list.v 161 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
5
From Coq Require Export Permutation.
6
From stdpp Require Export numbers base option.
Robbert Krebbers's avatar
Robbert Krebbers committed
7

8
Arguments length {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
9 10
Arguments cons {_} _ _.
Arguments app {_} _ _.
11 12 13 14

Instance: Params (@length) 1.
Instance: Params (@cons) 1.
Instance: Params (@app) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
15

16 17 18
Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.
19

20
Arguments tail {_} _.
21 22 23
Arguments take {_} !_ !_ /.
Arguments drop {_} !_ !_ /.

24 25 26 27 28 29
Instance: Params (@tail) 1.
Instance: Params (@take) 1.
Instance: Params (@drop) 1.

Arguments Permutation {_} _ _.
Arguments Forall_cons {_} _ _ _ _ _.
30
Remove Hints Permutation_cons : typeclass_instances.
31

Robbert Krebbers's avatar
Robbert Krebbers committed
32 33 34 35 36 37 38
Notation "(::)" := cons (only parsing) : C_scope.
Notation "( x ::)" := (cons x) (only parsing) : C_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : C_scope.
Notation "(++)" := app (only parsing) : C_scope.
Notation "( l ++)" := (app l) (only parsing) : C_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : C_scope.

39 40 41 42 43 44 45 46 47
Infix "≡ₚ" := Permutation (at level 70, no associativity) : C_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : C_scope.
Notation "( x ≡ₚ)" := (Permutation x) (only parsing) : C_scope.
Notation "(≡ₚ x )" := (λ y, y ≡ₚ x) (only parsing) : C_scope.
Notation "(≢ₚ)" := (λ x y, ¬x ≡ₚ y) (only parsing) : C_scope.
Notation "x ≢ₚ y":= (¬x ≡ₚ y) (at level 70, no associativity) : C_scope.
Notation "( x ≢ₚ)" := (λ y, x ≢ₚ y) (only parsing) : C_scope.
Notation "(≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
48 49 50
Instance maybe_cons {A} : Maybe2 (@cons A) := λ l,
  match l with x :: l => Some (x,l) | _ => None end.

51
(** * Definitions *)
52 53 54 55 56 57
(** Setoid equality lifted to lists *)
Inductive list_equiv `{Equiv A} : Equiv (list A) :=
  | nil_equiv : [] ≡ []
  | cons_equiv x y l k : x ≡ y → l ≡ k → x :: l ≡ y :: k.
Existing Instance list_equiv.

58 59
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
60 61
Instance list_lookup {A} : Lookup nat A (list A) :=
  fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
62
  match l with
63
  | [] => None | x :: l => match i with 0 => Some x | S i => l !! i end
64
  end.
65 66 67

(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
68
Instance list_alter {A} : Alter nat A (list A) := λ f,
69
  fix go i l {struct l} :=
70 71
  match l with
  | [] => []
72
  | x :: l => match i with 0 => f x :: l | S i => x :: go i l end
73
  end.
74

75 76
(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
77 78
Instance list_insert {A} : Insert nat A (list A) :=
  fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
79 80 81 82
  match l with
  | [] => []
  | x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end
  end.
83 84 85 86 87
Fixpoint list_inserts {A} (i : nat) (k l : list A) : list A :=
  match k with
  | [] => l
  | y :: k => <[i:=y]>(list_inserts (S i) k l)
  end.
88
Instance: Params (@list_inserts) 1.
89

90 91 92
(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
93 94
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
95 96
  match l with
  | [] => []
97
  | x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end
98
  end.
99 100 101

(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
102
Definition option_list {A} : option A → list A := option_rect _ (λ x, [x]) [].
103 104
Instance: Params (@option_list) 1.
Instance maybe_list_singleton {A} : Maybe (λ x : A, [x]) := λ l,
105
  match l with [x] => Some x | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
106 107 108 109

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
110
  fix go P _ l := let _ : Filter _ _ := @go in
Robbert Krebbers's avatar
Robbert Krebbers committed
111 112
  match l with
  | [] => []
113
  | x :: l => if decide (P x) then x :: filter P l else filter P l
114 115 116 117
  end.

(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
118
Definition list_find {A} P `{∀ x, Decision (P x)} : list A → option (nat * A) :=
119 120
  fix go l :=
  match l with
121 122
  | [] => None
  | x :: l => if decide (P x) then Some (0,x) else prod_map S id <$> go l
123
  end.
124
Instance: Params (@list_find) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
125 126 127 128

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
129
  match n with 0 => [] | S n => x :: replicate n x end.
130
Instance: Params (@replicate) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
131 132 133

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].
134
Instance: Params (@reverse) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
135

136 137 138 139
(** The function [last l] returns the last element of the list [l], or [None]
if the list [l] is empty. *)
Fixpoint last {A} (l : list A) : option A :=
  match l with [] => None | [x] => Some x | _ :: l => last l end.
140
Instance: Params (@last) 1.
141

Robbert Krebbers's avatar
Robbert Krebbers committed
142 143 144 145 146 147
(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
148
  | x :: l => match n with 0 => [] | S n => x :: resize n y l end
Robbert Krebbers's avatar
Robbert Krebbers committed
149 150
  end.
Arguments resize {_} !_ _ !_.
151
Instance: Params (@resize) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
152

153 154 155
(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
156 157
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
158
  | [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
159
  end.
160
Instance: Params (@reshape) 2.
161

162
Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
163 164 165 166
  guard (i + n ≤ length l); Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A → list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.
167

168 169 170 171
(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.
Definition foldl {A B} (f : A → B → A) : A → list B → A :=
172
  fix go a l := match l with [] => a | x :: l => go (f a x) l end.
173 174 175

(** The monadic operations. *)
Instance list_ret: MRet list := λ A x, x :: @nil A.
176 177
Instance list_fmap : FMap list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x :: go l end.
178 179 180 181 182 183
Instance list_omap : OMap list := λ A B f,
  fix go (l : list A) :=
  match l with
  | [] => []
  | x :: l => match f x with Some y => y :: go l | None => go l end
  end.
184 185
Instance list_bind : MBind list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x ++ go l end.
186 187
Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
188
  match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.
189
Definition mapM `{MBind M, MRet M} {A B} (f : A → M B) : list A → M (list B) :=
190
  fix go l :=
191
  match l with [] => mret [] | x :: l => y ← f x; k ← go l; mret (y :: k) end.
192 193 194 195 196

(** We define stronger variants of map and fold that allow the mapped
function to use the index of the elements. *)
Definition imap_go {A B} (f : nat → A → B) : nat → list A → list B :=
  fix go (n : nat) (l : list A) :=
197
  match l with [] => [] | x :: l => f n x :: go (S n) l end.
198
Definition imap {A B} (f : nat → A → B) : list A → list B := imap_go f 0.
199 200
Arguments imap : simpl never.

201 202 203 204
Definition zipped_map {A B} (f : list A → list A → A → B) :
  list A → list A → list B := fix go l k :=
  match k with [] => [] | x :: k => f l k x :: go (x :: l) k end.

Robbert Krebbers's avatar
Robbert Krebbers committed
205 206 207 208 209 210 211 212 213
Definition imap2_go {A B C} (f : nat → A → B → C) :
    nat → list A → list B → list C:=
  fix go (n : nat) (l : list A) (k : list B) :=
  match l, k with
  | [], _ |_, [] => [] | x :: l, y :: k => f n x y :: go (S n) l k
  end.
Definition imap2 {A B C} (f : nat → A → B → C) :
  list A → list B → list C := imap2_go f 0.

214 215 216 217 218 219 220
Inductive zipped_Forall {A} (P : list A → list A → A → Prop) :
    list A → list A → Prop :=
  | zipped_Forall_nil l : zipped_Forall P l []
  | zipped_Forall_cons l k x :
     P l k x → zipped_Forall P (x :: l) k → zipped_Forall P l (x :: k).
Arguments zipped_Forall_nil {_ _} _.
Arguments zipped_Forall_cons {_ _} _ _ _ _ _.
221

222 223 224 225 226 227 228
(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A → A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l => (if β then f x else x) :: mask f βs l
  | _, _ => l
  end.
229 230 231 232

(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
233
  | [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::) <$> interleave x l)
234 235
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
236
  match l with [] => [[]] | x :: l => permutations l ≫= interleave x end.
237

238 239
(** The predicate [suffix_of] holds if the first list is a suffix of the second.
The predicate [prefix_of] holds if the first list is a prefix of the second. *)
240 241
Definition suffix_of {A} : relation (list A) := λ l1 l2, ∃ k, l2 = k ++ l1.
Definition prefix_of {A} : relation (list A) := λ l1 l2, ∃ k, l2 = l1 ++ k.
242 243
Infix "`suffix_of`" := suffix_of (at level 70) : C_scope.
Infix "`prefix_of`" := prefix_of (at level 70) : C_scope.
244 245
Hint Extern 0 (_ `prefix_of` _) => reflexivity.
Hint Extern 0 (_ `suffix_of` _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
246

247
Section prefix_suffix_ops.
248 249
  Context `{EqDecision A}.

250 251 252 253 254 255
  Definition max_prefix_of : list A → list A → list A * list A * list A :=
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
256
      if decide_rel (=) x1 x2
257
      then prod_map id (x1 ::) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
258 259 260 261 262
    end.
  Definition max_suffix_of (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix_of (reverse l1) (reverse l2) with
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.
263 264
  Definition strip_prefix (l1 l2 : list A) := (max_prefix_of l1 l2).1.2.
  Definition strip_suffix (l1 l2 : list A) := (max_suffix_of l1 l2).1.2.
265
End prefix_suffix_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
266

267
(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
268 269 270
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
271
  | sublist_skip x l1 l2 : sublist l1 l2 → sublist (x :: l1) (x :: l2)
272
  | sublist_cons x l1 l2 : sublist l1 l2 → sublist l1 (x :: l2).
273
Infix "`sublist`" := sublist (at level 70) : C_scope.
274
Hint Extern 0 (_ `sublist` _) => reflexivity.
275 276

(** A list [l2] contains a list [l1] if [l2] is obtained by removing elements
277
from [l1] while possiblity changing the order. *)
278 279 280 281
Inductive contains {A} : relation (list A) :=
  | contains_nil : contains [] []
  | contains_skip x l1 l2 : contains l1 l2 → contains (x :: l1) (x :: l2)
  | contains_swap x y l : contains (y :: x :: l) (x :: y :: l)
282
  | contains_cons x l1 l2 : contains l1 l2 → contains l1 (x :: l2)
283 284
  | contains_trans l1 l2 l3 : contains l1 l2 → contains l2 l3 → contains l1 l3.
Infix "`contains`" := contains (at level 70) : C_scope.
285
Hint Extern 0 (_ `contains` _) => reflexivity.
286 287

Section contains_dec_help.
288
  Context `{EqDecision A}.
289 290 291 292 293 294 295
  Fixpoint list_remove (x : A) (l : list A) : option (list A) :=
    match l with
    | [] => None
    | y :: l => if decide (x = y) then Some l else (y ::) <$> list_remove x l
    end.
  Fixpoint list_remove_list (k : list A) (l : list A) : option (list A) :=
    match k with
296
    | [] => Some l | x :: k => list_remove x l ≫= list_remove_list k
297 298
    end.
End contains_dec_help.
299

300 301 302 303 304
Inductive Forall3 {A B C} (P : A → B → C → Prop) :
     list A → list B → list C → Prop :=
  | Forall3_nil : Forall3 P [] [] []
  | Forall3_cons x y z l k k' :
     P x y z → Forall3 P l k k' → Forall3 P (x :: l) (y :: k) (z :: k').
305

306 307
(** Set operations on lists *)
Instance list_subseteq {A} : SubsetEq (list A) := λ l1 l2, ∀ x, x ∈ l1 → x ∈ l2.
308

309
Section list_set.
310 311
  Context `{dec : EqDecision A}.
  Global Instance elem_of_list_dec (x : A) : ∀ l, Decision (x ∈ l).
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
  Proof.
   refine (
    fix go l :=
    match l return Decision (x ∈ l) with
    | [] => right _
    | y :: l => cast_if_or (decide (x = y)) (go l)
    end); clear go dec; subst; try (by constructor); abstract by inversion 1.
  Defined.
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel (∈) x l then remove_dups l else x :: remove_dups l
    end.
  Fixpoint list_difference (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel (∈) x k
331
      then list_difference l k else x :: list_difference l k
332
    end.
333
  Definition list_union (l k : list A) : list A := list_difference l k ++ k.
334 335 336 337 338
  Fixpoint list_intersection (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel (∈) x k
339
      then x :: list_intersection l k else list_intersection l k
340 341 342 343 344 345 346 347 348
    end.
  Definition list_intersection_with (f : A → A → option A) :
    list A → list A → list A := fix go l k :=
    match l with
    | [] => []
    | x :: l => foldr (λ y,
        match f x y with None => id | Some z => (z ::) end) (go l k) k
    end.
End list_set.
349 350

(** * Basic tactics on lists *)
351
(** The tactic [discriminate_list] discharges a goal if it contains
352 353
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
354
Tactic Notation "discriminate_list" hyp(H) :=
355
  apply (f_equal length) in H;
356
  repeat (csimpl in H || rewrite app_length in H); exfalso; lia.
357 358
Tactic Notation "discriminate_list" :=
  match goal with H : @eq (list _) _ _ |- _ => discriminate_list H end.
359

360
(** The tactic [simplify_list_eq] simplifies hypotheses involving
361 362
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
363
Lemma app_inj_1 {A} (l1 k1 l2 k2 : list A) :
364 365
  length l1 = length k1 → l1 ++ l2 = k1 ++ k2 → l1 = k1 ∧ l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
366
Lemma app_inj_2 {A} (l1 k1 l2 k2 : list A) :
367 368
  length l2 = length k2 → l1 ++ l2 = k1 ++ k2 → l1 = k1 ∧ l2 = k2.
Proof.
369
  intros ? Hl. apply app_inj_1; auto.
370 371
  apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
Qed.
372
Ltac simplify_list_eq :=
373
  repeat match goal with
374
  | _ => progress simplify_eq/=
375
  | H : _ ++ _ = _ ++ _ |- _ => first
376
    [ apply app_inv_head in H | apply app_inv_tail in H
377 378
    | apply app_inj_1 in H; [destruct H|done]
    | apply app_inj_2 in H; [destruct H|done] ]
Robbert Krebbers's avatar
Robbert Krebbers committed
379
  | H : [?x] !! ?i = Some ?y |- _ =>
380
    destruct i; [change (Some x = Some y) in H | discriminate]
381
  end.
382

383 384
(** * General theorems *)
Section general_properties.
Robbert Krebbers's avatar
Robbert Krebbers committed
385
Context {A : Type}.
386 387
Implicit Types x y z : A.
Implicit Types l k : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
388

389
Global Instance: Inj2 (=) (=) (=) (@cons A).
390
Proof. by injection 1. Qed.
391
Global Instance: ∀ k, Inj (=) (=) (k ++).
392
Proof. intros ???. apply app_inv_head. Qed.
393
Global Instance: ∀ k, Inj (=) (=) (++ k).
394
Proof. intros ???. apply app_inv_tail. Qed.
395
Global Instance: Assoc (=) (@app A).
396 397 398 399 400
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.
401

402
Lemma app_nil l1 l2 : l1 ++ l2 = [] ↔ l1 = [] ∧ l2 = [].
403
Proof. split. apply app_eq_nil. by intros [-> ->]. Qed.
404 405
Lemma app_singleton l1 l2 x :
  l1 ++ l2 = [x] ↔ l1 = [] ∧ l2 = [x] ∨ l1 = [x] ∧ l2 = [].
406
Proof. split. apply app_eq_unit. by intros [[-> ->]|[-> ->]]. Qed.
407 408 409
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : (∀ i, l1 !! i = l2 !! i) → l1 = l2.
410
Proof.
411
  revert l2. induction l1 as [|x l1 IH]; intros [|y l2] H.
412 413 414
  - done.
  - discriminate (H 0).
  - discriminate (H 0).
415
  - f_equal; [by injection (H 0)|]. apply (IH _ $ λ i, H (S i)).
416
Qed.
417 418
Global Instance list_eq_dec {dec : EqDecision A} : EqDecision (list A) :=
  list_eq_dec dec.
419 420 421
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with [] => left _ | _ => right _ end. Defined.
Lemma list_singleton_reflect l :
422
  option_reflect (λ x, l = [x]) (length l ≠ 1) (maybe (λ x, [x]) l).
423 424 425 426
Proof. by destruct l as [|? []]; constructor. Defined.

Definition nil_length : length (@nil A) = 0 := eq_refl.
Definition cons_length x l : length (x :: l) = S (length l) := eq_refl.
427
Lemma nil_or_length_pos l : l = [] ∨ length l ≠ 0.
428
Proof. destruct l; simpl; auto with lia. Qed.
429
Lemma nil_length_inv l : length l = 0 → l = [].
430 431
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
432
Proof. by destruct i. Qed.
433
Lemma lookup_tail l i : tail l !! i = l !! S i.
434
Proof. by destruct l. Qed.
435
Lemma lookup_lt_Some l i x : l !! i = Some x → i < length l.
436
Proof. revert i. induction l; intros [|?] ?; naive_solver auto with arith. Qed.
437 438 439
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i) → i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l → is_Some (l !! i).
440
Proof. revert i. induction l; intros [|?] ?; naive_solver eauto with lia. Qed.
441 442 443 444 445 446 447 448
Lemma lookup_lt_is_Some l i : is_Some (l !! i) ↔ i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None ↔ length l ≤ i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None → length l ≤ i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l ≤ i → l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
449 450 451
Lemma list_eq_same_length l1 l2 n :
  length l2 = n → length l1 = n →
  (∀ i x y, i < n → l1 !! i = Some x → l2 !! i = Some y → x = y) → l1 = l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
452
Proof.
453
  intros <- Hlen Hl; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
454
  - destruct (lookup_lt_is_Some_2 l1 i) as [y Hy].
455 456
    { rewrite Hlen; eauto using lookup_lt_Some. }
    rewrite Hy; f_equal; apply (Hl i); eauto using lookup_lt_Some.
457
  - by rewrite lookup_ge_None, Hlen, <-lookup_ge_None.
Robbert Krebbers's avatar
Robbert Krebbers committed
458
Qed.
459
Lemma lookup_app_l l1 l2 i : i < length l1 → (l1 ++ l2) !! i = l1 !! i.
460
Proof. revert i. induction l1; intros [|?]; naive_solver auto with lia. Qed.
461 462
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x → (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
463
Lemma lookup_app_r l1 l2 i :
464
  length l1 ≤ i → (l1 ++ l2) !! i = l2 !! (i - length l1).
465 466 467 468 469 470
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
Lemma lookup_app_Some l1 l2 i x :
  (l1 ++ l2) !! i = Some x ↔
    l1 !! i = Some x ∨ length l1 ≤ i ∧ l2 !! (i - length l1) = Some x.
Proof.
  split.
471
  - revert i. induction l1 as [|y l1 IH]; intros [|i] ?;
472
      simplify_eq/=; auto with lia.
473
    destruct (IH i) as [?|[??]]; auto with lia.
474
  - intros [?|[??]]; auto using lookup_app_l_Some. by rewrite lookup_app_r.
475
Qed.
476 477 478
Lemma list_lookup_middle l1 l2 x n :
  n = length l1 → (l1 ++ x :: l2) !! n = Some x.
Proof. intros ->. by induction l1. Qed.
479

480
Lemma list_insert_alter l i x : <[i:=x]>l = alter (λ _, x) i l.
481
Proof. by revert i; induction l; intros []; intros; f_equal/=. Qed.
482
Lemma alter_length f l i : length (alter f i l) = length l.
483
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
484
Lemma insert_length l i x : length (<[i:=x]>l) = length l.
485
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
486
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
487
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
488
Lemma list_lookup_alter_ne f l i j : i ≠ j → alter f i l !! j = l !! j.
489
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
490
Lemma list_lookup_insert l i x : i < length l → <[i:=x]>l !! i = Some x.
491
Proof. revert i. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
492
Lemma list_lookup_insert_ne l i j x : i ≠ j → <[i:=x]>l !! j = l !! j.
493
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
494 495 496 497 498 499
Lemma list_lookup_insert_Some l i x j y :
  <[i:=x]>l !! j = Some y ↔
    i = j ∧ x = y ∧ j < length l ∨ i ≠ j ∧ l !! j = Some y.
Proof.
  destruct (decide (i = j)) as [->|];
    [split|rewrite list_lookup_insert_ne by done; tauto].
500
  - intros Hy. assert (j < length l).
501 502
    { rewrite <-(insert_length l j x); eauto using lookup_lt_Some. }
    rewrite list_lookup_insert in Hy by done; naive_solver.
503
  - intros [(?&?&?)|[??]]; rewrite ?list_lookup_insert; naive_solver.
504 505 506
Qed.
Lemma list_insert_commute l i j x y :
  i ≠ j → <[i:=x]>(<[j:=y]>l) = <[j:=y]>(<[i:=x]>l).
507
Proof. revert i j. by induction l; intros [|?] [|?] ?; f_equal/=; auto. Qed.
508 509
Lemma list_lookup_other l i x :
  length l ≠ 1 → l !! i = Some x → ∃ j y, j ≠ i ∧ l !! j = Some y.
Robbert Krebbers's avatar
Robbert Krebbers committed
510
Proof.
511
  intros. destruct i, l as [|x0 [|x1 l]]; simplify_eq/=.
512 513
  - by exists 1, x1.
  - by exists 0, x0.
Robbert Krebbers's avatar
Robbert Krebbers committed
514
Qed.
515 516
Lemma alter_app_l f l1 l2 i :
  i < length l1 → alter f i (l1 ++ l2) = alter f i l1 ++ l2.
517
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
518
Lemma alter_app_r f l1 l2 i :
519
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
520
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
521 522
Lemma alter_app_r_alt f l1 l2 i :
  length l1 ≤ i → alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
523 524 525 526
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
527
Lemma list_alter_id f l i : (∀ x, f x = x) → alter f i l = l.
528
Proof. intros ?. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
529 530
Lemma list_alter_ext f g l k i :
  (∀ x, l !! i = Some x → f x = g x) → l = k → alter f i l = alter g i k.
531
Proof. intros H ->. revert i H. induction k; intros [|?] ?; f_equal/=; auto. Qed.
532 533
Lemma list_alter_compose f g l i :
  alter (f ∘ g) i l = alter f i (alter g i l).
534
Proof. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
535 536
Lemma list_alter_commute f g l i j :
  i ≠ j → alter f i (alter g j l) = alter g j (alter f i l).
537
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal/=; auto with lia. Qed.
538 539
Lemma insert_app_l l1 l2 i x :
  i < length l1 → <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
540
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
541
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
542
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
543 544
Lemma insert_app_r_alt l1 l2 i x :
  length l1 ≤ i → <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
545 546 547 548
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply insert_app_r.
Qed.
549
Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
550
Proof. induction l1; f_equal/=; auto. Qed.
551

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
Lemma inserts_length l i k : length (list_inserts i k l) = length l.
Proof.
  revert i. induction k; intros ?; csimpl; rewrite ?insert_length; auto.
Qed.
Lemma list_lookup_inserts l i k j :
  i ≤ j < i + length k → j < length l →
  list_inserts i k l !! j = k !! (j - i).
Proof.
  revert i j. induction k as [|y k IH]; csimpl; intros i j ??; [lia|].
  destruct (decide (i = j)) as [->|].
  { by rewrite list_lookup_insert, Nat.sub_diag
      by (rewrite inserts_length; lia). }
  rewrite list_lookup_insert_ne, IH by lia.
  by replace (j - i) with (S (j - S i)) by lia.
Qed.
Lemma list_lookup_inserts_lt l i k j :
  j < i → list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; intros i j ?; csimpl;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_ge l i k j :
  i + length k ≤ j → list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; csimpl; intros i j ?;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_Some l i k j y :
  list_inserts i k l !! j = Some y ↔
    (j < i ∨ i + length k ≤ j) ∧ l !! j = Some y ∨
    i ≤ j < i + length k ∧ j < length l ∧ k !! (j - i) = Some y.
Proof.
  destruct (decide (j < i)).
  { rewrite list_lookup_inserts_lt by done; intuition lia. }
  destruct (decide (i + length k ≤ j)).
  { rewrite list_lookup_inserts_ge by done; intuition lia. }
  split.
589
  - intros Hy. assert (j < length l).
590 591
    { rewrite <-(inserts_length l i k); eauto using lookup_lt_Some. }
    rewrite list_lookup_inserts in Hy by lia. intuition lia.
592
  - intuition. by rewrite list_lookup_inserts by lia.
593 594 595 596 597 598 599 600
Qed.
Lemma list_insert_inserts_lt l i j x k :
  i < j → <[i:=x]>(list_inserts j k l) = list_inserts j k (<[i:=x]>l).
Proof.
  revert i j. induction k; intros i j ?; simpl;
    rewrite 1?list_insert_commute by lia; auto with f_equal.
Qed.

601
(** ** Properties of the [elem_of] predicate *)
602
Lemma not_elem_of_nil x : x ∉ [].
603
Proof. by inversion 1. Qed.
604
Lemma elem_of_nil x : x ∈ [] ↔ False.
605
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
606
Lemma elem_of_nil_inv l : (∀ x, x ∉ l) → l = [].
607
Proof. destruct l. done. by edestruct 1; constructor. Qed.
608 609
Lemma elem_of_not_nil x l : x ∈ l → l ≠ [].
Proof. intros ? ->. by apply (elem_of_nil x). Qed.
610
Lemma elem_of_cons l x y : x ∈ y :: l ↔ x = y ∨ x ∈ l.
Robbert Krebbers's avatar
Robbert Krebbers committed
611
Proof. by split; [inversion 1; subst|intros [->|?]]; constructor. Qed.
612
Lemma not_elem_of_cons l x y : x ∉ y :: l ↔ x ≠ y ∧ x ∉ l.
Robbert Krebbers's avatar
Robbert Krebbers committed
613
Proof. rewrite elem_of_cons. tauto. Qed.
614
Lemma elem_of_app l1 l2 x : x ∈ l1 ++ l2 ↔ x ∈ l1 ∨ x ∈ l2.
615
Proof.
616
  induction l1.
617 618
  - split; [by right|]. intros [Hx|]; [|done]. by destruct (elem_of_nil x).
  - simpl. rewrite !elem_of_cons, IHl1. tauto.
619
Qed.
620
Lemma not_elem_of_app l1 l2 x : x ∉ l1 ++ l2 ↔ x ∉ l1 ∧ x ∉ l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
621
Proof. rewrite elem_of_app. tauto. Qed.
622
Lemma elem_of_list_singleton x y : x ∈ [y] ↔ x = y.
623
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
624
Global Instance elem_of_list_permutation_proper x : Proper ((≡ₚ) ==> iff) (x ∈).
625
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
626
Lemma elem_of_list_split l x : x ∈ l → ∃ l1 l2, l = l1 ++ x :: l2.
627
Proof.
628
  induction 1 as [x l|x y l ? [l1 [l2 ->]]]; [by eexists [], l|].
629
  by exists (y :: l1), l2.
630
Qed.
631
Lemma elem_of_list_lookup_1 l x : x ∈ l → ∃ i, l !! i = Some x.
632
Proof.
633 634
  induction 1 as [|???? IH]; [by exists 0 |].
  destruct IH as [i ?]; auto. by exists (S i).
635
Qed.
636
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x → x ∈ l.
637
Proof.
638
  revert i. induction l; intros [|i] ?; simplify_eq/=; constructor; eauto.
639
Qed.
640 641
Lemma elem_of_list_lookup l x : x ∈ l ↔ ∃ i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.
642 643 644 645
Lemma elem_of_list_omap {B} (f : A → option B) l (y : B) :
  y ∈ omap f l ↔ ∃ x, x ∈ l ∧ f x = Some y.
Proof.
  split.
646
  - induction l as [|x l]; csimpl; repeat case_match; inversion 1; subst;
647
      setoid_rewrite elem_of_cons; naive_solver.
648
  - intros (x&Hx&?). by induction Hx; csimpl; repeat case_match;
649
      simplify_eq; try constructor; auto.
650
Qed.
651

652
(** ** Properties of the [NoDup] predicate *)
653 654
Lemma NoDup_nil : NoDup (@nil A) ↔ True.
Proof. split; constructor. Qed.
655
Lemma NoDup_cons x l : NoDup (x :: l) ↔ x ∉ l ∧ NoDup l.
656
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
657
Lemma NoDup_cons_11 x l : NoDup (x :: l) → x ∉ l.
658
Proof. rewrite NoDup_cons. by intros [??]. Qed.
659
Lemma NoDup_cons_12 x l : NoDup (x :: l) → NoDup l.
660
Proof. rewrite NoDup_cons. by intros [??]. Qed.
661
Lemma NoDup_singleton x : NoDup [x].
662
Proof. constructor. apply not_elem_of_nil. constructor. Qed.
663
Lemma NoDup_app l k : NoDup (l ++ k) ↔ NoDup l ∧ (∀ x, x ∈ l → x ∉ k) ∧ NoDup k.
Robbert Krebbers's avatar
Robbert Krebbers committed
664
Proof.
665
  induction l; simpl.
666 667
  - rewrite NoDup_nil. setoid_rewrite elem_of_nil. naive_solver.
  - rewrite !NoDup_cons.
Robbert Krebbers's avatar
Robbert Krebbers committed
668
    setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app. naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
669
Qed.
670
Global Instance NoDup_proper: Proper ((≡ₚ) ==> iff) (@NoDup A).
671 672
Proof.
  induction 1 as [|x l k Hlk IH | |].
673 674 675 676
  - by rewrite !NoDup_nil.
  - by rewrite !NoDup_cons, IH, Hlk.
  - rewrite !NoDup_cons, !elem_of_cons. intuition.
  - intuition.
677
Qed.
678 679
Lemma NoDup_lookup l i j x :
  NoDup l → l !! i = Some x → l !! j = Some x → i = j.
680 681
Proof.
  intros Hl. revert i j. induction Hl as [|x' l Hx Hl IH].
682 683
  { intros; simplify_eq. }
  intros [|i] [|j] ??; simplify_eq/=; eauto with f_equal;
684 685
    exfalso; eauto using elem_of_list_lookup_2.
Qed.
686 687
Lemma NoDup_alt l :
  NoDup l ↔ ∀ i j x, l !! i = Some x → l !! j = Some x → i = j.
688
Proof.
689 690
  split; eauto using NoDup_lookup.
  induction l as [|x l IH]; intros Hl; constructor.
691
  - rewrite elem_of_list_lookup. intros [i ?].
692
    by feed pose proof (Hl (S i) 0 x); auto.
693
  - apply IH. intros i j x' ??. by apply (inj S), (Hl (S i) (S j) x').
694
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
695

696
Section no_dup_dec.
697
  Context `{!EqDecision A}.
698 699 700 701
  Global Instance NoDup_dec: ∀ l, Decision (NoDup l) :=
    fix NoDup_dec l :=
    match l return Decision (NoDup l) with
    | [] => left NoDup_nil_2
702
    | x :: l =>
703 704 705 706 707 708 709 710
      match decide_rel (∈) x l with
      | left Hin => right (λ H, NoDup_cons_11 _ _ H Hin)
      | right Hin =>
        match NoDup_dec l with
        | left H => left (NoDup_cons_2 _ _ Hin H)
        | right H => right (H ∘ NoDup_cons_12 _ _)
        end
      end
711
    end.
712
  Lemma elem_of_remove_dups l x : x ∈ remove_dups l ↔ x ∈ l.
713 714
  Proof.
    split; induction l; simpl; repeat case_decide;
715
      rewrite ?elem_of_cons; intuition (simplify_eq; auto).
716
  Qed.
717
  Lemma NoDup_remove_dups l : NoDup (remove_dups l).
718 719 720 721
  Proof.
    induction l; simpl; repeat case_decide; try constructor; auto.
    by rewrite elem_of_remove_dups.
  Qed.
722
End no_dup_dec.
723

724 725
(** ** Set operations on lists *)
Section list_set.
726
  Context `{!EqDecision A}.
727 728 729 730 731 732 733 734
  Lemma elem_of_list_difference l k x : x ∈ list_difference l k ↔ x ∈ l ∧ x ∉ k.
  Proof.
    split; induction l; simpl; try case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_difference l k : NoDup l → NoDup (list_difference l k).
  Proof.
    induction 1; simpl; try case_decide.
735 736 737
    - constructor.
    - done.
    - constructor. rewrite elem_of_list_difference; intuition. done.
738 739 740 741 742 743 744 745 746
  Qed.
  Lemma elem_of_list_union l k x : x ∈ list_union l k ↔ x ∈ l ∨ x ∈ k.
  Proof.
    unfold list_union. rewrite elem_of_app, elem_of_list_difference.
    intuition. case (decide (x ∈ k)); intuition.
  Qed.
  Lemma NoDup_list_union l k : NoDup l → NoDup k → NoDup (list_union l k).
  Proof.
    intros. apply NoDup_app. repeat split.
747 748 749
    - by apply NoDup_list_difference.
    - intro. rewrite elem_of_list_difference. intuition.
    - done.
750 751 752 753 754 755 756 757 758 759
  Qed.
  Lemma elem_of_list_intersection l k x :
    x ∈ list_intersection l k ↔ x ∈ l ∧ x ∈ k.
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_intersection l k : NoDup l → NoDup (list_intersection l k).
  Proof.
    induction 1; simpl; try case_decide.
760 761 762
    - constructor.
    - constructor. rewrite elem_of_list_intersection; intuition. done.
    - done.
763 764 765 766 767 768
  Qed.
  Lemma elem_of_list_intersection_with f l k x :
    x ∈ list_intersection_with f l k ↔ ∃ x1 x2,
      x1 ∈ l ∧ x2 ∈ k ∧ f x1 x2 = Some x.
  Proof.
    split.
769
    - induction l as [|x1 l IH]; simpl; [by rewrite elem_of_nil|].
770 771 772 773 774 775
      intros Hx. setoid_rewrite elem_of_cons.
      cut ((∃ x2, x2 ∈ k ∧ f x1 x2 = Some x)
        ∨ x ∈ list_intersection_with f l k); [naive_solver|].
      clear IH. revert Hx. generalize (list_intersection_with f l k).
      induction k; simpl; [by auto|].
      case_match; setoid_rewrite elem_of_cons; naive_solver.
776
    - intros (x1&x2&Hx1&Hx2&Hx). induction Hx1 as [x1|x1 ? l ? IH]; simpl.
777 778 779 780 781 782 783 784 785 786
      + generalize (list_intersection_with f l k).
        induction Hx2; simpl; [by rewrite Hx; left |].
        case_match; simpl; try setoid_rewrite elem_of_cons; auto.
      + generalize (IH Hx). clear Hx IH Hx2.
        generalize (list_intersection_with f l k).
        induction k; simpl; intros; [done|].
        case_match; simpl; rewrite ?elem_of_cons; auto.
  Qed.
End list_set.

787
(** ** Properties of the [filter] function *)
788 789 790 791 792 793 794
Section filter.
  Context (P : A → Prop) `{∀ x, Decision (P x)}.
  Lemma elem_of_list_filter l x : x ∈ filter P l ↔ P x ∧ x ∈ l.
  Proof.
    unfold filter. induction l; simpl; repeat case_decide;
       rewrite ?elem_of_nil, ?elem_of_cons; naive_solver.
  Qed.
795
  Lemma NoDup_filter l : NoDup l → NoDup (filter P l).
796 797 798 799 800
  Proof.
    unfold filter. induction 1; simpl; repeat case_decide;
      rewrite ?NoDup_nil, ?NoDup_cons, ?elem_of_list_filter; tauto.
  Qed.
End filter.
Robbert Krebbers's avatar
Robbert Krebbers committed
801

802 803 804
(** ** Properties of the [find] function *)
Section find.
  Context (P : A → Prop) `{∀ x, Decision (P x)}.
805 806
  Lemma list_find_Some l i x :
    list_find P l = Some (i,x) → l !! i = Some x ∧ P x.
807
  Proof.
808 809 810
    revert i; induction l; intros [] ?; repeat first
      [ match goal with x : prod _ _ |- _ => destruct x end
      | simplify_option_eq ]; eauto.
811
  Qed.
812
  Lemma list_find_elem_of l x : x ∈ l → P x → is_Some (list_find P l).
813
  Proof.
814
    induction 1 as [|x y l ? IH]; intros; simplify_option_eq; eauto.
815
    by destruct IH as [[i x'] ->]; [|exists (S i, x')].
816 817 818
  Qed.
End find.

819
(** ** Properties of the [reverse] function *)
820 821
Lemma reverse_nil : reverse [] = @nil A.
Proof. done. Qed.
822
Lemma reverse_singleton x : reverse [x] = [x].
823
Proof. done. Qed.
824
Lemma reverse_cons l x : reverse (x :: l) = reverse l ++ [x].
825
Proof. unfold reverse. by rewrite <-!rev_alt. Qed.
826
Lemma reverse_snoc l x : reverse (l ++ [x]) = x :: reverse l.
827
Proof. unfold reverse. by rewrite <-!rev_alt, rev_unit. Qed.
828
Lemma reverse_app l1 l2 : reverse (l1 ++ l2) = reverse l2 ++ reverse l1.
829
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_app_distr. Qed.
830
Lemma reverse_length l : length (reverse l) = length l.
831
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_length. Qed.
832
Lemma reverse_involutive l : reverse (reverse l) = l.
833
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_involutive. Qed.
834 835 836 837 838 839 840 841 842 843
Lemma elem_of_reverse_2 x l : x ∈ l → x ∈ reverse l.
Proof.
  induction 1; rewrite reverse_cons, elem_of_app,
    ?elem_of_list_singleton; intuition.
Qed.
Lemma elem_of_reverse x l : x ∈ reverse l ↔ x ∈ l.
Proof.
  split; auto using elem_of_reverse_2.
  intros. rewrite <-(reverse_involutive l). by apply elem_of_reverse_2.
Qed.
844
Global Instance: Inj (=) (=) (@reverse A).
845 846 847 848
Proof.
  intros l1 l2 Hl.
  by rewrite <-(reverse_involutive l1), <-(reverse_involutive l2), Hl.
Qed.
849 850 851 852 853 854 855 856
Lemma sum_list_with_app (f : A → nat) l k :
  sum_list_with f (l ++ k) = sum_list_with f l + sum_list_with f k.
Proof. induction l; simpl; lia. Qed.
Lemma sum_list_with_reverse (f : A → nat) l :
  sum_list_with f (reverse l) = sum_list_with f l.
Proof.
  induction l; simpl; rewrite ?reverse_cons, ?sum_list_with_app; simpl; lia.
Qed.
857

858 859 860
(** ** Properties of the [last] function *)
Lemma last_snoc x l : last (l ++ [x]) = Some x.
Proof. induction l as [|? []]; simpl; auto. Qed.
861 862 863 864
Lemma last_reverse l : last (reverse l) = head l.
Proof. by destruct l as [|x l]; rewrite ?reverse_cons, ?last_snoc. Qed.
Lemma head_reverse l : head (reverse l) = last l.
Proof. by rewrite <-last_reverse, reverse_involutive. Qed.
865

866 867 868 869 870
(** ** Properties of the [take] function *)
Definition take_drop i l : take i l ++ drop i l = l := firstn_skipn i l.
Lemma take_drop_middle l i x :
  l !! i = Some x → take i l ++ x :: drop (S i) l = l.
Proof.
871
  revert i x. induction l; intros [|?] ??; simplify_eq/=; f_equal; auto.
872
Qed.
873
Lemma take_nil n : take n (@nil A) = [].
Robbert Krebbers's avatar
Robbert Krebbers committed
874
Proof. by destruct n. Qed.
875
Lemma take_app l k : take (length l) (l ++ k) = l.
876
Proof. induction l; f_equal/=; auto. Qed.
877
Lemma take_app_alt l k n : n = length l → take n (l ++ k) = l.
878 879
Proof. intros ->. by apply take_app. Qed.
Lemma take_app3_alt l1 l2 l3 n : n = length l1 → take n ((l1 ++ l2) ++ l3) = l1.
880
Proof. intros ->. by rewrite <-(assoc_L (++)), take_app. Qed.
881
Lemma take_app_le l k n : n ≤ length l → take n (l ++ k) = take n l.
882
Proof. revert n. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
883 884
Lemma take_plus_app l k n m :
  length l = n → take (n + m) (l ++ k) = l ++ take m k.
885
Proof. intros <-. induction l; f_equal/=; auto. Qed.
886 887
Lemma take_app_ge l k n :
  length l ≤ n → take n (l ++ k) = l ++ take (n - length l) k.
888
Proof. revert n. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
889
Lemma take_ge l n : length l ≤ n → take n l = l.
890
Proof. revert n. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
891
Lemma take_take l n m : take n (take m l) = take (min n m) l.
892
Proof. revert n m. induction l; intros [|?] [|?]; f_equal/=; auto. Qed.
893
Lemma take_idemp l n : take n (take n l) = take n l.
Robbert Krebbers's avatar
Robbert Krebbers committed
894
Proof. by rewrite take_take, Min.min_idempotent. Qed.
895
Lemma take_length l n : length (take n l) = min n (length l).
896
Proof. revert n. induction l; intros [|?]; f_equal/=; done. Qed.
897
Lemma take_length_le l n : n ≤ length l → length (take n l) = n.
Robbert Krebbers's avatar
Robbert Krebbers committed
898
Proof. rewrite take_length. apply Min.min_l. Qed.
899 900
Lemma take_length_ge l n : length l ≤ n → length (take n l) = length l.
Proof. rewrite take_length. apply Min.min_r. Qed.
901
Lemma take_drop_commute l n m : take n (drop m l) = drop m (take (m + n) l).
Robbert Krebbers's avatar
Robbert Krebbers committed
902
Proof.
903
  revert n m. induction l; intros [|?][|?]; simpl; auto using take_nil with lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
904
Qed.
905 906
Lemma lookup_take l n i : i < n → take n l !! i = l !! i.
Proof. revert n i. induction l; intros [|n] [|i] ?; simpl; auto with lia. Qed.
907
Lemma lookup_take_ge l n i : n ≤ i → take n l !! i = None.
Robbert Krebbers's avatar
Robbert Krebbers committed
908
Proof. revert n i. induction l; intros [|?] [|?] ?; simpl; auto with lia. Qed.
909
Lemma take_alter f l n i : n ≤ i → take n (alter f i l) = take n l.
Robbert Krebbers's avatar
Robbert Krebbers committed
910 911
Proof.
  intros. apply list_eq. intros j. destruct (le_lt_dec n j).
912 913
  - by rewrite !lookup_take_ge.
  - by rewrite !lookup_take, !list_lookup_alter_ne by lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
914
Qed.
915
Lemma take_insert l n i x : n ≤ i → take n (<[i:=x]>l) = take n l.
916 917
Proof.
  intros. apply list_eq. intros j. destruct (le_lt_dec n j).
918 919
  - by rewrite !lookup_take_ge.
  - by rewrite !lookup_take, !list_lookup_insert_ne by lia.
920
Qed.
Robbert Krebbers's avatar