list.v 161 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
5
From Coq Require Export Permutation.
6
From stdpp Require Export numbers base option.
7
Set Default Proof Using "Type*".
Robbert Krebbers's avatar
Robbert Krebbers committed
8

9
Arguments length {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
10
11
Arguments cons {_} _ _.
Arguments app {_} _ _.
12
13
14
15

Instance: Params (@length) 1.
Instance: Params (@cons) 1.
Instance: Params (@app) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
16

17
18
19
Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.
20

21
Arguments tail {_} _.
22
23
24
Arguments take {_} !_ !_ /.
Arguments drop {_} !_ !_ /.

25
26
27
28
29
30
Instance: Params (@tail) 1.
Instance: Params (@take) 1.
Instance: Params (@drop) 1.

Arguments Permutation {_} _ _.
Arguments Forall_cons {_} _ _ _ _ _.
31
Remove Hints Permutation_cons : typeclass_instances.
32

Robbert Krebbers's avatar
Robbert Krebbers committed
33
34
35
36
37
38
39
Notation "(::)" := cons (only parsing) : C_scope.
Notation "( x ::)" := (cons x) (only parsing) : C_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : C_scope.
Notation "(++)" := app (only parsing) : C_scope.
Notation "( l ++)" := (app l) (only parsing) : C_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : C_scope.

40
41
42
43
44
45
46
47
48
Infix "≡ₚ" := Permutation (at level 70, no associativity) : C_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : C_scope.
Notation "( x ≡ₚ)" := (Permutation x) (only parsing) : C_scope.
Notation "(≡ₚ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢ₚ)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ₚ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢ₚ)" := (λ y, x ≢ₚ y) (only parsing) : C_scope.
Notation "(≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
49
50
51
Instance maybe_cons {A} : Maybe2 (@cons A) := λ l,
  match l with x :: l => Some (x,l) | _ => None end.

52
(** * Definitions *)
53
54
55
56
57
58
(** Setoid equality lifted to lists *)
Inductive list_equiv `{Equiv A} : Equiv (list A) :=
  | nil_equiv : []  []
  | cons_equiv x y l k : x  y  l  k  x :: l  y :: k.
Existing Instance list_equiv.

59
60
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
61
62
Instance list_lookup {A} : Lookup nat A (list A) :=
  fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
63
  match l with
64
  | [] => None | x :: l => match i with 0 => Some x | S i => l !! i end
65
  end.
66
67
68

(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
69
Instance list_alter {A} : Alter nat A (list A) := λ f,
70
  fix go i l {struct l} :=
71
72
  match l with
  | [] => []
73
  | x :: l => match i with 0 => f x :: l | S i => x :: go i l end
74
  end.
75

76
77
(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
78
79
Instance list_insert {A} : Insert nat A (list A) :=
  fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
80
81
82
83
  match l with
  | [] => []
  | x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end
  end.
84
85
86
87
88
Fixpoint list_inserts {A} (i : nat) (k l : list A) : list A :=
  match k with
  | [] => l
  | y :: k => <[i:=y]>(list_inserts (S i) k l)
  end.
89
Instance: Params (@list_inserts) 1.
90

91
92
93
(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
94
95
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
96
97
  match l with
  | [] => []
98
  | x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end
99
  end.
100
101
102

(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
103
Definition option_list {A} : option A  list A := option_rect _ (λ x, [x]) [].
104
105
Instance: Params (@option_list) 1.
Instance maybe_list_singleton {A} : Maybe (λ x : A, [x]) := λ l,
106
  match l with [x] => Some x | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
107
108
109
110

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
111
  fix go P _ l := let _ : Filter _ _ := @go in
Robbert Krebbers's avatar
Robbert Krebbers committed
112
113
  match l with
  | [] => []
114
  | x :: l => if decide (P x) then x :: filter P l else filter P l
115
116
117
118
  end.

(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
119
Definition list_find {A} P `{ x, Decision (P x)} : list A  option (nat * A) :=
120
121
  fix go l :=
  match l with
122
123
  | [] => None
  | x :: l => if decide (P x) then Some (0,x) else prod_map S id <$> go l
124
  end.
125
Instance: Params (@list_find) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
126
127
128
129

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
130
  match n with 0 => [] | S n => x :: replicate n x end.
131
Instance: Params (@replicate) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
132
133
134

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].
135
Instance: Params (@reverse) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
136

137
138
139
140
(** The function [last l] returns the last element of the list [l], or [None]
if the list [l] is empty. *)
Fixpoint last {A} (l : list A) : option A :=
  match l with [] => None | [x] => Some x | _ :: l => last l end.
141
Instance: Params (@last) 1.
142

Robbert Krebbers's avatar
Robbert Krebbers committed
143
144
145
146
147
148
(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
149
  | x :: l => match n with 0 => [] | S n => x :: resize n y l end
Robbert Krebbers's avatar
Robbert Krebbers committed
150
151
  end.
Arguments resize {_} !_ _ !_.
152
Instance: Params (@resize) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
153

154
155
156
(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
157
158
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
159
  | [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
160
  end.
161
Instance: Params (@reshape) 2.
162

163
Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
164
165
166
167
  guard (i + n  length l); Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A  list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.
168

169
170
171
172
(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.
Definition foldl {A B} (f : A  B  A) : A  list B  A :=
173
  fix go a l := match l with [] => a | x :: l => go (f a x) l end.
174
175
176

(** The monadic operations. *)
Instance list_ret: MRet list := λ A x, x :: @nil A.
177
178
Instance list_fmap : FMap list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x :: go l end.
179
180
181
182
183
184
Instance list_omap : OMap list := λ A B f,
  fix go (l : list A) :=
  match l with
  | [] => []
  | x :: l => match f x with Some y => y :: go l | None => go l end
  end.
185
186
Instance list_bind : MBind list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x ++ go l end.
187
188
Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
189
  match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.
190
Definition mapM `{MBind M, MRet M} {A B} (f : A  M B) : list A  M (list B) :=
191
  fix go l :=
192
  match l with [] => mret [] | x :: l => y  f x; k  go l; mret (y :: k) end.
193
194
195
196
197

(** We define stronger variants of map and fold that allow the mapped
function to use the index of the elements. *)
Definition imap_go {A B} (f : nat  A  B) : nat  list A  list B :=
  fix go (n : nat) (l : list A) :=
198
  match l with [] => [] | x :: l => f n x :: go (S n) l end.
199
Definition imap {A B} (f : nat  A  B) : list A  list B := imap_go f 0.
200
201
Arguments imap : simpl never.

202
203
204
205
Definition zipped_map {A B} (f : list A  list A  A  B) :
  list A  list A  list B := fix go l k :=
  match k with [] => [] | x :: k => f l k x :: go (x :: l) k end.

Robbert Krebbers's avatar
Robbert Krebbers committed
206
207
208
209
210
211
212
213
214
Definition imap2_go {A B C} (f : nat  A  B  C) :
    nat  list A  list B  list C:=
  fix go (n : nat) (l : list A) (k : list B) :=
  match l, k with
  | [], _ |_, [] => [] | x :: l, y :: k => f n x y :: go (S n) l k
  end.
Definition imap2 {A B C} (f : nat  A  B  C) :
  list A  list B  list C := imap2_go f 0.

215
216
217
218
219
220
221
Inductive zipped_Forall {A} (P : list A  list A  A  Prop) :
    list A  list A  Prop :=
  | zipped_Forall_nil l : zipped_Forall P l []
  | zipped_Forall_cons l k x :
     P l k x  zipped_Forall P (x :: l) k  zipped_Forall P l (x :: k).
Arguments zipped_Forall_nil {_ _} _.
Arguments zipped_Forall_cons {_ _} _ _ _ _ _.
222

223
224
225
226
227
228
229
(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A  A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l => (if β then f x else x) :: mask f βs l
  | _, _ => l
  end.
230
231
232
233

(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
234
  | [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::) <$> interleave x l)
235
236
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
237
  match l with [] => [[]] | x :: l => permutations l = interleave x end.
238

239
240
(** The predicate [suffix_of] holds if the first list is a suffix of the second.
The predicate [prefix_of] holds if the first list is a prefix of the second. *)
241
242
Definition suffix_of {A} : relation (list A) := λ l1 l2,  k, l2 = k ++ l1.
Definition prefix_of {A} : relation (list A) := λ l1 l2,  k, l2 = l1 ++ k.
243
244
Infix "`suffix_of`" := suffix_of (at level 70) : C_scope.
Infix "`prefix_of`" := prefix_of (at level 70) : C_scope.
245
246
Hint Extern 0 (_ `prefix_of` _) => reflexivity.
Hint Extern 0 (_ `suffix_of` _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
247

248
Section prefix_suffix_ops.
249
250
  Context `{EqDecision A}.

251
252
253
254
255
256
  Definition max_prefix_of : list A  list A  list A * list A * list A :=
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
257
      if decide_rel (=) x1 x2
258
      then prod_map id (x1 ::) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
259
260
261
262
263
    end.
  Definition max_suffix_of (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix_of (reverse l1) (reverse l2) with
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.
264
265
  Definition strip_prefix (l1 l2 : list A) := (max_prefix_of l1 l2).1.2.
  Definition strip_suffix (l1 l2 : list A) := (max_suffix_of l1 l2).1.2.
266
End prefix_suffix_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
267

268
(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
269
270
271
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
272
  | sublist_skip x l1 l2 : sublist l1 l2  sublist (x :: l1) (x :: l2)
273
  | sublist_cons x l1 l2 : sublist l1 l2  sublist l1 (x :: l2).
274
Infix "`sublist`" := sublist (at level 70) : C_scope.
275
Hint Extern 0 (_ `sublist` _) => reflexivity.
276
277

(** A list [l2] contains a list [l1] if [l2] is obtained by removing elements
278
from [l1] while possiblity changing the order. *)
279
280
281
282
Inductive contains {A} : relation (list A) :=
  | contains_nil : contains [] []
  | contains_skip x l1 l2 : contains l1 l2  contains (x :: l1) (x :: l2)
  | contains_swap x y l : contains (y :: x :: l) (x :: y :: l)
283
  | contains_cons x l1 l2 : contains l1 l2  contains l1 (x :: l2)
284
285
  | contains_trans l1 l2 l3 : contains l1 l2  contains l2 l3  contains l1 l3.
Infix "`contains`" := contains (at level 70) : C_scope.
286
Hint Extern 0 (_ `contains` _) => reflexivity.
287
288

Section contains_dec_help.
289
  Context `{EqDecision A}.
290
291
292
293
294
295
296
  Fixpoint list_remove (x : A) (l : list A) : option (list A) :=
    match l with
    | [] => None
    | y :: l => if decide (x = y) then Some l else (y ::) <$> list_remove x l
    end.
  Fixpoint list_remove_list (k : list A) (l : list A) : option (list A) :=
    match k with
297
    | [] => Some l | x :: k => list_remove x l = list_remove_list k
298
299
    end.
End contains_dec_help.
300

301
302
303
304
305
Inductive Forall3 {A B C} (P : A  B  C  Prop) :
     list A  list B  list C  Prop :=
  | Forall3_nil : Forall3 P [] [] []
  | Forall3_cons x y z l k k' :
     P x y z  Forall3 P l k k'  Forall3 P (x :: l) (y :: k) (z :: k').
306

307
308
(** Set operations on lists *)
Instance list_subseteq {A} : SubsetEq (list A) := λ l1 l2,  x, x  l1  x  l2.
309

310
Section list_set.
311
312
  Context `{dec : EqDecision A}.
  Global Instance elem_of_list_dec (x : A) :  l, Decision (x  l).
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
  Proof.
   refine (
    fix go l :=
    match l return Decision (x  l) with
    | [] => right _
    | y :: l => cast_if_or (decide (x = y)) (go l)
    end); clear go dec; subst; try (by constructor); abstract by inversion 1.
  Defined.
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x l then remove_dups l else x :: remove_dups l
    end.
  Fixpoint list_difference (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
332
      then list_difference l k else x :: list_difference l k
333
    end.
334
  Definition list_union (l k : list A) : list A := list_difference l k ++ k.
335
336
337
338
339
  Fixpoint list_intersection (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
340
      then x :: list_intersection l k else list_intersection l k
341
342
343
344
345
346
347
348
349
    end.
  Definition list_intersection_with (f : A  A  option A) :
    list A  list A  list A := fix go l k :=
    match l with
    | [] => []
    | x :: l => foldr (λ y,
        match f x y with None => id | Some z => (z ::) end) (go l k) k
    end.
End list_set.
350
351

(** * Basic tactics on lists *)
352
(** The tactic [discriminate_list] discharges a goal if it contains
353
354
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
355
Tactic Notation "discriminate_list" hyp(H) :=
356
  apply (f_equal length) in H;
357
  repeat (csimpl in H || rewrite app_length in H); exfalso; lia.
358
359
Tactic Notation "discriminate_list" :=
  match goal with H : @eq (list _) _ _ |- _ => discriminate_list H end.
360

361
(** The tactic [simplify_list_eq] simplifies hypotheses involving
362
363
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
364
Lemma app_inj_1 {A} (l1 k1 l2 k2 : list A) :
365
366
  length l1 = length k1  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
367
Lemma app_inj_2 {A} (l1 k1 l2 k2 : list A) :
368
369
  length l2 = length k2  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof.
370
  intros ? Hl. apply app_inj_1; auto.
371
372
  apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
Qed.
373
Ltac simplify_list_eq :=
374
  repeat match goal with
375
  | _ => progress simplify_eq/=
376
  | H : _ ++ _ = _ ++ _ |- _ => first
377
    [ apply app_inv_head in H | apply app_inv_tail in H
378
379
    | apply app_inj_1 in H; [destruct H|done]
    | apply app_inj_2 in H; [destruct H|done] ]
Robbert Krebbers's avatar
Robbert Krebbers committed
380
  | H : [?x] !! ?i = Some ?y |- _ =>
381
    destruct i; [change (Some x = Some y) in H | discriminate]
382
  end.
383

384
385
(** * General theorems *)
Section general_properties.
Robbert Krebbers's avatar
Robbert Krebbers committed
386
Context {A : Type}.
387
388
Implicit Types x y z : A.
Implicit Types l k : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
389

390
Global Instance: Inj2 (=) (=) (=) (@cons A).
391
Proof. by injection 1. Qed.
392
Global Instance:  k, Inj (=) (=) (k ++).
393
Proof. intros ???. apply app_inv_head. Qed.
394
Global Instance:  k, Inj (=) (=) (++ k).
395
Proof. intros ???. apply app_inv_tail. Qed.
396
Global Instance: Assoc (=) (@app A).
397
398
399
400
401
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.
402

403
Lemma app_nil l1 l2 : l1 ++ l2 = []  l1 = []  l2 = [].
404
Proof. split. apply app_eq_nil. by intros [-> ->]. Qed.
405
406
Lemma app_singleton l1 l2 x :
  l1 ++ l2 = [x]  l1 = []  l2 = [x]  l1 = [x]  l2 = [].
407
Proof. split. apply app_eq_unit. by intros [[-> ->]|[-> ->]]. Qed.
408
409
410
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : ( i, l1 !! i = l2 !! i)  l1 = l2.
411
Proof.
412
  revert l2. induction l1 as [|x l1 IH]; intros [|y l2] H.
413
414
415
  - done.
  - discriminate (H 0).
  - discriminate (H 0).
416
  - f_equal; [by injection (H 0)|]. apply (IH _ $ λ i, H (S i)).
417
Qed.
418
419
Global Instance list_eq_dec {dec : EqDecision A} : EqDecision (list A) :=
  list_eq_dec dec.
420
421
422
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with [] => left _ | _ => right _ end. Defined.
Lemma list_singleton_reflect l :
423
  option_reflect (λ x, l = [x]) (length l  1) (maybe (λ x, [x]) l).
424
425
426
427
Proof. by destruct l as [|? []]; constructor. Defined.

Definition nil_length : length (@nil A) = 0 := eq_refl.
Definition cons_length x l : length (x :: l) = S (length l) := eq_refl.
428
Lemma nil_or_length_pos l : l = []  length l  0.
429
Proof. destruct l; simpl; auto with lia. Qed.
430
Lemma nil_length_inv l : length l = 0  l = [].
431
432
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
433
Proof. by destruct i. Qed.
434
Lemma lookup_tail l i : tail l !! i = l !! S i.
435
Proof. by destruct l. Qed.
436
Lemma lookup_lt_Some l i x : l !! i = Some x  i < length l.
437
Proof. revert i. induction l; intros [|?] ?; naive_solver auto with arith. Qed.
438
439
440
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i)  i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l  is_Some (l !! i).
441
Proof. revert i. induction l; intros [|?] ?; naive_solver eauto with lia. Qed.
442
443
444
445
446
447
448
449
Lemma lookup_lt_is_Some l i : is_Some (l !! i)  i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None  length l  i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None  length l  i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l  i  l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
450
451
452
Lemma list_eq_same_length l1 l2 n :
  length l2 = n  length l1 = n 
  ( i x y, i < n  l1 !! i = Some x  l2 !! i = Some y  x = y)  l1 = l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
453
Proof.
454
  intros <- Hlen Hl; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
455
  - destruct (lookup_lt_is_Some_2 l1 i) as [y Hy].
456
457
    { rewrite Hlen; eauto using lookup_lt_Some. }
    rewrite Hy; f_equal; apply (Hl i); eauto using lookup_lt_Some.
458
  - by rewrite lookup_ge_None, Hlen, <-lookup_ge_None.
Robbert Krebbers's avatar
Robbert Krebbers committed
459
Qed.
460
Lemma lookup_app_l l1 l2 i : i < length l1  (l1 ++ l2) !! i = l1 !! i.
461
Proof. revert i. induction l1; intros [|?]; naive_solver auto with lia. Qed.
462
463
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x  (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
464
Lemma lookup_app_r l1 l2 i :
465
  length l1  i  (l1 ++ l2) !! i = l2 !! (i - length l1).
466
467
468
469
470
471
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
Lemma lookup_app_Some l1 l2 i x :
  (l1 ++ l2) !! i = Some x 
    l1 !! i = Some x  length l1  i  l2 !! (i - length l1) = Some x.
Proof.
  split.
472
  - revert i. induction l1 as [|y l1 IH]; intros [|i] ?;
473
      simplify_eq/=; auto with lia.
474
    destruct (IH i) as [?|[??]]; auto with lia.
475
  - intros [?|[??]]; auto using lookup_app_l_Some. by rewrite lookup_app_r.
476
Qed.
477
478
479
Lemma list_lookup_middle l1 l2 x n :
  n = length l1  (l1 ++ x :: l2) !! n = Some x.
Proof. intros ->. by induction l1. Qed.
480

481
482
483
484
485
Lemma nth_lookup l i d : nth i l d = from_option id d (l !! i).
Proof. revert i. induction l as [|x l IH]; intros [|i]; simpl; auto. Qed.
Lemma nth_lookup_Some l i d x : l !! i = Some x  nth i l d = x.
Proof. rewrite nth_lookup. by intros ->. Qed.
Lemma nth_lookup_or_length l i d : {l !! i = Some (nth i l d)} + {length l  i}.
Ralf Jung's avatar
Ralf Jung committed
486
Proof.
487
  rewrite nth_lookup. destruct (l !! i) eqn:?; eauto using lookup_ge_None_1.
Ralf Jung's avatar
Ralf Jung committed
488
489
Qed.

490
Lemma list_insert_alter l i x : <[i:=x]>l = alter (λ _, x) i l.
491
Proof. by revert i; induction l; intros []; intros; f_equal/=. Qed.
492
Lemma alter_length f l i : length (alter f i l) = length l.
493
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
494
Lemma insert_length l i x : length (<[i:=x]>l) = length l.
495
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
496
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
497
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
498
Lemma list_lookup_alter_ne f l i j : i  j  alter f i l !! j = l !! j.
499
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
500
Lemma list_lookup_insert l i x : i < length l  <[i:=x]>l !! i = Some x.
501
Proof. revert i. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
502
Lemma list_lookup_insert_ne l i j x : i  j  <[i:=x]>l !! j = l !! j.
503
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
504
505
506
507
508
509
Lemma list_lookup_insert_Some l i x j y :
  <[i:=x]>l !! j = Some y 
    i = j  x = y  j < length l  i  j  l !! j = Some y.
Proof.
  destruct (decide (i = j)) as [->|];
    [split|rewrite list_lookup_insert_ne by done; tauto].
510
  - intros Hy. assert (j < length l).
511
512
    { rewrite <-(insert_length l j x); eauto using lookup_lt_Some. }
    rewrite list_lookup_insert in Hy by done; naive_solver.
513
  - intros [(?&?&?)|[??]]; rewrite ?list_lookup_insert; naive_solver.
514
515
516
Qed.
Lemma list_insert_commute l i j x y :
  i  j  <[i:=x]>(<[j:=y]>l) = <[j:=y]>(<[i:=x]>l).
517
Proof. revert i j. by induction l; intros [|?] [|?] ?; f_equal/=; auto. Qed.
518
519
Lemma list_lookup_other l i x :
  length l  1  l !! i = Some x   j y, j  i  l !! j = Some y.
Robbert Krebbers's avatar
Robbert Krebbers committed
520
Proof.
521
  intros. destruct i, l as [|x0 [|x1 l]]; simplify_eq/=.
522
523
  - by exists 1, x1.
  - by exists 0, x0.
Robbert Krebbers's avatar
Robbert Krebbers committed
524
Qed.
525
526
Lemma alter_app_l f l1 l2 i :
  i < length l1  alter f i (l1 ++ l2) = alter f i l1 ++ l2.
527
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
528
Lemma alter_app_r f l1 l2 i :
529
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
530
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
531
532
Lemma alter_app_r_alt f l1 l2 i :
  length l1  i  alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
533
534
535
536
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
537
Lemma list_alter_id f l i : ( x, f x = x)  alter f i l = l.
538
Proof. intros ?. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
539
540
Lemma list_alter_ext f g l k i :
  ( x, l !! i = Some x  f x = g x)  l = k  alter f i l = alter g i k.
541
Proof. intros H ->. revert i H. induction k; intros [|?] ?; f_equal/=; auto. Qed.
542
543
Lemma list_alter_compose f g l i :
  alter (f  g) i l = alter f i (alter g i l).
544
Proof. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
545
546
Lemma list_alter_commute f g l i j :
  i  j  alter f i (alter g j l) = alter g j (alter f i l).
547
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal/=; auto with lia. Qed.
548
549
Lemma insert_app_l l1 l2 i x :
  i < length l1  <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
550
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
551
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
552
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
553
554
Lemma insert_app_r_alt l1 l2 i x :
  length l1  i  <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
555
556
557
558
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply insert_app_r.
Qed.
559
Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
560
Proof. induction l1; f_equal/=; auto. Qed.
561

562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
Lemma inserts_length l i k : length (list_inserts i k l) = length l.
Proof.
  revert i. induction k; intros ?; csimpl; rewrite ?insert_length; auto.
Qed.
Lemma list_lookup_inserts l i k j :
  i  j < i + length k  j < length l 
  list_inserts i k l !! j = k !! (j - i).
Proof.
  revert i j. induction k as [|y k IH]; csimpl; intros i j ??; [lia|].
  destruct (decide (i = j)) as [->|].
  { by rewrite list_lookup_insert, Nat.sub_diag
      by (rewrite inserts_length; lia). }
  rewrite list_lookup_insert_ne, IH by lia.
  by replace (j - i) with (S (j - S i)) by lia.
Qed.
Lemma list_lookup_inserts_lt l i k j :
  j < i  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; intros i j ?; csimpl;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_ge l i k j :
  i + length k  j  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; csimpl; intros i j ?;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_Some l i k j y :
  list_inserts i k l !! j = Some y 
    (j < i  i + length k  j)  l !! j = Some y 
    i  j < i + length k  j < length l  k !! (j - i) = Some y.
Proof.
  destruct (decide (j < i)).
  { rewrite list_lookup_inserts_lt by done; intuition lia. }
  destruct (decide (i + length k  j)).
  { rewrite list_lookup_inserts_ge by done; intuition lia. }
  split.
599
  - intros Hy. assert (j < length l).
600
601
    { rewrite <-(inserts_length l i k); eauto using lookup_lt_Some. }
    rewrite list_lookup_inserts in Hy by lia. intuition lia.
602
  - intuition. by rewrite list_lookup_inserts by lia.
603
604
605
606
607
608
609
610
Qed.
Lemma list_insert_inserts_lt l i j x k :
  i < j  <[i:=x]>(list_inserts j k l) = list_inserts j k (<[i:=x]>l).
Proof.
  revert i j. induction k; intros i j ?; simpl;
    rewrite 1?list_insert_commute by lia; auto with f_equal.
Qed.

611
(** ** Properties of the [elem_of] predicate *)
612
Lemma not_elem_of_nil x : x  [].
613
Proof. by inversion 1. Qed.
614
Lemma elem_of_nil x : x  []  False.
615
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
616
Lemma elem_of_nil_inv l : ( x, x  l)  l = [].
617
Proof. destruct l. done. by edestruct 1; constructor. Qed.
618
619
Lemma elem_of_not_nil x l : x  l  l  [].
Proof. intros ? ->. by apply (elem_of_nil x). Qed.
620
Lemma elem_of_cons l x y : x  y :: l  x = y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
621
Proof. by split; [inversion 1; subst|intros [->|?]]; constructor. Qed.
622
Lemma not_elem_of_cons l x y : x  y :: l  x  y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
623
Proof. rewrite elem_of_cons. tauto. Qed.
624
Lemma elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
625
Proof.
626
  induction l1.
627
628
  - split; [by right|]. intros [Hx|]; [|done]. by destruct (elem_of_nil x).
  - simpl. rewrite !elem_of_cons, IHl1. tauto.
629
Qed.
630
Lemma not_elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
631
Proof. rewrite elem_of_app. tauto. Qed.
632
Lemma elem_of_list_singleton x y : x  [y]  x = y.
633
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
634
Global Instance elem_of_list_permutation_proper x : Proper (() ==> iff) (x ).
635
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
636
Lemma elem_of_list_split l x : x  l   l1 l2, l = l1 ++ x :: l2.
637
Proof.
638
  induction 1 as [x l|x y l ? [l1 [l2 ->]]]; [by eexists [], l|].
639
  by exists (y :: l1), l2.
640
Qed.
641
Lemma elem_of_list_lookup_1 l x : x  l   i, l !! i = Some x.
642
Proof.
643
644
  induction 1 as [|???? IH]; [by exists 0 |].
  destruct IH as [i ?]; auto. by exists (S i).
645
Qed.
646
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x  x  l.
647
Proof.
648
  revert i. induction l; intros [|i] ?; simplify_eq/=; constructor; eauto.
649
Qed.
650
651
Lemma elem_of_list_lookup l x : x  l   i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.
652
653
654
655
Lemma elem_of_list_omap {B} (f : A  option B) l (y : B) :
  y  omap f l   x, x  l  f x = Some y.
Proof.
  split.
656
  - induction l as [|x l]; csimpl; repeat case_match; inversion 1; subst;
657
      setoid_rewrite elem_of_cons; naive_solver.
658
  - intros (x&Hx&?). by induction Hx; csimpl; repeat case_match;
659
      simplify_eq; try constructor; auto.
660
Qed.
661

662
(** ** Properties of the [NoDup] predicate *)
663
664
Lemma NoDup_nil : NoDup (@nil A)  True.
Proof. split; constructor. Qed.
665
Lemma NoDup_cons x l : NoDup (x :: l)  x  l  NoDup l.
666
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
667
Lemma NoDup_cons_11 x l : NoDup (x :: l)  x  l.
668
Proof. rewrite NoDup_cons. by intros [??]. Qed.
669
Lemma NoDup_cons_12 x l : NoDup (x :: l)  NoDup l.
670
Proof. rewrite NoDup_cons. by intros [??]. Qed.
671
Lemma NoDup_singleton x : NoDup [x].
672
Proof. constructor. apply not_elem_of_nil. constructor. Qed.
Robbert Krebbers's avatar