mapset.v 5.8 KB
Newer Older
1
(* Copyright (c) 2012-2017, Coq-std++ developers. *)
2
3
4
5
(* This file is distributed under the terms of the BSD license. *)
(** This files gives an implementation of finite sets using finite maps with
elements of the unit type. Since maps enjoy extensional equality, the
constructed finite sets do so as well. *)
6
From stdpp Require Export fin_map_dom.
7
(* FIXME: This file needs a 'Proof Using' hint. *)
8

Robbert Krebbers's avatar
Robbert Krebbers committed
9
10
Record mapset (M : Type  Type) : Type :=
  Mapset { mapset_car: M (unit : Type) }.
11
12
13
14
15
16
Arguments Mapset {_} _.
Arguments mapset_car {_} _.

Section mapset.
Context `{FinMap K M}.

Robbert Krebbers's avatar
Robbert Krebbers committed
17
Instance mapset_elem_of: ElemOf K (mapset M) := λ x X,
18
  mapset_car X !! x = Some ().
Robbert Krebbers's avatar
Robbert Krebbers committed
19
20
Instance mapset_empty: Empty (mapset M) := Mapset .
Instance mapset_singleton: Singleton K (mapset M) := λ x,
21
  Mapset {[ x := () ]}.
Robbert Krebbers's avatar
Robbert Krebbers committed
22
Instance mapset_union: Union (mapset M) := λ X1 X2,
23
  let (m1) := X1 in let (m2) := X2 in Mapset (m1  m2).
Robbert Krebbers's avatar
Robbert Krebbers committed
24
Instance mapset_intersection: Intersection (mapset M) := λ X1 X2,
25
  let (m1) := X1 in let (m2) := X2 in Mapset (m1  m2).
Robbert Krebbers's avatar
Robbert Krebbers committed
26
Instance mapset_difference: Difference (mapset M) := λ X1 X2,
27
  let (m1) := X1 in let (m2) := X2 in Mapset (m1  m2).
Robbert Krebbers's avatar
Robbert Krebbers committed
28
Instance mapset_elems: Elements K (mapset M) := λ X,
29
  let (m) := X in (map_to_list m).*1.
30

Robbert Krebbers's avatar
Robbert Krebbers committed
31
Lemma mapset_eq (X1 X2 : mapset M) : X1 = X2   x, x  X1  x  X2.
32
Proof.
33
  split; [by intros ->|].
34
35
  destruct X1 as [m1], X2 as [m2]. simpl. intros E.
  f_equal. apply map_eq. intros i. apply option_eq. intros []. by apply E.
36
37
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
38
Instance: Collection K (mapset M).
39
40
Proof.
  split; [split | | ].
41
  - unfold empty, elem_of, mapset_empty, mapset_elem_of.
42
    simpl. intros. by simpl_map.
43
  - unfold singleton, elem_of, mapset_singleton, mapset_elem_of.
44
    simpl. by split; intros; simplify_map_eq.
45
  - unfold union, elem_of, mapset_union, mapset_elem_of.
46
47
    intros [m1] [m2] ?. simpl. rewrite lookup_union_Some_raw.
    destruct (m1 !! x) as [[]|]; tauto.
48
  - unfold intersection, elem_of, mapset_intersection, mapset_elem_of.
49
    intros [m1] [m2] ?. simpl. rewrite lookup_intersection_Some.
50
51
52
    assert (is_Some (m2 !! x)  m2 !! x = Some ()).
    { split; eauto. by intros [[] ?]. }
    naive_solver.
53
  - unfold difference, elem_of, mapset_difference, mapset_elem_of.
54
55
56
    intros [m1] [m2] ?. simpl. rewrite lookup_difference_Some.
    destruct (m2 !! x) as [[]|]; intuition congruence.
Qed.
57
58
Global Instance: LeibnizEquiv (mapset M).
Proof. intros ??. apply mapset_eq. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
59
Global Instance: FinCollection K (mapset M).
60
61
Proof.
  split.
62
63
  - apply _.
  - unfold elements, elem_of at 2, mapset_elems, mapset_elem_of.
64
65
    intros [m] x. simpl. rewrite elem_of_list_fmap. split.
    + intros ([y []] &?& Hy). subst. by rewrite <-elem_of_map_to_list.
66
    + intros. exists (x, ()). by rewrite elem_of_map_to_list.
67
  - unfold elements, mapset_elems. intros [m]. simpl.
68
    apply NoDup_fst_map_to_list.
69
70
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
71
Section deciders.
72
73
  Context `{EqDecision (M unit)}.
  Global Instance mapset_eq_dec : EqDecision (mapset M) | 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
74
  Proof.
75
76
   refine (λ X1 X2,
    match X1, X2 with Mapset m1, Mapset m2 => cast_if (decide (m1 = m2)) end);
Robbert Krebbers's avatar
Robbert Krebbers committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    abstract congruence.
  Defined.
  Global Instance mapset_equiv_dec (X1 X2 : mapset M) : Decision (X1  X2) | 1.
  Proof. refine (cast_if (decide (X1 = X2))); abstract (by fold_leibniz). Defined.
  Global Instance mapset_elem_of_dec x (X : mapset M) : Decision (x  X) | 1.
  Proof. solve_decision. Defined.
  Global Instance mapset_disjoint_dec (X1 X2 : mapset M) : Decision (X1  X2).
  Proof.
   refine (cast_if (decide (X1  X2 = )));
    abstract (by rewrite disjoint_intersection_L).
  Defined.
  Global Instance mapset_subseteq_dec (X1 X2 : mapset M) : Decision (X1  X2).
  Proof.
   refine (cast_if (decide (X1  X2 = X2)));
    abstract (by rewrite subseteq_union_L).
  Defined.
End deciders.

95
Definition mapset_map_with {A B} (f : bool  A  option B)
Robbert Krebbers's avatar
Robbert Krebbers committed
96
    (X : mapset M) : M A  M B :=
97
  let (mX) := X in merge (λ x y,
98
    match x, y with
99
100
    | Some _, Some a => f true a | None, Some a => f false a | _, None => None
    end) mX.
Robbert Krebbers's avatar
Robbert Krebbers committed
101
Definition mapset_dom_with {A} (f : A  bool) (m : M A) : mapset M :=
102
103
  Mapset $ merge (λ x _,
    match x with
104
    | Some a => if f a then Some () else None | None => None
105
106
    end) m (@empty (M A) _).

107
108
Lemma lookup_mapset_map_with {A B} (f : bool  A  option B) X m i :
  mapset_map_with f X m !! i = m !! i = f (bool_decide (i  X)).
109
110
111
112
113
Proof.
  destruct X as [mX]. unfold mapset_map_with, elem_of, mapset_elem_of.
  rewrite lookup_merge by done. simpl.
  by case_bool_decide; destruct (mX !! i) as [[]|], (m !! i).
Qed.
114
Lemma elem_of_mapset_dom_with {A} (f : A  bool) m i :
115
116
117
  i  mapset_dom_with f m   x, m !! i = Some x  f x.
Proof.
  unfold mapset_dom_with, elem_of, mapset_elem_of.
118
  simpl. rewrite lookup_merge by done. destruct (m !! i) as [a|].
119
120
  - destruct (Is_true_reflect (f a)); naive_solver.
  - naive_solver.
121
Qed.
122
Instance mapset_dom {A} : Dom (M A) (mapset M) := mapset_dom_with (λ _, true).
Robbert Krebbers's avatar
Robbert Krebbers committed
123
Instance mapset_dom_spec: FinMapDom K M (mapset M).
124
Proof.
125
126
  split; try apply _. intros. unfold dom, mapset_dom, is_Some.
  rewrite elem_of_mapset_dom_with; naive_solver.
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
Qed.
End mapset.

(** These instances are declared using [Hint Extern] to avoid too
eager type class search. *)
Hint Extern 1 (ElemOf _ (mapset _)) =>
  eapply @mapset_elem_of : typeclass_instances.
Hint Extern 1 (Empty (mapset _)) =>
  eapply @mapset_empty : typeclass_instances.
Hint Extern 1 (Singleton _ (mapset _)) =>
  eapply @mapset_singleton : typeclass_instances.
Hint Extern 1 (Union (mapset _)) =>
  eapply @mapset_union : typeclass_instances.
Hint Extern 1 (Intersection (mapset _)) =>
  eapply @mapset_intersection : typeclass_instances.
Hint Extern 1 (Difference (mapset _)) =>
  eapply @mapset_difference : typeclass_instances.
Hint Extern 1 (Elements _ (mapset _)) =>
  eapply @mapset_elems : typeclass_instances.
146
Arguments mapset_eq_dec _ _ _ _ : simpl never.