countable.v 10.4 KB
Newer Older
1
(* Copyright (c) 2012-2017, Coq-std++ developers. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
2
(* This file is distributed under the terms of the BSD license. *)
3
From stdpp Require Export list.
4
Set Default Proof Using "Type".
5
6
Local Open Scope positive.

7
Class Countable A `{EqDecision A} := {
8
9
10
11
  encode : A  positive;
  decode : positive  option A;
  decode_encode x : decode (encode x) = Some x
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
12
13
Arguments encode : simpl never.
Arguments decode : simpl never.
14
15
16
17
18

Definition encode_nat `{Countable A} (x : A) : nat :=
  pred (Pos.to_nat (encode x)).
Definition decode_nat `{Countable A} (i : nat) : option A :=
  decode (Pos.of_nat (S i)).
19
Instance encode_inj `{Countable A} : Inj (=) (=) encode.
20
Proof.
21
  intros x y Hxy; apply (inj Some).
22
23
  by rewrite <-(decode_encode x), Hxy, decode_encode.
Qed.
24
25
Instance encode_nat_inj `{Countable A} : Inj (=) (=) encode_nat.
Proof. unfold encode_nat; intros x y Hxy; apply (inj encode); lia. Qed.
26
27
28
29
30
31
32
Lemma decode_encode_nat `{Countable A} x : decode_nat (encode_nat x) = Some x.
Proof.
  pose proof (Pos2Nat.is_pos (encode x)).
  unfold decode_nat, encode_nat. rewrite Nat.succ_pred by lia.
  by rewrite Pos2Nat.id, decode_encode.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
33
(** * Choice principles *)
34
Section choice.
35
  Context `{Countable A} (P : A  Prop).
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

  Inductive choose_step: relation positive :=
    | choose_step_None {p} : decode p = None  choose_step (Psucc p) p
    | choose_step_Some {p x} :
       decode p = Some x  ¬P x  choose_step (Psucc p) p.
  Lemma choose_step_acc : ( x, P x)  Acc choose_step 1%positive.
  Proof.
    intros [x Hx]. cut ( i p,
      i  encode x  1 + encode x = p + i  Acc choose_step p).
    { intros help. by apply (help (encode x)). }
    induction i as [|i IH] using Pos.peano_ind; intros p ??.
    { constructor. intros j. assert (p = encode x) by lia; subst.
      inversion 1 as [? Hd|?? Hd]; subst;
        rewrite decode_encode in Hd; congruence. }
    constructor. intros j.
    inversion 1 as [? Hd|? y Hd]; subst; auto with lia.
  Qed.
53
54
55

  Context `{ x, Decision (P x)}.

56
57
58
59
  Fixpoint choose_go {i} (acc : Acc choose_step i) : A :=
    match Some_dec (decode i) with
    | inleft (xHx) =>
      match decide (P x) with
Robbert Krebbers's avatar
Robbert Krebbers committed
60
      | left _ => x | right H => choose_go (Acc_inv acc (choose_step_Some Hx H))
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
      end
    | inright H => choose_go (Acc_inv acc (choose_step_None H))
    end.
  Fixpoint choose_go_correct {i} (acc : Acc choose_step i) : P (choose_go acc).
  Proof. destruct acc; simpl. repeat case_match; auto. Qed.
  Fixpoint choose_go_pi {i} (acc1 acc2 : Acc choose_step i) :
    choose_go acc1 = choose_go acc2.
  Proof. destruct acc1, acc2; simpl; repeat case_match; auto. Qed.

  Definition choose (H:  x, P x) : A := choose_go (choose_step_acc H).
  Definition choose_correct (H:  x, P x) : P (choose H) := choose_go_correct _.
  Definition choose_pi (H1 H2 :  x, P x) :
    choose H1 = choose H2 := choose_go_pi _ _.
  Definition choice (HA :  x, P x) : { x | P x } := _choose_correct HA.
End choice.

77
Lemma surj_cancel `{Countable A} `{EqDecision B}
78
  (f : A  B) `{!Surj (=) f} : { g : B  A & Cancel (=) f g }.
79
Proof.
80
81
  exists (λ y, choose (λ x, f x = y) (surj f y)).
  intros y. by rewrite (choose_correct (λ x, f x = y) (surj f y)).
82
83
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
84
(** * Instances *)
85
86
(** ** Injection *)
Section injective_countable.
87
  Context `{Countable A, EqDecision B}.
88
89
90
91
92
93
94
  Context (f : B  A) (g : A  option B) (fg :  x, g (f x) = Some x).

  Program Instance injective_countable : Countable B :=
    {| encode y := encode (f y); decode p := x  decode p; g x |}.
  Next Obligation. intros y; simpl; rewrite decode_encode; eauto. Qed.
End injective_countable.

Robbert Krebbers's avatar
Robbert Krebbers committed
95
(** ** Option *)
96
Program Instance option_countable `{Countable A} : Countable (option A) := {|
Robbert Krebbers's avatar
Robbert Krebbers committed
97
98
  encode o := match o with None => 1 | Some x => Pos.succ (encode x) end;
  decode p := if decide (p = 1) then Some None else Some <$> decode (Pos.pred p)
99
100
101
102
103
104
|}.
Next Obligation.
  intros ??? [x|]; simpl; repeat case_decide; auto with lia.
  by rewrite Pos.pred_succ, decode_encode.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
105
(** ** Sums *)
106
107
108
109
110
111
112
113
114
115
116
Program Instance sum_countable `{Countable A} `{Countable B} :
  Countable (A + B)%type := {|
    encode xy :=
      match xy with inl x => (encode x)~0 | inr y => (encode y)~1 end;
    decode p :=
      match p with
      | 1 => None | p~0 => inl <$> decode p | p~1 => inr <$> decode p
      end
  |}.
Next Obligation. by intros ?????? [x|y]; simpl; rewrite decode_encode. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
117
(** ** Products *)
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
Fixpoint prod_encode_fst (p : positive) : positive :=
  match p with
  | 1 => 1
  | p~0 => (prod_encode_fst p)~0~0
  | p~1 => (prod_encode_fst p)~0~1
  end.
Fixpoint prod_encode_snd (p : positive) : positive :=
  match p with
  | 1 => 1~0
  | p~0 => (prod_encode_snd p)~0~0
  | p~1 => (prod_encode_snd p)~1~0
  end.
Fixpoint prod_encode (p q : positive) : positive :=
  match p, q with
  | 1, 1 => 1~1
  | p~0, 1 => (prod_encode_fst p)~1~0
  | p~1, 1 => (prod_encode_fst p)~1~1
  | 1, q~0 => (prod_encode_snd q)~0~1
  | 1, q~1 => (prod_encode_snd q)~1~1
  | p~0, q~0 => (prod_encode p q)~0~0
  | p~0, q~1 => (prod_encode p q)~1~0
  | p~1, q~0 => (prod_encode p q)~0~1
  | p~1, q~1 => (prod_encode p q)~1~1
  end.
Fixpoint prod_decode_fst (p : positive) : option positive :=
  match p with
  | p~0~0 => (~0) <$> prod_decode_fst p
  | p~0~1 => Some match prod_decode_fst p with Some q => q~1 | _ => 1 end
  | p~1~0 => (~0) <$> prod_decode_fst p
  | p~1~1 => Some match prod_decode_fst p with Some q => q~1 | _ => 1 end
  | 1~0 => None
  | 1~1 => Some 1
  | 1 => Some 1
  end.
Fixpoint prod_decode_snd (p : positive) : option positive :=
  match p with
  | p~0~0 => (~0) <$> prod_decode_snd p
  | p~0~1 => (~0) <$> prod_decode_snd p
  | p~1~0 => Some match prod_decode_snd p with Some q => q~1 | _ => 1 end
  | p~1~1 => Some match prod_decode_snd p with Some q => q~1 | _ => 1 end
  | 1~0 => Some 1
  | 1~1 => Some 1
  | 1 => None
  end.

Lemma prod_decode_encode_fst p q : prod_decode_fst (prod_encode p q) = Some p.
Proof.
  assert ( p, prod_decode_fst (prod_encode_fst p) = Some p).
166
  { intros p'. by induction p'; simplify_option_eq. }
167
  assert ( p, prod_decode_fst (prod_encode_snd p) = None).
168
169
  { intros p'. by induction p'; simplify_option_eq. }
  revert q. by induction p; intros [?|?|]; simplify_option_eq.
170
171
172
173
Qed.
Lemma prod_decode_encode_snd p q : prod_decode_snd (prod_encode p q) = Some q.
Proof.
  assert ( p, prod_decode_snd (prod_encode_snd p) = Some p).
174
  { intros p'. by induction p'; simplify_option_eq. }
175
  assert ( p, prod_decode_snd (prod_encode_fst p) = None).
176
177
  { intros p'. by induction p'; simplify_option_eq. }
  revert q. by induction p; intros [?|?|]; simplify_option_eq.
178
179
180
Qed.
Program Instance prod_countable `{Countable A} `{Countable B} :
  Countable (A * B)%type := {|
Robbert Krebbers's avatar
Robbert Krebbers committed
181
    encode xy := prod_encode (encode (xy.1)) (encode (xy.2));
182
183
184
185
186
187
    decode p :=
     x  prod_decode_fst p = decode;
     y  prod_decode_snd p = decode; Some (x, y)
  |}.
Next Obligation.
  intros ?????? [x y]; simpl.
Robbert Krebbers's avatar
Robbert Krebbers committed
188
189
  rewrite prod_decode_encode_fst, prod_decode_encode_snd; simpl.
  by rewrite !decode_encode.
190
191
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
192
193
194
195
196
197
198
(** ** Lists *)
(* Lists are encoded as 1 separated sequences of 0s corresponding to the unary
representation of the elements. *)
Fixpoint list_encode `{Countable A} (acc : positive) (l : list A) : positive :=
  match l with
  | [] => acc
  | x :: l => list_encode (Nat.iter (encode_nat x) (~0) (acc~1)) l
199
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
200
201
202
203
204
205
206
207
Fixpoint list_decode `{Countable A} (acc : list A)
    (n : nat) (p : positive) : option (list A) :=
  match p with
  | 1 => Some acc
  | p~0 => list_decode acc (S n) p
  | p~1 => x  decode_nat n; list_decode (x :: acc) O p
  end.
Lemma x0_iter_x1 n acc : Nat.iter n (~0) acc~1 = acc ++ Nat.iter n (~0) 3.
208
Proof. by induction n; f_equal/=. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
209
210
Lemma list_encode_app' `{Countable A} (l1 l2 : list A) acc :
  list_encode acc (l1 ++ l2) = list_encode acc l1 ++ list_encode 1 l2.
211
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
212
213
  revert acc; induction l1; simpl; auto.
  induction l2 as [|x l IH]; intros acc; simpl; [by rewrite ?(left_id_L _ _)|].
214
  by rewrite !(IH (Nat.iter _ _ _)), (assoc_L _), x0_iter_x1.
215
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
216
217
Program Instance list_countable `{Countable A} : Countable (list A) :=
  {| encode := list_encode 1; decode := list_decode [] 0 |}.
218
Next Obligation.
Robbert Krebbers's avatar
Robbert Krebbers committed
219
220
221
222
223
224
225
226
227
  intros A ??; simpl.
  assert ( m acc n p, list_decode acc n (Nat.iter m (~0) p)
    = list_decode acc (n + m) p) as decode_iter.
  { induction m as [|m IH]; intros acc n p; simpl; [by rewrite Nat.add_0_r|].
    by rewrite IH, Nat.add_succ_r. }
  cut ( l acc, list_decode acc 0 (list_encode 1 l) = Some (l ++ acc))%list.
  { by intros help l; rewrite help, (right_id_L _ _). }
  induction l as [|x l IH] using @rev_ind; intros acc; [done|].
  rewrite list_encode_app'; simpl; rewrite <-x0_iter_x1, decode_iter; simpl.
228
  by rewrite decode_encode_nat; simpl; rewrite IH, <-(assoc_L _).
229
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
230
231
232
233
234
235
236
237
238
Lemma list_encode_app `{Countable A} (l1 l2 : list A) :
  encode (l1 ++ l2)%list = encode l1 ++ encode l2.
Proof. apply list_encode_app'. Qed.
Lemma list_encode_cons `{Countable A} x (l : list A) :
  encode (x :: l) = Nat.iter (encode_nat x) (~0) 3 ++ encode l.
Proof. apply (list_encode_app' [_]). Qed.
Lemma list_encode_suffix `{Countable A} (l k : list A) :
  l `suffix_of` k   q, encode k = q ++ encode l.
Proof. intros [l' ->]; exists (encode l'); apply list_encode_app. Qed.
239
240
241
Lemma list_encode_suffix_eq `{Countable A} q1 q2 (l1 l2 : list A) :
  length l1 = length l2  q1 ++ encode l1 = q2 ++ encode l2  l1 = l2.
Proof.
242
  revert q1 q2 l2; induction l1 as [|a1 l1 IH];
243
    intros q1 q2 [|a2 l2] ?; simplify_eq/=; auto.
244
245
246
247
248
  rewrite !list_encode_cons, !(assoc _); intros Hl.
  assert (l1 = l2) as <- by eauto; clear IH; f_equal.
  apply (inj encode_nat); apply (inj (++ encode l1)) in Hl; revert Hl; clear.
  generalize (encode_nat a2).
  induction (encode_nat a1); intros [|?] ?; naive_solver.
249
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
250
251
252
253

(** ** Numbers *)
Instance pos_countable : Countable positive :=
  {| encode := id; decode := Some; decode_encode x := eq_refl |}.
254
255
256
257
258
Program Instance N_countable : Countable N := {|
  encode x := match x with N0 => 1 | Npos p => Pos.succ p end;
  decode p := if decide (p = 1) then Some 0%N else Some (Npos (Pos.pred p))
|}.
Next Obligation.
Robbert Krebbers's avatar
Robbert Krebbers committed
259
  by intros [|p];simpl;[|rewrite decide_False,Pos.pred_succ by (by destruct p)].
260
261
Qed.
Program Instance Z_countable : Countable Z := {|
Robbert Krebbers's avatar
Robbert Krebbers committed
262
263
  encode x := match x with Z0 => 1 | Zpos p => p~0 | Zneg p => p~1 end;
  decode p := Some match p with 1 => Z0 | p~0 => Zpos p | p~1 => Zneg p end
264
265
|}.
Next Obligation. by intros [|p|p]. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
266
267
Program Instance nat_countable : Countable nat :=
  {| encode x := encode (N.of_nat x); decode p := N.to_nat <$> decode p |}.
268
Next Obligation.
Robbert Krebbers's avatar
Robbert Krebbers committed
269
  by intros x; lazy beta; rewrite decode_encode; csimpl; rewrite Nat2N.id.
270
Qed.