list.v 137 KB
Newer Older
1
(* Copyright (c) 2012-2013, Robbert Krebbers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
5
Require Export Permutation.
6
Require Export numbers base decidable option.
Robbert Krebbers's avatar
Robbert Krebbers committed
7

8
Arguments length {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
9
10
11
Arguments cons {_} _ _.
Arguments app {_} _ _.
Arguments Permutation {_} _ _.
12
Arguments Forall_cons {_} _ _ _ _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
13

14
15
16
Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.
17

18
19
20
Arguments take {_} !_ !_ /.
Arguments drop {_} !_ !_ /.

Robbert Krebbers's avatar
Robbert Krebbers committed
21
22
23
24
25
26
27
Notation "(::)" := cons (only parsing) : C_scope.
Notation "( x ::)" := (cons x) (only parsing) : C_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : C_scope.
Notation "(++)" := app (only parsing) : C_scope.
Notation "( l ++)" := (app l) (only parsing) : C_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : C_scope.

28
29
30
31
32
33
34
35
36
Infix "≡ₚ" := Permutation (at level 70, no associativity) : C_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : C_scope.
Notation "( x ≡ₚ)" := (Permutation x) (only parsing) : C_scope.
Notation "(≡ₚ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢ₚ)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ₚ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢ₚ)" := (λ y, x ≢ₚ y) (only parsing) : C_scope.
Notation "(≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : C_scope.

37
38
39
(** * Definitions *)
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
40
Instance list_lookup {A} : Lookup nat A (list A) :=
41
  fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
42
  match l with
43
  | [] => None | x :: l => match i with 0 => Some x | S i => l !! i end
44
  end.
45
46
47

(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
48
Instance list_alter {A} (f : A  A) : AlterD nat A (list A) f :=
49
  fix go i l {struct l} := let _ : AlterD _ _ _ f := @go in
50
51
  match l with
  | [] => []
52
  | x :: l => match i with 0 => f x :: l | S i => x :: alter f i l end
53
  end.
54

55
56
(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
57
58
59
60
61
62
Instance list_insert {A} : Insert nat A (list A) :=
  fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
  match l with
  | [] => []
  | x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end
  end.
63

64
65
66
(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
67
68
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
69
70
  match l with
  | [] => []
71
  | x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end
72
  end.
73
74
75

(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
76
Definition option_list {A} : option A  list A := option_rect _ (λ x, [x]) [].
77
78
Definition list_singleton {A} (l : list A) : option A :=
  match l with [x] => Some x | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
79
80
81
82

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
83
  fix go P _ l := let _ : Filter _ _ := @go in
Robbert Krebbers's avatar
Robbert Krebbers committed
84
85
  match l with
  | [] => []
86
  | x :: l => if decide (P x) then x :: filter P l else filter P l
87
88
89
90
91
92
93
  end.

(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
Definition list_find {A} P `{ x, Decision (P x)} : list A  option nat :=
  fix go l :=
  match l with
94
  | [] => None | x :: l => if decide (P x) then Some 0 else S <$> go l
95
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
96
97
98
99

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
100
  match n with 0 => [] | S n => x :: replicate n x end.
Robbert Krebbers's avatar
Robbert Krebbers committed
101
102
103
104

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].

105
106
107
108
(** The function [last l] returns the last element of the list [l], or [None]
if the list [l] is empty. *)
Fixpoint last {A} (l : list A) : option A :=
  match l with [] => None | [x] => Some x | _ :: l => last l end.
109

Robbert Krebbers's avatar
Robbert Krebbers committed
110
111
112
113
114
115
(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
116
  | x :: l => match n with 0 => [] | S n => x :: resize n y l end
Robbert Krebbers's avatar
Robbert Krebbers committed
117
118
119
  end.
Arguments resize {_} !_ _ !_.

120
121
122
(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
123
124
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
125
  | [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
126
127
  end.

128
Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
129
130
131
132
  guard (i + n  length l); Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A  list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.
133

134
135
136
137
(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.
Definition foldl {A B} (f : A  B  A) : A  list B  A :=
138
  fix go a l := match l with [] => a | x :: l => go (f a x) l end.
139
140
141
142
143

(** The monadic operations. *)
Instance list_ret: MRet list := λ A x, x :: @nil A.
Instance list_fmap {A B} (f : A  B) : FMapD list f :=
  fix go (l : list A) :=
144
  match l with [] => [] | x :: l => f x :: @fmap _ _ _ f go l end.
145
146
Instance list_bind {A B} (f : A  list B) : MBindD list f :=
  fix go (l : list A) :=
147
  match l with [] => [] | x :: l => f x ++ @mbind _ _ _ f go l end.
148
149
Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
150
  match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.
151
Definition mapM `{MBind M, MRet M} {A B} (f : A  M B) : list A  M (list B) :=
152
  fix go l :=
153
  match l with [] => mret [] | x :: l => y  f x; k  go l; mret (y :: k) end.
154
155
156
157
158

(** We define stronger variants of map and fold that allow the mapped
function to use the index of the elements. *)
Definition imap_go {A B} (f : nat  A  B) : nat  list A  list B :=
  fix go (n : nat) (l : list A) :=
159
  match l with [] => [] | x :: l => f n x :: go (S n) l end.
160
Definition imap {A B} (f : nat  A  B) : list A  list B := imap_go f 0.
161
162
163
164
165
166
167
168
169
170
171
Definition zipped_map {A B} (f : list A  list A  A  B) :
  list A  list A  list B := fix go l k :=
  match k with [] => [] | x :: k => f l k x :: go (x :: l) k end.

Inductive zipped_Forall {A} (P : list A  list A  A  Prop) :
    list A  list A  Prop :=
  | zipped_Forall_nil l : zipped_Forall P l []
  | zipped_Forall_cons l k x :
     P l k x  zipped_Forall P (x :: l) k  zipped_Forall P l (x :: k).
Arguments zipped_Forall_nil {_ _} _.
Arguments zipped_Forall_cons {_ _} _ _ _ _ _.
172

173
174
175
176
177
178
179
(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A  A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l => (if β then f x else x) :: mask f βs l
  | _, _ => l
  end.
180
181
182
183

(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
184
  | [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::) <$> interleave x l)
185
186
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
187
  match l with [] => [[]] | x :: l => permutations l = interleave x end.
188

189
190
(** The predicate [suffix_of] holds if the first list is a suffix of the second.
The predicate [prefix_of] holds if the first list is a prefix of the second. *)
191
192
Definition suffix_of {A} : relation (list A) := λ l1 l2,  k, l2 = k ++ l1.
Definition prefix_of {A} : relation (list A) := λ l1 l2,  k, l2 = l1 ++ k.
193
194
Infix "`suffix_of`" := suffix_of (at level 70) : C_scope.
Infix "`prefix_of`" := prefix_of (at level 70) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
195

196
197
198
199
200
201
202
203
Section prefix_suffix_ops.
  Context `{ x y : A, Decision (x = y)}.
  Definition max_prefix_of : list A  list A  list A * list A * list A :=
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
204
      if decide_rel (=) x1 x2
205
      then prod_map id (x1 ::) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
206
207
208
209
210
    end.
  Definition max_suffix_of (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix_of (reverse l1) (reverse l2) with
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.
211
212
  Definition strip_prefix (l1 l2 : list A) := (max_prefix_of l1 l2).1.2.
  Definition strip_suffix (l1 l2 : list A) := (max_suffix_of l1 l2).1.2.
213
End prefix_suffix_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
214

215
(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
216
217
218
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
219
  | sublist_skip x l1 l2 : sublist l1 l2  sublist (x :: l1) (x :: l2)
220
  | sublist_cons x l1 l2 : sublist l1 l2  sublist l1 (x :: l2).
221
222
223
Infix "`sublist`" := sublist (at level 70) : C_scope.

(** A list [l2] contains a list [l1] if [l2] is obtained by removing elements
224
from [l1] while possiblity changing the order. *)
225
226
227
228
Inductive contains {A} : relation (list A) :=
  | contains_nil : contains [] []
  | contains_skip x l1 l2 : contains l1 l2  contains (x :: l1) (x :: l2)
  | contains_swap x y l : contains (y :: x :: l) (x :: y :: l)
229
  | contains_cons x l1 l2 : contains l1 l2  contains l1 (x :: l2)
230
231
232
233
234
235
236
237
238
239
240
241
  | contains_trans l1 l2 l3 : contains l1 l2  contains l2 l3  contains l1 l3.
Infix "`contains`" := contains (at level 70) : C_scope.

Section contains_dec_help.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Fixpoint list_remove (x : A) (l : list A) : option (list A) :=
    match l with
    | [] => None
    | y :: l => if decide (x = y) then Some l else (y ::) <$> list_remove x l
    end.
  Fixpoint list_remove_list (k : list A) (l : list A) : option (list A) :=
    match k with
242
    | [] => Some l | x :: k => list_remove x l = list_remove_list k
243
244
    end.
End contains_dec_help.
245

246
247
248
249
250
Inductive Forall3 {A B C} (P : A  B  C  Prop) :
     list A  list B  list C  Prop :=
  | Forall3_nil : Forall3 P [] [] []
  | Forall3_cons x y z l k k' :
     P x y z  Forall3 P l k k'  Forall3 P (x :: l) (y :: k) (z :: k').
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

(** Set operations on lists *)
Section list_set.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Global Instance elem_of_list_dec {dec :  x y : A, Decision (x = y)}
    (x : A) :  l, Decision (x  l).
  Proof.
   refine (
    fix go l :=
    match l return Decision (x  l) with
    | [] => right _
    | y :: l => cast_if_or (decide (x = y)) (go l)
    end); clear go dec; subst; try (by constructor); abstract by inversion 1.
  Defined.
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x l then remove_dups l else x :: remove_dups l
    end.
  Fixpoint list_difference (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
276
      then list_difference l k else x :: list_difference l k
277
278
279
280
281
282
    end.
  Fixpoint list_intersection (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
283
      then x :: list_intersection l k else list_intersection l k
284
285
286
287
288
289
290
291
292
    end.
  Definition list_intersection_with (f : A  A  option A) :
    list A  list A  list A := fix go l k :=
    match l with
    | [] => []
    | x :: l => foldr (λ y,
        match f x y with None => id | Some z => (z ::) end) (go l k) k
    end.
End list_set.
293
294

(** * Basic tactics on lists *)
295
296
297
(** The tactic [discriminate_list_equality] discharges a goal if it contains
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
298
299
Tactic Notation "discriminate_list_equality" hyp(H) :=
  apply (f_equal length) in H;
300
  repeat (simpl in H || rewrite app_length in H); exfalso; lia.
301
Tactic Notation "discriminate_list_equality" :=
302
303
304
  match goal with
  | H : @eq (list _) _ _ |- _ => discriminate_list_equality H
  end.
305

306
307
308
(** The tactic [simplify_list_equality] simplifies hypotheses involving
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
309
310
311
312
313
314
315
316
317
Lemma app_injective_1 {A} (l1 k1 l2 k2 : list A) :
  length l1 = length k1  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
Lemma app_injective_2 {A} (l1 k1 l2 k2 : list A) :
  length l2 = length k2  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof.
  intros ? Hl. apply app_injective_1; auto.
  apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
Qed.
318
319
320
Ltac simplify_list_equality :=
  repeat match goal with
  | _ => progress simplify_equality
321
  | H : _ ++ _ = _ ++ _ |- _ => first
322
323
324
    [ apply app_inv_head in H | apply app_inv_tail in H
    | apply app_injective_1 in H; [destruct H|done]
    | apply app_injective_2 in H; [destruct H|done] ]
Robbert Krebbers's avatar
Robbert Krebbers committed
325
  | H : [?x] !! ?i = Some ?y |- _ =>
326
327
328
    destruct i; [change (Some x = Some y) in H | discriminate]
  end;
  try discriminate_list_equality.
329
330
Ltac simplify_list_equality' :=
  repeat (progress simpl in * || simplify_list_equality).
331

332
333
(** * General theorems *)
Section general_properties.
Robbert Krebbers's avatar
Robbert Krebbers committed
334
Context {A : Type}.
335
336
Implicit Types x y z : A.
Implicit Types l k : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
337

338
339
340
Global Instance: Injective2 (=) (=) (=) (@cons A).
Proof. by injection 1. Qed.
Global Instance:  k, Injective (=) (=) (k ++).
341
Proof. intros ???. apply app_inv_head. Qed.
342
Global Instance:  k, Injective (=) (=) (++ k).
343
Proof. intros ???. apply app_inv_tail. Qed.
344
345
346
347
348
349
Global Instance: Associative (=) (@app A).
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.
350

351
Lemma app_nil l1 l2 : l1 ++ l2 = []  l1 = []  l2 = [].
352
Proof. split. apply app_eq_nil. by intros [-> ->]. Qed.
353
354
Lemma app_singleton l1 l2 x :
  l1 ++ l2 = [x]  l1 = []  l2 = [x]  l1 = [x]  l2 = [].
355
Proof. split. apply app_eq_unit. by intros [[-> ->]|[-> ->]]. Qed.
356
357
358
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : ( i, l1 !! i = l2 !! i)  l1 = l2.
359
360
Proof.
  revert l2. induction l1; intros [|??] H.
361
  * done.
362
363
  * discriminate (H 0).
  * discriminate (H 0).
364
  * f_equal; [by injection (H 0)|]. apply (IHl1 _ $ λ i, H (S i)).
365
Qed.
366
Global Instance list_eq_dec {dec :  x y, Decision (x = y)} :  l k,
367
  Decision (l = k) := list_eq_dec dec.
368
369
370
371
372
373
374
375
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with [] => left _ | _ => right _ end. Defined.
Lemma list_singleton_reflect l :
  option_reflect (λ x, l = [x]) (length l  1) (list_singleton l).
Proof. by destruct l as [|? []]; constructor. Defined.

Definition nil_length : length (@nil A) = 0 := eq_refl.
Definition cons_length x l : length (x :: l) = S (length l) := eq_refl.
376
Lemma nil_or_length_pos l : l = []  length l  0.
377
Proof. destruct l; simpl; auto with lia. Qed.
378
Lemma nil_length_inv l : length l = 0  l = [].
379
380
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
381
Proof. by destruct i. Qed.
382
Lemma lookup_tail l i : tail l !! i = l !! S i.
383
Proof. by destruct l. Qed.
384
385
Lemma lookup_lt_Some l i x : l !! i = Some x  i < length l.
Proof.
386
  revert i. induction l; intros [|?] ?; simplify_equality'; auto with arith.
387
388
389
390
391
Qed.
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i)  i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l  is_Some (l !! i).
Proof.
392
  revert i. induction l; intros [|?] ?; simplify_equality'; eauto with lia.
393
394
395
396
397
398
399
400
401
402
Qed.
Lemma lookup_lt_is_Some l i : is_Some (l !! i)  i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None  length l  i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None  length l  i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l  i  l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
Lemma list_eq_length l1 l2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
403
  length l2 = length l1 
404
  ( i x y, l1 !! i = Some x  l2 !! i = Some y  x = y)  l1 = l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
405
Proof.
406
407
408
  intros Hl ?; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
  * destruct (lookup_lt_is_Some_2 l1 i) as [y ?]; [|naive_solver].
    rewrite <-Hl. eauto using lookup_lt_Some.
409
  * by rewrite lookup_ge_None, <-Hl, <-lookup_ge_None.
Robbert Krebbers's avatar
Robbert Krebbers committed
410
Qed.
411
Lemma lookup_app_l l1 l2 i : i < length l1  (l1 ++ l2) !! i = l1 !! i.
412
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
413
414
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x  (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
415
Lemma lookup_app_r l1 l2 i : (l1 ++ l2) !! (length l1 + i) = l2 !! i.
416
417
418
419
Proof. revert i. induction l1; intros [|i]; simplify_equality'; auto. Qed.
Lemma lookup_app_r_alt l1 l2 i j :
  j = length l1  (l1 ++ l2) !! (j + i) = l2 !! i.
Proof. intros ->. by apply lookup_app_r. Qed.
420
421
Lemma lookup_app_r_Some l1 l2 i x :
  l2 !! i = Some x  (l1 ++ l2) !! (length l1 + i) = Some x.
422
Proof. by rewrite lookup_app_r. Qed.
423
424
425
Lemma lookup_app_minus_r l1 l2 i :
  length l1  i  (l1 ++ l2) !! i = l2 !! (i - length l1).
Proof. intros. rewrite <-(lookup_app_r l1 l2). f_equal. lia. Qed.
426
427
Lemma lookup_app_inv l1 l2 i x :
  (l1 ++ l2) !! i = Some x  l1 !! i = Some x  l2 !! (i - length l1) = Some x.
428
Proof. revert i. induction l1; intros [|i] ?; simplify_equality'; auto. Qed.
429
430
431
Lemma list_lookup_middle l1 l2 x n :
  n = length l1  (l1 ++ x :: l2) !! n = Some x.
Proof. intros ->. by induction l1. Qed.
432

433
Lemma alter_length f l i : length (alter f i l) = length l.
434
Proof. revert i. by induction l; intros [|?]; f_equal'. Qed.
435
Lemma insert_length l i x : length (<[i:=x]>l) = length l.
436
Proof. revert i. by induction l; intros [|?]; f_equal'. Qed.
437
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
438
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
439
Lemma list_lookup_alter_ne f l i j : i  j  alter f i l !! j = l !! j.
440
Proof.
441
  revert i j. induction l; [done|]. intros [] [] ?; simpl; auto with congruence.
442
Qed.
443
Lemma list_lookup_insert l i x : i < length l  <[i:=x]>l !! i = Some x.
444
445
Proof. revert i. induction l; intros [|?] ?; f_equal'; auto with lia. Qed.
Lemma list_lookup_insert_ne l i j x : i  j  <[i:=x]>l !! j = l !! j.
446
Proof.
447
  revert i j. induction l; [done|]. intros [] [] ?; simpl; auto with congruence.
448
Qed.
449
450
Lemma list_lookup_other l i x :
  length l  1  l !! i = Some x   j y, j  i  l !! j = Some y.
Robbert Krebbers's avatar
Robbert Krebbers committed
451
Proof.
452
  intros. destruct i, l as [|x0 [|x1 l]]; simplify_equality'.
Robbert Krebbers's avatar
Robbert Krebbers committed
453
454
455
  * by exists 1 x1.
  * by exists 0 x0.
Qed.
456
457
Lemma alter_app_l f l1 l2 i :
  i < length l1  alter f i (l1 ++ l2) = alter f i l1 ++ l2.
458
Proof. revert i. induction l1; intros [|?] ?; f_equal'; auto with lia. Qed.
459
Lemma alter_app_r f l1 l2 i :
460
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
461
Proof. revert i. induction l1; intros [|?]; f_equal'; auto. Qed.
462
463
Lemma alter_app_r_alt f l1 l2 i :
  length l1  i  alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
464
465
466
467
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
468
469
470
Lemma list_alter_ext f g l k i :
  ( x, l !! i = Some x  f x = g x)  l = k  alter f i l = alter g i k.
Proof. intros H ->. revert i H. induction k; intros [|?] ?; f_equal'; auto. Qed.
471
472
Lemma list_alter_compose f g l i :
  alter (f  g) i l = alter f i (alter g i l).
473
Proof. revert i. induction l; intros [|?]; f_equal'; auto. Qed.
474
475
Lemma list_alter_commute f g l i j :
  i  j  alter f i (alter g j l) = alter g j (alter f i l).
476
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal'; auto with lia. Qed.
477
478
Lemma insert_app_l l1 l2 i x :
  i < length l1  <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
479
Proof. revert i. induction l1; intros [|?] ?; f_equal'; auto with lia. Qed.
480
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
481
Proof. revert i. induction l1; intros [|?]; f_equal'; auto. Qed.
482
483
Lemma insert_app_r_alt l1 l2 i x :
  length l1  i  <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
484
485
486
487
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply insert_app_r.
Qed.
488
Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
489
Proof. induction l1; f_equal'; auto. Qed.
490

491
(** ** Properties of the [elem_of] predicate *)
492
Lemma not_elem_of_nil x : x  [].
493
Proof. by inversion 1. Qed.
494
Lemma elem_of_nil x : x  []  False.
495
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
496
Lemma elem_of_nil_inv l : ( x, x  l)  l = [].
497
Proof. destruct l. done. by edestruct 1; constructor. Qed.
498
Lemma elem_of_cons l x y : x  y :: l  x = y  x  l.
499
Proof. split; [inversion 1; subst|intros [->|?]]; constructor (done). Qed.
500
Lemma not_elem_of_cons l x y : x  y :: l  x  y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
501
Proof. rewrite elem_of_cons. tauto. Qed.
502
Lemma elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
503
Proof.
504
  induction l1.
505
  * split; [by right|]. intros [Hx|]; [|done]. by destruct (elem_of_nil x).
506
  * simpl. rewrite !elem_of_cons, IHl1. tauto.
507
Qed.
508
Lemma not_elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
509
Proof. rewrite elem_of_app. tauto. Qed.
510
Lemma elem_of_list_singleton x y : x  [y]  x = y.
511
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
512
Global Instance elem_of_list_permutation_proper x : Proper (() ==> iff) (x ).
513
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
514
Lemma elem_of_list_split l x : x  l   l1 l2, l = l1 ++ x :: l2.
515
Proof.
516
517
  induction 1 as [x l|x y l ? [l1 [l2 ->]]]; [by eexists [], l|].
  by exists (y :: l1) l2.
518
Qed.
519
Lemma elem_of_list_lookup_1 l x : x  l   i, l !! i = Some x.
520
Proof.
521
522
  induction 1 as [|???? IH]; [by exists 0 |].
  destruct IH as [i ?]; auto. by exists (S i).
523
Qed.
524
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x  x  l.
525
Proof.
526
  revert i. induction l; intros [|i] ?; simplify_equality'; constructor; eauto.
527
Qed.
528
529
530
531
532
533
Lemma elem_of_list_lookup l x : x  l   i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.

(** ** Set operations on lists *)
Section list_set.
  Context {dec :  x y, Decision (x = y)}.
534
  Lemma elem_of_list_difference l k x : x  list_difference l k  x  l  x  k.
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
  Proof.
    split; induction l; simpl; try case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma list_difference_nodup l k : NoDup l  NoDup (list_difference l k).
  Proof.
    induction 1; simpl; try case_decide.
    * constructor.
    * done.
    * constructor. rewrite elem_of_list_difference; intuition. done.
  Qed.
  Lemma elem_of_list_intersection l k x :
    x  list_intersection l k  x  l  x  k.
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma list_intersection_nodup l k : NoDup l  NoDup (list_intersection l k).
  Proof.
    induction 1; simpl; try case_decide.
    * constructor.
    * constructor. rewrite elem_of_list_intersection; intuition. done.
    * done.
  Qed.
  Lemma elem_of_list_intersection_with f l k x :
    x  list_intersection_with f l k   x1 x2,
      x1  l  x2  k  f x1 x2 = Some x.
  Proof.
    split.
564
565
566
567
568
569
570
571
    * induction l as [|x1 l IH]; simpl; [by rewrite elem_of_nil|].
      intros Hx. setoid_rewrite elem_of_cons.
      cut (( x2, x2  k  f x1 x2 = Some x)
         x  list_intersection_with f l k); [naive_solver|].
      clear IH. revert Hx. generalize (list_intersection_with f l k).
      induction k; simpl; [by auto|].
      case_match; setoid_rewrite elem_of_cons; naive_solver.
    * intros (x1&x2&Hx1&Hx2&Hx). induction Hx1 as [x1|x1 ? l ? IH]; simpl.
572
573
574
575
576
      + generalize (list_intersection_with f l k).
        induction Hx2; simpl; [by rewrite Hx; left |].
        case_match; simpl; try setoid_rewrite elem_of_cons; auto.
      + generalize (IH Hx). clear Hx IH Hx2.
        generalize (list_intersection_with f l k).
577
        induction k; simpl; intros; [done|].
578
579
580
        case_match; simpl; rewrite ?elem_of_cons; auto.
  Qed.
End list_set.
Robbert Krebbers's avatar
Robbert Krebbers committed
581

582
(** ** Properties of the [NoDup] predicate *)
583
584
Lemma NoDup_nil : NoDup (@nil A)  True.
Proof. split; constructor. Qed.
585
Lemma NoDup_cons x l : NoDup (x :: l)  x  l  NoDup l.
586
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
587
Lemma NoDup_cons_11 x l : NoDup (x :: l)  x  l.
588
Proof. rewrite NoDup_cons. by intros [??]. Qed.
589
Lemma NoDup_cons_12 x l : NoDup (x :: l)  NoDup l.
590
Proof. rewrite NoDup_cons. by intros [??]. Qed.
591
Lemma NoDup_singleton x : NoDup [x].
592
Proof. constructor. apply not_elem_of_nil. constructor. Qed.
593
Lemma NoDup_app l k : NoDup (l ++ k)  NoDup l  ( x, x  l  x  k)  NoDup k.
Robbert Krebbers's avatar
Robbert Krebbers committed
594
Proof.
595
  induction l; simpl.
596
  * rewrite NoDup_nil. setoid_rewrite elem_of_nil. naive_solver.
597
  * rewrite !NoDup_cons.
Robbert Krebbers's avatar
Robbert Krebbers committed
598
    setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app. naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
599
Qed.
600
Global Instance NoDup_proper: Proper (() ==> iff) (@NoDup A).
601
602
603
604
605
606
607
Proof.
  induction 1 as [|x l k Hlk IH | |].
  * by rewrite !NoDup_nil.
  * by rewrite !NoDup_cons, IH, Hlk.
  * rewrite !NoDup_cons, !elem_of_cons. intuition.
  * intuition.
Qed.
608
609
Lemma NoDup_lookup l i j x :
  NoDup l  l !! i = Some x  l !! j = Some x  i = j.
610
611
612
613
614
615
Proof.
  intros Hl. revert i j. induction Hl as [|x' l Hx Hl IH].
  { intros; simplify_equality. }
  intros [|i] [|j] ??; simplify_equality'; eauto with f_equal;
    exfalso; eauto using elem_of_list_lookup_2.
Qed.
616
617
Lemma NoDup_alt l :
  NoDup l   i j x, l !! i = Some x  l !! j = Some x  i = j.
618
Proof.
619
620
621
622
623
  split; eauto using NoDup_lookup.
  induction l as [|x l IH]; intros Hl; constructor.
  * rewrite elem_of_list_lookup. intros [i ?].
    by feed pose proof (Hl (S i) 0 x); auto.
  * apply IH. intros i j x' ??. by apply (injective S), (Hl (S i) (S j) x').
624
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
625

626
627
628
629
630
631
Section no_dup_dec.
  Context `{! x y, Decision (x = y)}.
  Global Instance NoDup_dec:  l, Decision (NoDup l) :=
    fix NoDup_dec l :=
    match l return Decision (NoDup l) with
    | [] => left NoDup_nil_2
632
    | x :: l =>
633
634
635
636
637
638
639
640
      match decide_rel () x l with
      | left Hin => right (λ H, NoDup_cons_11 _ _ H Hin)
      | right Hin =>
        match NoDup_dec l with
        | left H => left (NoDup_cons_2 _ _ Hin H)
        | right H => right (H  NoDup_cons_12 _ _)
        end
      end
641
    end.
642
  Lemma elem_of_remove_dups l x : x  remove_dups l  x  l.
643
644
645
646
647
648
649
650
651
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_cons; intuition (simplify_equality; auto).
  Qed.
  Lemma remove_dups_nodup l : NoDup (remove_dups l).
  Proof.
    induction l; simpl; repeat case_decide; try constructor; auto.
    by rewrite elem_of_remove_dups.
  Qed.
652
End no_dup_dec.
653

654
(** ** Properties of the [filter] function *)
655
656
657
658
659
660
661
662
663
664
665
666
667
Section filter.
  Context (P : A  Prop) `{ x, Decision (P x)}.
  Lemma elem_of_list_filter l x : x  filter P l  P x  x  l.
  Proof.
    unfold filter. induction l; simpl; repeat case_decide;
       rewrite ?elem_of_nil, ?elem_of_cons; naive_solver.
  Qed.
  Lemma filter_nodup l : NoDup l  NoDup (filter P l).
  Proof.
    unfold filter. induction 1; simpl; repeat case_decide;
      rewrite ?NoDup_nil, ?NoDup_cons, ?elem_of_list_filter; tauto.
  Qed.
End filter.
Robbert Krebbers's avatar
Robbert Krebbers committed
668

669
670
671
(** ** Properties of the [find] function *)
Section find.
  Context (P : A  Prop) `{ x, Decision (P x)}.
672
673
  Lemma list_find_Some l i :
    list_find P l = Some i   x, l !! i = Some x  P x.
674
  Proof.
675
    revert i. induction l; intros [] ?; simplify_option_equality; eauto.
676
677
678
  Qed.
  Lemma list_find_elem_of l x : x  l  P x   i, list_find P l = Some i.
  Proof.
679
680
    induction 1 as [|x y l ? IH]; intros; simplify_option_equality; eauto.
    by destruct IH as [i ->]; [|exists (S i)].
681
682
683
684
685
686
687
  Qed.
End find.

Section find_eq.
  Context `{ x y, Decision (x = y)}.
  Lemma list_find_eq_Some l i x : list_find (x =) l = Some i  l !! i = Some x.
  Proof.
688
689
    intros.
    destruct (list_find_Some (x =) l i) as (?&?&?); auto with congruence.
690
691
692
693
694
  Qed.
  Lemma list_find_eq_elem_of l x : x  l   i, list_find (x=) l = Some i.
  Proof. eauto using list_find_elem_of. Qed.
End find_eq.

695
(** ** Properties of the [reverse] function *)
696
697
Lemma reverse_nil : reverse [] = @nil A.
Proof. done. Qed.
698
Lemma reverse_singleton x : reverse [x] = [x].
699
Proof. done. Qed.
700
Lemma reverse_cons l x : reverse (x :: l) = reverse l ++ [x].
701
Proof. unfold reverse. by rewrite <-!rev_alt. Qed.
702
Lemma reverse_snoc l x : reverse (l ++ [x]) = x :: reverse l.
703
Proof. unfold reverse. by rewrite <-!rev_alt, rev_unit. Qed.
704
Lemma reverse_app l1 l2 : reverse (l1 ++ l2) = reverse l2 ++ reverse l1.
705
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_app_distr. Qed.
706
Lemma reverse_length l : length (reverse l) = length l.
707
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_length. Qed.
708
Lemma reverse_involutive l : reverse (reverse l) = l.
709
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_involutive. Qed.
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
Lemma elem_of_reverse_2 x l : x  l  x  reverse l.
Proof.
  induction 1; rewrite reverse_cons, elem_of_app,
    ?elem_of_list_singleton; intuition.
Qed.
Lemma elem_of_reverse x l : x  reverse l  x  l.
Proof.
  split; auto using elem_of_reverse_2.
  intros. rewrite <-(reverse_involutive l). by apply elem_of_reverse_2.
Qed.
Global Instance: Injective (=) (=) (@reverse A).
Proof.
  intros l1 l2 Hl.
  by rewrite <-(reverse_involutive l1), <-(reverse_involutive l2), Hl.
Qed.
725

726
727
728
(** ** Properties of the [last] function *)
Lemma last_snoc x l : last (l ++ [x]) = Some x.
Proof. induction l as [|? []]; simpl; auto. Qed.
729

730
731
732
733
734
735
736
(** ** Properties of the [take] function *)
Definition take_drop i l : take i l ++ drop i l = l := firstn_skipn i l.
Lemma take_drop_middle l i x :
  l !! i = Some x  take i l ++ x :: drop (S i) l = l.
Proof.
  revert i x. induction l; intros [|?] ??; simplify_equality'; f_equal; auto.
Qed.
737
Lemma take_nil n : take n (@nil A) = [].
Robbert Krebbers's avatar
Robbert Krebbers committed
738
Proof. by destruct n. Qed.
739
Lemma take_app l k : take (length l) (l ++ k) = l.
740
Proof. induction l; f_equal'; auto. Qed.
741
Lemma take_app_alt l k n : n = length l  take n (l ++ k) = l.
Robbert Krebbers's avatar
Robbert Krebbers committed
742
Proof. intros Hn. by rewrite Hn, take_app. Qed.
743
Lemma take_app_le l k n : n  length l  take n (l ++ k) = take n l.
744
Proof. revert n. induction l; intros [|?] ?; f_equal'; auto with lia. Qed.
745
746
Lemma take_app_ge l k n :
  length l  n  take n (l ++ k) = l ++ take (n - length l) k.
747
Proof. revert n. induction l; intros [|?] ?; f_equal'; auto with lia. Qed.
748
Lemma take_ge l n : length l  n  take n l = l.
749
Proof. revert n. induction l; intros [|?] ?; f_equal'; auto with lia. Qed.
750
Lemma take_take l n m : take n (take m l) = take (min n m) l.