fin_maps.v 75.9 KB
Newer Older
1
(* Copyright (c) 2012-2017, Coq-std++ developers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5
induction principles for finite maps and implements the tactic
6
[simplify_map_eq] to simplify goals involving finite maps. *)
7
From Coq Require Import Permutation.
8
From stdpp Require Export relations orders vector fin_collections.
9
10
(* FIXME: This file needs a 'Proof Using' hint, but the default we use
   everywhere makes for lots of extra ssumptions. *)
11

12
13
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
14
15
16
17
18
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
19

Robbert Krebbers's avatar
Robbert Krebbers committed
20
21
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
22
prove well founded recursion on finite maps. *)
23

24
25
26
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
27

28
Class FinMapToList K A M := map_to_list: M  list (K * A).
Robbert Krebbers's avatar
Robbert Krebbers committed
29

30
31
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
32
    EqDecision K} := {
33
34
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
35
36
37
38
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
39
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
40
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
41
42
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
43
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
44
  lookup_merge {A B C} (f: option A  option B  option C) `{!DiagNone f} m1 m2 i :
45
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
46
47
}.

48
49
50
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
51
52
significant performance loss to make including them in the finite map interface
worthwhile. *)
53
54
55
56
57
58
59
60
61
62
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
  partial_alter (λ _, None).
Instance map_singleton `{PartialAlter K A M, Empty M} :
  SingletonM K A M := λ i x, <[i:=x]> .

Definition map_of_list `{Insert K A M, Empty M} : list (K * A)  M :=
63
  fold_right (λ p, <[p.1:=p.2]>) .
64
65
66
67
68
69
70

Definition map_to_collection `{FinMapToList K A M,
    Singleton B C, Empty C, Union C} (f : K  A  B) (m : M) : C :=
  of_list (curry f <$> map_to_list m).
Definition map_of_collection `{Elements B C, Insert K A M, Empty M}
    (f : B  K * A) (X : C) : M :=
  map_of_list (f <$> elements X).
Robbert Krebbers's avatar
Robbert Krebbers committed
71

72
73
74
75
76
77
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
78

79
Instance map_equiv `{ A, Lookup K A (M A), Equiv A} : Equiv (M A) | 18 :=
80
  λ m1 m2,  i, m1 !! i  m2 !! i.
Robbert Krebbers's avatar
Robbert Krebbers committed
81

82
83
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
84
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
85
  λ m,  i x, m !! i = Some x  P i x.
86
Definition map_relation `{ A, Lookup K A (M A)} {A B} (R : A  B  Prop)
Robbert Krebbers's avatar
Robbert Krebbers committed
87
88
    (P : A  Prop) (Q : B  Prop) (m1 : M A) (m2 : M B) : Prop :=  i,
  option_relation R P Q (m1 !! i) (m2 !! i).
89
Definition map_included `{ A, Lookup K A (M A)} {A}
Robbert Krebbers's avatar
Robbert Krebbers committed
90
  (R : relation A) : relation (M A) := map_relation R (λ _, False) (λ _, True).
91
Definition map_disjoint `{ A, Lookup K A (M A)} {A} : relation (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
92
93
94
95
96
  map_relation (λ _ _, False) (λ _, True) (λ _, True).
Infix "⊥ₘ" := map_disjoint (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Notation "( m ⊥ₘ.)" := (map_disjoint m) (only parsing) : C_scope.
Notation "(.⊥ₘ m )" := (λ m2, m2  m) (only parsing) : C_scope.
97
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
98
  map_included (=).
Robbert Krebbers's avatar
Robbert Krebbers committed
99
100
101
102
103

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
104
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
105
106
107
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

108
109
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
110
Instance map_difference `{Merge M} {A} : Difference (M A) :=
111
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
112

113
114
(** A stronger variant of map that allows the mapped function to use the index
of the elements. Implemented by conversion to lists, so not very efficient. *)
115
116
Definition map_imap `{ A, Insert K A (M A),  A, Empty (M A),
     A, FinMapToList K A (M A)} {A B} (f : K  A  option B) (m : M A) : M B :=
117
118
  map_of_list (omap (λ ix, (fst ix,) <$> curry f ix) (map_to_list m)).

119
120
121
122
123
(* Folds a function [f] over a map. The order in which the function is called
is unspecified. *)
Definition map_fold `{FinMapToList K A M} {B}
  (f : K  A  B  B) (b : B) : M  B := foldr (curry f) b  map_to_list.

124
125
126
127
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

Robbert Krebbers's avatar
Robbert Krebbers committed
128
129
(** ** Setoids *)
Section setoid.
130
  Context `{Equiv A}.
131

132
133
134
135
  Lemma map_equiv_lookup_l (m1 m2 : M A) i x :
    m1  m2  m1 !! i = Some x   y, m2 !! i = Some y  x  y.
  Proof. generalize (equiv_Some_inv_l (m1 !! i) (m2 !! i) x); naive_solver. Qed.

136
137
  Global Instance map_equivalence :
    Equivalence (() : relation A)  Equivalence (() : relation (M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
138
139
  Proof.
    split.
140
141
    - by intros m i.
    - by intros m1 m2 ? i.
142
    - by intros m1 m2 m3 ?? i; trans (m2 !! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
143
  Qed.
144
145
  Global Instance lookup_proper (i : K) :
    Proper (() ==> ()) (lookup (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
146
147
  Proof. by intros m1 m2 Hm. Qed.
  Global Instance partial_alter_proper :
148
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (partial_alter (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
149
150
151
152
153
154
  Proof.
    by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|];
      rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done;
      try apply Hf; apply lookup_proper.
  Qed.
  Global Instance insert_proper (i : K) :
155
    Proper (() ==> () ==> ()) (insert (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
156
  Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed.
157
158
  Global Instance singleton_proper k :
    Proper (() ==> ()) (singletonM k : A  M A).
159
160
161
162
  Proof.
    intros ???; apply insert_proper; [done|].
    intros ?. rewrite lookup_empty; constructor.
  Qed.
163
164
  Global Instance delete_proper (i : K) :
    Proper (() ==> ()) (delete (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
165
166
  Proof. by apply partial_alter_proper; [constructor|]. Qed.
  Global Instance alter_proper :
167
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (alter (A:=A) (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
168
169
170
171
  Proof.
    intros ?? Hf; apply partial_alter_proper.
    by destruct 1; constructor; apply Hf.
  Qed.
172
  Lemma merge_ext f g `{!DiagNone f, !DiagNone g} :
Robbert Krebbers's avatar
Robbert Krebbers committed
173
    (() ==> () ==> ())%signature f g 
174
    (() ==> () ==> ())%signature (merge (M:=M) f) (merge g).
Robbert Krebbers's avatar
Robbert Krebbers committed
175
176
177
178
  Proof.
    by intros Hf ?? Hm1 ?? Hm2 i; rewrite !lookup_merge by done; apply Hf.
  Qed.
  Global Instance union_with_proper :
179
    Proper ((() ==> () ==> ()) ==> () ==> () ==>()) (union_with (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
180
181
182
  Proof.
    intros ?? Hf ?? Hm1 ?? Hm2 i; apply (merge_ext _ _); auto.
    by do 2 destruct 1; first [apply Hf | constructor].
183
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
184
  Global Instance map_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (M A).
185
  Proof. intros m1 m2 Hm; apply map_eq; intros i. apply leibniz_equiv, Hm. Qed.
186
187
  Lemma map_equiv_empty (m : M A) : m    m = .
  Proof.
188
189
190
    split; [intros Hm; apply map_eq; intros i|intros ->].
    - generalize (Hm i). by rewrite lookup_empty, equiv_None.
    - intros ?. rewrite lookup_empty; constructor.
191
  Qed.
192
193
194
195
196
  Global Instance map_fmap_proper `{Equiv B} (f : A  B) :
    Proper (() ==> ()) f  Proper (() ==> ()) (fmap (M:=M) f).
  Proof.
    intros ? m m' ? k; rewrite !lookup_fmap. by apply option_fmap_proper.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
197
198
199
End setoid.

(** ** General properties *)
200
201
202
203
204
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
205
  unfold subseteq, map_subseteq, map_relation. split; intros Hm i;
206
207
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
208
209
Global Instance:  {A} (R : relation A), PreOrder R  PreOrder (map_included R).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
210
  split; [intros m i; by destruct (m !! i); simpl|].
211
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
212
  destruct (m1 !! i), (m2 !! i), (m3 !! i); simplify_eq/=;
213
    done || etrans; eauto.
214
Qed.
215
Global Instance: PartialOrder (() : relation (M A)).
216
Proof.
217
218
219
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
220
221
222
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
223
Proof. rewrite !map_subseteq_spec. auto. Qed.
224
225
226
227
228
229
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
230
231
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
232
233
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
234
235
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
236
237
238
239
240
241
242
243
244
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬ !! i = Some x.
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
245
246
247
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
248
249
Lemma map_fmap_empty {A B} (f : A  B) : f <$> ( : M A) = .
Proof. by apply map_eq; intros i; rewrite lookup_fmap, !lookup_empty. Qed.
250
251

(** ** Properties of the [partial_alter] operation *)
252
253
254
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
255
256
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
257
258
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
259
260
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
261
262
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
263
Qed.
264
Lemma partial_alter_commute {A} f g (m : M A) i j :
265
  i  j  partial_alter f i (partial_alter g j m) =
266
267
    partial_alter g j (partial_alter f i m).
Proof.
268
269
270
271
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
272
  - by rewrite lookup_partial_alter,
273
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
274
  - by rewrite !lookup_partial_alter_ne by congruence.
275
276
277
278
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
279
280
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
281
Qed.
282
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
283
Proof. by apply partial_alter_self_alt. Qed.
284
Lemma partial_alter_subseteq {A} f (m : M A) i :
285
  m !! i = None  m  partial_alter f i m.
286
287
288
289
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
290
Lemma partial_alter_subset {A} f (m : M A) i :
291
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
292
Proof.
293
294
295
296
  intros Hi Hfi. split; [by apply partial_alter_subseteq|].
  rewrite !map_subseteq_spec. inversion Hfi as [x Hx]. intros Hm.
  apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
  by rewrite lookup_partial_alter.
297
298
299
Qed.

(** ** Properties of the [alter] operation *)
300
301
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
302
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal/=; auto. Qed.
303
Lemma lookup_alter {A} (f : A  A) m i : alter f i m !! i = f <$> m !! i.
304
Proof. unfold alter. apply lookup_partial_alter. Qed.
305
Lemma lookup_alter_ne {A} (f : A  A) m i j : i  j  alter f i m !! j = m !! j.
306
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
307
308
309
310
311
312
313
314
315
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
316
317
318
319
Lemma lookup_alter_Some {A} (f : A  A) m i j y :
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
320
  destruct (decide (i = j)) as [->|?].
321
  - rewrite lookup_alter. naive_solver (simplify_option_eq; eauto).
322
  - rewrite lookup_alter_ne by done. naive_solver.
323
324
325
326
Qed.
Lemma lookup_alter_None {A} (f : A  A) m i j :
  alter f i m !! j = None  m !! j = None.
Proof.
327
328
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
329
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
330
331
Lemma alter_id {A} (f : A  A) m i :
  ( x, m !! i = Some x  f x = x)  alter f i m = m.
332
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
333
  intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
334
  { rewrite lookup_alter; destruct (m !! j); f_equal/=; auto. }
Robbert Krebbers's avatar
Robbert Krebbers committed
335
  by rewrite lookup_alter_ne by done.
336
337
338
339
340
341
342
343
344
345
346
Qed.

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
347
  - destruct (decide (i = j)) as [->|?];
348
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
349
  - intros [??]. by rewrite lookup_delete_ne.
350
Qed.
351
352
353
Lemma lookup_delete_is_Some {A} (m : M A) i j :
  is_Some (delete i m !! j)  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_delete_Some; naive_solver. Qed.
354
355
356
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
357
358
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
359
360
361
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
362
Lemma delete_singleton {A} i (x : A) : delete i {[i := x]} = .
363
364
365
366
367
368
369
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
370
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
371
Proof.
372
373
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
374
375
376
377
378
379
380
381
382
383
Qed.
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
384
385
Lemma insert_delete {A} (m : M A) i x : <[i:=x]>(delete i m) = <[i:=x]> m.
Proof. symmetry; apply (partial_alter_compose (λ _, Some x)). Qed.
386
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
387
388
389
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
390
Lemma delete_subseteq_compat {A} (m1 m2 : M A) i :
391
  m1  m2  delete i m1  delete i m2.
392
393
394
395
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
Qed.
396
Lemma delete_subset_alt {A} (m : M A) i x : m !! i = Some x  delete i m  m.
397
Proof.
398
399
400
  split; [apply delete_subseteq|].
  rewrite !map_subseteq_spec. intros Hi. apply (None_ne_Some x).
  by rewrite <-(lookup_delete m i), (Hi i x).
401
Qed.
402
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
403
404
405
406
407
Proof. inversion 1. eauto using delete_subset_alt. Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
408
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
409
Proof. rewrite lookup_insert. congruence. Qed.
410
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
411
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
412
413
Lemma insert_insert {A} (m : M A) i x y : <[i:=x]>(<[i:=y]>m) = <[i:=x]>m.
Proof. unfold insert, map_insert. by rewrite <-partial_alter_compose. Qed.
414
415
416
417
418
419
420
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
421
  - destruct (decide (i = j)) as [->|?];
422
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
423
  - intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
424
Qed.
425
426
427
Lemma lookup_insert_is_Some {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_insert_Some; naive_solver. Qed.
428
429
430
Lemma lookup_insert_is_Some' {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  is_Some (m !! j).
Proof. rewrite lookup_insert_is_Some. destruct (decide (i=j)); naive_solver. Qed.
431
432
433
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
434
435
436
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
437
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
438
Lemma insert_id {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
439
440
441
442
443
444
445
446
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
447
448
  - rewrite lookup_insert. destruct (m !! j); simpl; eauto.
  - rewrite lookup_insert_ne by done. by destruct (m !! j); simpl.
449
Qed.
450
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
451
Proof. apply partial_alter_subseteq. Qed.
452
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
453
454
Proof. intro. apply partial_alter_subset; eauto. Qed.
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
455
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
456
Proof.
457
458
459
  rewrite !map_subseteq_spec. intros ?? j ?.
  destruct (decide (j = i)) as [->|?]; [congruence|].
  rewrite lookup_insert_ne; auto.
460
461
Qed.
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
462
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
463
Proof.
464
465
466
467
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
468
469
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
470
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
471
Proof.
472
473
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
474
475
  - rewrite lookup_insert. congruence.
  - rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
476
477
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
478
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
479
Proof.
480
481
482
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
483
484
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
485
  m1 !! i = None  <[i:=x]> m1  m2 
486
487
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
488
  intros Hi Hm1m2. exists (delete i m2). split_and?.
489
490
  - rewrite insert_delete, insert_id. done.
    eapply lookup_weaken, strict_include; eauto. by rewrite lookup_insert.
491
492
  - eauto using insert_delete_subset.
  - by rewrite lookup_delete.
493
Qed.
494
Lemma insert_empty {A} i (x : A) : <[i:=x]> = {[i := x]}.
495
Proof. done. Qed.
496
497
498
499
Lemma insert_non_empty {A} (m : M A) i x : <[i:=x]>m  .
Proof.
  intros Hi%(f_equal (!! i)). by rewrite lookup_insert, lookup_empty in Hi.
Qed.
500
501
502

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
503
  {[i := x]} !! j = Some y  i = j  x = y.
504
Proof.
505
  rewrite <-insert_empty,lookup_insert_Some, lookup_empty; intuition congruence.
506
Qed.
507
Lemma lookup_singleton_None {A} i j (x : A) : {[i := x]} !! j = None  i  j.
508
Proof. rewrite <-insert_empty,lookup_insert_None, lookup_empty; tauto. Qed.
509
Lemma lookup_singleton {A} i (x : A) : {[i := x]} !! i = Some x.
510
Proof. by rewrite lookup_singleton_Some. Qed.
511
Lemma lookup_singleton_ne {A} i j (x : A) : i  j  {[i := x]} !! j = None.
512
Proof. by rewrite lookup_singleton_None. Qed.
513
Lemma map_non_empty_singleton {A} i (x : A) : {[i := x]}  .
514
515
516
517
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
518
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i := x]} = {[i := y]}.
519
Proof.
520
  unfold singletonM, map_singleton, insert, map_insert.
521
522
  by rewrite <-partial_alter_compose.
Qed.
523
Lemma alter_singleton {A} (f : A  A) i x : alter f i {[i := x]} = {[i := f x]}.
524
Proof.
525
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
526
527
  - by rewrite lookup_alter, !lookup_singleton.
  - by rewrite lookup_alter_ne, !lookup_singleton_ne.
528
529
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
530
  i  j  alter f i {[j := x]} = {[j := x]}.
531
Proof.
532
533
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
534
Qed.
535
536
Lemma singleton_non_empty {A} i (x : A) : {[i:=x]}  .
Proof. apply insert_non_empty. Qed.
537

538
539
540
541
542
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.
543
544
545
Lemma fmap_insert {A B} (f: A  B) m i x: f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
546
547
  - by rewrite lookup_fmap, !lookup_insert.
  - by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
548
Qed.
549
550
551
552
553
554
Lemma fmap_delete {A B} (f: A  B) m i: f <$> delete i m = delete i (f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  - by rewrite lookup_fmap, !lookup_delete.
  - by rewrite lookup_fmap, !lookup_delete_ne, lookup_fmap by done.
Qed.
555
556
557
558
Lemma omap_insert {A B} (f : A  option B) m i x y :
  f x = Some y  omap f (<[i:=x]>m) = <[i:=y]>(omap f m).
Proof.
  intros; apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
559
560
  - by rewrite lookup_omap, !lookup_insert.
  - by rewrite lookup_omap, !lookup_insert_ne, lookup_omap by done.
561
Qed.
562
Lemma map_fmap_singleton {A B} (f : A  B) i x : f <$> {[i := x]} = {[i := f x]}.
563
564
565
Proof.
  by unfold singletonM, map_singleton; rewrite fmap_insert, map_fmap_empty.
Qed.
566
Lemma omap_singleton {A B} (f : A  option B) i x y :
567
  f x = Some y  omap f {[ i := x ]} = {[ i := y ]}.
568
Proof.
569
570
  intros. unfold singletonM, map_singleton.
  by erewrite omap_insert, omap_empty by eauto.
571
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
572
573
574
575
576
Lemma map_fmap_id {A} (m : M A) : id <$> m = m.
Proof. apply map_eq; intros i; by rewrite lookup_fmap, option_fmap_id. Qed.
Lemma map_fmap_compose {A B C} (f : A  B) (g : B  C) (m : M A) :
  g  f <$> m = g <$> f <$> m.
Proof. apply map_eq; intros i; by rewrite !lookup_fmap,option_fmap_compose. Qed.
577
Lemma map_fmap_equiv_ext `{Equiv A, Equiv B} (f1 f2 : A  B) m :
578
579
580
581
582
  ( i x, m !! i = Some x  f1 x  f2 x)  f1 <$> m  f2 <$> m.
Proof.
  intros Hi i; rewrite !lookup_fmap.
  destruct (m !! i) eqn:?; constructor; eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
583
584
585
586
587
588
Lemma map_fmap_ext {A B} (f1 f2 : A  B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  f1 <$> m = f2 <$> m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_fmap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
589
590
591
592
593
594
Lemma omap_ext {A B} (f1 f2 : A  option B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  omap f1 m = omap f2 m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_omap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
595

596
(** ** Properties of conversion to lists *)
597
598
599
Lemma elem_of_map_to_list' {A} (m : M A) ix :
  ix  map_to_list m  m !! ix.1 = Some (ix.2).
Proof. destruct ix as [i x]. apply elem_of_map_to_list. Qed.
600
Lemma map_to_list_unique {A} (m : M A) i x y :
601
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
602
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
603
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup ((map_to_list m).*1).
604
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
605
606
Lemma elem_of_map_of_list_1' {A} (l : list (K * A)) i x :
  ( y, (i,y)  l  x = y)  (i,x)  l  map_of_list l !! i = Some x.
607
608
609
Proof.
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
  setoid_rewrite elem_of_cons.
610
  intros Hdup [?|?]; simplify_eq; [by rewrite lookup_insert|].
611
  destruct (decide (i = j)) as [->|].
612
  - rewrite lookup_insert; f_equal; eauto using eq_sym.
613
  - rewrite lookup_insert_ne by done; eauto.
614
Qed.
615
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
616
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
617
Proof.
618
  intros ? Hx; apply elem_of_map_of_list_1'; eauto using NoDup_fmap_fst.
619
  intros y; revert Hx. rewrite !elem_of_list_lookup; intros [i' Hi'] [j' Hj'].
620
  cut (i' = j'); [naive_solver|]. apply NoDup_lookup with (l.*1) i;
621
    by rewrite ?list_lookup_fmap, ?Hi', ?Hj'.
622
623
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
624
  map_of_list l !! i = Some x  (i,x)  l.
625
Proof.
626
627
628
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
629
Qed.
630
631
632
633
Lemma elem_of_map_of_list' {A} (l : list (K * A)) i x :
  ( x', (i,x)  l  (i,x')  l  x = x') 
  (i,x)  l  map_of_list l !! i = Some x.
Proof. split; auto using elem_of_map_of_list_1', elem_of_map_of_list_2. Qed.
634
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
635
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
636
Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
637

638
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
639
  i  l.*1  map_of_list l !! i = None.
640
Proof.
641
642
  rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
  exists (i,x); simpl; auto using elem_of_map_of_list_2.
643
644
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
645
  map_of_list l !! i = None  i  l.*1.
646
Proof.
647
  induction l as [|[j y] l IH]; csimpl; [rewrite elem_of_nil; tauto|].
648
  rewrite elem_of_cons. destruct (decide (i = j)); simplify_eq.
649
650
  - by rewrite lookup_insert.
  - by rewrite lookup_insert_ne; intuition.
651
652
Qed.
Lemma not_elem_of_map_of_list {A} (l : list (K * A)) i :
653
  i  l.*1  map_of_list l !! i = None.
654
Proof. red; auto using not_elem_of_map_of_list_1,not_elem_of_map_of_list_2. Qed.
655
Lemma map_of_list_proper {A} (l1 l2 : list (K * A)) :
656
  NoDup (l1.*1)  l1  l2  map_of_list l1 = map_of_list l2.
657
658
659
660
661
Proof.
  intros ? Hperm. apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-!elem_of_map_of_list; rewrite <-?Hperm.
Qed.
Lemma map_of_list_inj {A} (l1 l2 : list (K * A)) :
662
  NoDup (l1.*1)  NoDup (l2.*1)  map_of_list l1 = map_of_list l2  l1  l2.
663
Proof.
664
  intros ?? Hl1l2. apply NoDup_Permutation; auto using (NoDup_fmap_1 fst).
665
666
  intros