
169 170
    rewrite (assoc_L _). f_equiv.
    rewrite (comm _); simpl. by rewrite replicate_plus, Permutation_middle.
Robbert Krebbers's avatar
Robbert Krebbers committed
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
  - rewrite <-insert_union_with_l, !map_to_list_insert, !bind_cons
      by (by rewrite ?lookup_union_with, ?HX, ?HY).
    by rewrite <-(assoc_L (++)), <-IH.
Qed.
Lemma gmultiset_elem_of_elements x X : x  elements X  x  X.
Proof.
  destruct X as [X]. unfold elements, gmultiset_elements.
  set (f xn := let '(x, n) := xn in replicate (S n) x); simpl.
  unfold elem_of at 2, gmultiset_elem_of, multiplicity; simpl.
  rewrite elem_of_list_bind. split.
  - intros [[??] [[<- ?]%elem_of_replicate ->%elem_of_map_to_list]]; lia.
  - intros. destruct (X !! x) as [n|] eqn:Hx; [|omega].
    exists (x,n); split; [|by apply elem_of_map_to_list].
    apply elem_of_replicate; auto with omega.
Qed.
186 187 188 189 190 191
Lemma gmultiset_elem_of_dom x X : x  dom (gset A) X  x  X.
Proof.
  unfold dom, gmultiset_dom, elem_of at 2, gmultiset_elem_of, multiplicity.
  destruct X as [X]; simpl; rewrite elem_of_dom, <-not_eq_None_Some.
  destruct (X !! x); naive_solver omega.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231

(* Properties of the size operation *)
Lemma gmultiset_size_empty : size ( : gmultiset A) = 0.
Proof. done. Qed.
Lemma gmultiset_size_empty_inv X : size X = 0  X = .
Proof.
  unfold size, gmultiset_size; simpl. rewrite length_zero_iff_nil.
  apply gmultiset_elements_empty_inv.
Qed.
Lemma gmultiset_size_empty_iff X : size X = 0  X = .
Proof.
  split; [apply gmultiset_size_empty_inv|].
  by intros ->; rewrite gmultiset_size_empty.
Qed.
Lemma gmultiset_size_non_empty_iff X : size X  0  X  .
Proof. by rewrite gmultiset_size_empty_iff. Qed.

Lemma gmultiset_choose_or_empty X : ( x, x  X)  X = .
Proof.
  destruct (elements X) as [|x l] eqn:HX; [right|left].
  - by apply gmultiset_elements_empty_inv.
  - exists x. rewrite <-gmultiset_elem_of_elements, HX. by left.
Qed.
Lemma gmultiset_choose X : X     x, x  X.
Proof. intros. by destruct (gmultiset_choose_or_empty X). Qed.
Lemma gmultiset_size_pos_elem_of X : 0 < size X   x, x  X.
Proof.
  intros Hsz. destruct (gmultiset_choose_or_empty X) as [|HX]; [done|].
  contradict Hsz. rewrite HX, gmultiset_size_empty; lia.
Qed.

Lemma gmultiset_size_singleton x : size ({[ x ]} : gmultiset A) = 1.
Proof.
  unfold size, gmultiset_size; simpl. by rewrite gmultiset_elements_singleton.
Qed.
Lemma gmultiset_size_union X Y : size (X  Y) = size X + size Y.
Proof.
  unfold size, gmultiset_size; simpl.
  by rewrite gmultiset_elements_union, app_length.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
232 233 234 235 236 237 238 239 240 241

(* Order stuff *)
Global Instance gmultiset_po : PartialOrder (@subseteq (gmultiset A) _).
Proof.
  split; [split|].
  - by intros X x.
  - intros X Y Z HXY HYZ x. by trans (multiplicity x Y).
  - intros X Y HXY HYX; apply gmultiset_eq; intros x. by apply (anti_symm ()).
Qed.

242 243 244 245 246 247 248
Lemma gmultiset_subseteq_alt X Y :
  X  Y 
  map_relation () (λ _, False) (λ _, True) (gmultiset_car X) (gmultiset_car Y).
Proof.
  apply forall_proper; intros x. unfold multiplicity.
  destruct (gmultiset_car X !! x), (gmultiset_car Y !! x); naive_solver omega.
Qed.
249
Global Instance gmultiset_subseteq_dec : RelDecision (@subseteq (gmultiset A) _).
250
Proof.
251
 refine (λ X Y, cast_if (decide (map_relation ()
252 253 254 255
   (λ _, False) (λ _, True) (gmultiset_car X) (gmultiset_car Y))));
   by rewrite gmultiset_subseteq_alt.
Defined.

Robbert Krebbers's avatar
Robbert Krebbers committed
256 257 258 259 260 261 262 263 264 265 266
Lemma gmultiset_subset_subseteq X Y : X  Y  X  Y.
Proof. apply strict_include. Qed.
Hint Resolve gmultiset_subset_subseteq.

Lemma gmultiset_empty_subseteq X :   X.
Proof. intros x. rewrite multiplicity_empty. omega. Qed.

Lemma gmultiset_union_subseteq_l X Y : X  X  Y.
Proof. intros x. rewrite multiplicity_union. omega. Qed.
Lemma gmultiset_union_subseteq_r X Y : Y  X  Y.
Proof. intros x. rewrite multiplicity_union. omega. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
267
Lemma gmultiset_union_mono X1 X2 Y1 Y2 : X1  X2  Y1  Y2  X1  Y1  X2  Y2.
Robbert Krebbers's avatar
Robbert Krebbers committed
268
Proof. intros ?? x. rewrite !multiplicity_union. by apply Nat.add_le_mono. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
269 270 271 272
Lemma gmultiset_union_mono_l X Y1 Y2 : Y1  Y2  X  Y1  X  Y2.
Proof. intros. by apply gmultiset_union_mono. Qed.
Lemma gmultiset_union_mono_r X1 X2 Y : X1  X2  X1  Y  X2  Y.
Proof. intros. by apply gmultiset_union_mono. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
273 274 275 276 277 278 279 280 281 282 283 284

Lemma gmultiset_subset X Y : X  Y  size X < size Y  X  Y.
Proof. intros. apply strict_spec_alt; split; naive_solver auto with omega. Qed.
Lemma gmultiset_union_subset_l X Y : Y    X  X  Y.
Proof.
  intros HY%gmultiset_size_non_empty_iff.
  apply gmultiset_subset; auto using gmultiset_union_subseteq_l.
  rewrite gmultiset_size_union; omega.
Qed.
Lemma gmultiset_union_subset_r X Y : X    Y  X  Y.
Proof. rewrite (comm_L ()). apply gmultiset_union_subset_l. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
285
Lemma gmultiset_elem_of_singleton_subseteq x X : x  X  {[ x ]}  X.
Robbert Krebbers's avatar
Robbert Krebbers committed
286
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
287 288 289 290 291
  rewrite elem_of_multiplicity. split.
  - intros Hx y; destruct (decide (x = y)) as [->|].
    + rewrite multiplicity_singleton; omega.
    + rewrite multiplicity_singleton_ne by done; omega.
  - intros Hx. generalize (Hx x). rewrite multiplicity_singleton. omega.
Robbert Krebbers's avatar
Robbert Krebbers committed
292 293
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
294 295 296
Lemma gmultiset_elem_of_subseteq X1 X2 x : x  X1  X1  X2  x  X2.
Proof. rewrite !gmultiset_elem_of_singleton_subseteq. by intros ->. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
297 298 299 300 301 302
Lemma gmultiset_union_difference X Y : X  Y  Y = X  Y  X.
Proof.
  intros HXY. apply gmultiset_eq; intros x; specialize (HXY x).
  rewrite multiplicity_union, multiplicity_difference; omega.
Qed.
Lemma gmultiset_union_difference' x Y : x  Y  Y = {[ x ]}  Y  {[ x ]}.
Robbert Krebbers's avatar
Robbert Krebbers committed
303 304 305 306
Proof.
  intros. by apply gmultiset_union_difference,
    gmultiset_elem_of_singleton_subseteq.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
307

Robbert Krebbers's avatar
Robbert Krebbers committed
308 309 310 311 312 313
Lemma gmultiset_size_difference X Y : Y  X  size (X  Y) = size X - size Y.
Proof.
  intros HX%gmultiset_union_difference.
  rewrite HX at 2; rewrite gmultiset_size_union. omega.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
314 315 316 317 318 319 320 321 322 323 324 325 326
Lemma gmultiset_non_empty_difference X Y : X  Y  Y  X  .
Proof.
  intros [_ HXY2] Hdiff; destruct HXY2; intros x.
  generalize (f_equal (multiplicity x) Hdiff).
  rewrite multiplicity_difference, multiplicity_empty; omega.
Qed.

Lemma gmultiset_difference_subset X Y : X    X  Y  Y  X  Y.
Proof.
  intros. eapply strict_transitive_l; [by apply gmultiset_union_subset_r|].
  by rewrite <-(gmultiset_union_difference X Y).
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
327
(* Mononicity *)
Robbert Krebbers's avatar
Robbert Krebbers committed
328
Lemma gmultiset_elements_submseteq X Y : X  Y  elements X + elements Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
329 330
Proof.
  intros ->%gmultiset_union_difference. rewrite gmultiset_elements_union.
Robbert Krebbers's avatar
Robbert Krebbers committed
331
  by apply submseteq_inserts_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
332 333
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
334
Lemma gmultiset_subseteq_size X Y : X  Y  size X  size Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
335
Proof. intros. by apply submseteq_length, gmultiset_elements_submseteq. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
336 337 338 339

Lemma gmultiset_subset_size X Y : X  Y  size X < size Y.
Proof.
  intros HXY. assert (size (Y  X)  0).
Robbert Krebbers's avatar
Robbert Krebbers committed
340
  { by apply gmultiset_size_non_empty_iff, gmultiset_non_empty_difference. }
Robbert Krebbers's avatar
Robbert Krebbers committed
341 342 343 344 345 346 347 348
  rewrite (gmultiset_union_difference X Y), gmultiset_size_union by auto. lia.
Qed.

(* Well-foundedness *)
Lemma gmultiset_wf : wf (strict (@subseteq (gmultiset A) _)).
Proof.
  apply (wf_projected (<) size); auto using gmultiset_subset_size, lt_wf.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
349 350 351 352 353 354 355

Lemma gmultiset_ind (P : gmultiset A  Prop) :
  P   ( x X, P X  P ({[ x ]}  X))   X, P X.
Proof.
  intros Hemp Hinsert X. induction (gmultiset_wf X) as [X _ IH].
  destruct (gmultiset_choose_or_empty X) as [[x Hx]| ->]; auto.
  rewrite (gmultiset_union_difference' x X) by done.
Robbert Krebbers's avatar
Robbert Krebbers committed
356 357
  apply Hinsert, IH, gmultiset_difference_subset,
    gmultiset_elem_of_singleton_subseteq; auto using gmultiset_non_empty_singleton.
Robbert Krebbers's avatar
Robbert Krebbers committed
358
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
359
End lemmas.