collections.v 47.1 KB
Newer Older
1
(* Copyright (c) 2012-2017, Coq-std++ developers. *)
2 3 4 5
(* This file is distributed under the terms of the BSD license. *)
(** This file collects definitions and theorems on collections. Most
importantly, it implements some tactics to automatically solve goals involving
collections. *)
6
From stdpp Require Export orders list.
7 8
(* FIXME: This file needs a 'Proof Using' hint, but the default we use
   everywhere makes for lots of extra ssumptions. *)
9

10 11
Instance collection_equiv `{ElemOf A C} : Equiv C := λ X Y,
   x, x  X  x  Y.
12 13
Instance collection_subseteq `{ElemOf A C} : SubsetEq C := λ X Y,
   x, x  X  x  Y.
14 15 16
Instance collection_disjoint `{ElemOf A C} : Disjoint C := λ X Y,
   x, x  X  x  Y  False.
Typeclasses Opaque collection_equiv collection_subseteq collection_disjoint.
17

18 19
(** * Setoids *)
Section setoids_simple.
20
  Context `{SimpleCollection A C}.
Robbert Krebbers's avatar
Robbert Krebbers committed
21

22
  Global Instance collection_equivalence : Equivalence (@{C}).
23
  Proof.
24 25 26 27
    split.
    - done.
    - intros X Y ? x. by symmetry.
    - intros X Y Z ?? x; by trans (x  Y).
28
  Qed.
29
  Global Instance singleton_proper : Proper ((=) ==> (@{C})) singleton.
30
  Proof. apply _. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
31
  Global Instance elem_of_proper : Proper ((=) ==> () ==> iff) (@{C}) | 5.
32
  Proof. by intros x ? <- X Y. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
33
  Global Instance disjoint_proper: Proper (() ==> () ==> iff) (##@{C}).
34
  Proof.
35
    intros X1 X2 HX Y1 Y2 HY; apply forall_proper; intros x. by rewrite HX, HY.
36
  Qed.
37
  Global Instance union_proper : Proper (() ==> () ==> (@{C})) union.
38
  Proof. intros X1 X2 HX Y1 Y2 HY x. rewrite !elem_of_union. f_equiv; auto. Qed.
39
  Global Instance union_list_proper: Proper (() ==> (@{C})) union_list.
40
  Proof. by induction 1; simpl; try apply union_proper. Qed.
41
  Global Instance subseteq_proper : Proper ((@{C}) ==> (@{C}) ==> iff) ().
42 43 44 45 46 47 48
  Proof.
    intros X1 X2 HX Y1 Y2 HY. apply forall_proper; intros x. by rewrite HX, HY.
  Qed.
End setoids_simple.

Section setoids.
  Context `{Collection A C}.
49

50 51
  (** * Setoids *)
  Global Instance intersection_proper :
52
    Proper (() ==> () ==> (@{C})) intersection.
53
  Proof.
54
    intros X1 X2 HX Y1 Y2 HY x. by rewrite !elem_of_intersection, HX, HY.
55
  Qed.
56
  Global Instance difference_proper :
57
     Proper (() ==> () ==> (@{C})) difference.
58
  Proof.
59
    intros X1 X2 HX Y1 Y2 HY x. by rewrite !elem_of_difference, HX, HY.
60
  Qed.
61
End setoids.
Robbert Krebbers's avatar
Robbert Krebbers committed
62

63 64 65 66 67
Section setoids_monad.
  Context `{CollectionMonad M}.

  Global Instance collection_fmap_proper {A B} :
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
68
  Proof.
69 70
    intros f1 f2 Hf X1 X2 HX x. rewrite !elem_of_fmap. f_equiv; intros z.
    by rewrite HX, Hf.
71
  Qed.
72
  Global Instance collection_bind_proper {A B} :
73
    Proper (pointwise_relation _ () ==> () ==> ()) (@mbind M _ A B).
74 75
  Proof.
    intros f1 f2 Hf X1 X2 HX x. rewrite !elem_of_bind. f_equiv; intros z.
76
    by rewrite HX, (Hf z).
77 78 79 80 81 82 83
  Qed.
  Global Instance collection_join_proper {A} :
    Proper (() ==> ()) (@mjoin M _ A).
  Proof.
    intros X1 X2 HX x. rewrite !elem_of_join. f_equiv; intros z. by rewrite HX.
  Qed.
End setoids_monad.
84

85 86 87 88 89
(** * Tactics *)
(** The tactic [set_unfold] transforms all occurrences of [(∪)], [(∩)], [(∖)],
[(<$>)], [∅], [{[_]}], [(≡)], and [(⊆)] into logically equivalent propositions
involving just [∈]. For example, [A → x ∈ X ∪ ∅] becomes [A → x ∈ X ∨ False].

90 91 92
This transformation is implemented using type classes instead of setoid
rewriting to ensure that we traverse each term at most once and to be able to
deal with occurences of the set operations under binders. *)
93
Class SetUnfold (P Q : Prop) := { set_unfold : P  Q }.
94
Arguments set_unfold _ _ {_} : assert.
95 96 97 98 99
Hint Mode SetUnfold + - : typeclass_instances.

Class SetUnfoldSimpl (P Q : Prop) := { set_unfold_simpl : SetUnfold P Q }.
Hint Extern 0 (SetUnfoldSimpl _ _) => csimpl; constructor : typeclass_instances.

100
Instance set_unfold_default P : SetUnfold P P | 1000. done. Qed.
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
Definition set_unfold_1 `{SetUnfold P Q} : P  Q := proj1 (set_unfold P Q).
Definition set_unfold_2 `{SetUnfold P Q} : Q  P := proj2 (set_unfold P Q).

Lemma set_unfold_impl P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_and P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_or P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_iff P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_not P P' : SetUnfold P P'  SetUnfold (¬P) (¬P').
Proof. constructor. by rewrite (set_unfold P P'). Qed.
Lemma set_unfold_forall {A} (P P' : A  Prop) :
  ( x, SetUnfold (P x) (P' x))  SetUnfold ( x, P x) ( x, P' x).
Proof. constructor. naive_solver. Qed.
Lemma set_unfold_exist {A} (P P' : A  Prop) :
  ( x, SetUnfold (P x) (P' x))  SetUnfold ( x, P x) ( x, P' x).
Proof. constructor. naive_solver. Qed.

(* Avoid too eager application of the above instances (and thus too eager
unfolding of type class transparent definitions). *)
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_impl : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_and : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_or : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_iff : typeclass_instances.
Hint Extern 0 (SetUnfold (¬ _) _) =>
  class_apply set_unfold_not : typeclass_instances.
Hint Extern 1 (SetUnfold ( _, _) _) =>
  class_apply set_unfold_forall : typeclass_instances.
Hint Extern 0 (SetUnfold ( _, _) _) =>
  class_apply set_unfold_exist : typeclass_instances.

Section set_unfold_simple.
  Context `{SimpleCollection A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.

147
  Global Instance set_unfold_empty x : SetUnfold (x  ( : C)) False.
148
  Proof. constructor. split. apply not_elem_of_empty. done. Qed.
149
  Global Instance set_unfold_singleton x y : SetUnfold (x  ({[ y ]} : C)) (x = y).
150 151 152 153 154 155 156 157 158 159 160 161
  Proof. constructor; apply elem_of_singleton. Qed.
  Global Instance set_unfold_union x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
  Proof.
    intros ??; constructor.
    by rewrite elem_of_union, (set_unfold (x  X) P), (set_unfold (x  Y) Q).
  Qed.
  Global Instance set_unfold_equiv_same X : SetUnfold (X  X) True | 1.
  Proof. done. Qed.
  Global Instance set_unfold_equiv_empty_l X (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (  X) ( x, ¬P x) | 5.
  Proof.
162
    intros ?; constructor. unfold equiv, collection_equiv.
163
    pose proof (not_elem_of_empty (C:=C)); naive_solver.
164
  Qed.
165
  Global Instance set_unfold_equiv_empty_r (P : A  Prop) X :
166
    ( x, SetUnfold (x  X) (P x))  SetUnfold (X  ) ( x, ¬P x) | 5.
167 168
  Proof.
    intros ?; constructor. unfold equiv, collection_equiv.
169
    pose proof (not_elem_of_empty (C:=C)); naive_solver.
170
  Qed.
171
  Global Instance set_unfold_equiv (P Q : A  Prop) X :
172 173
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x) | 10.
174
  Proof. constructor. apply forall_proper; naive_solver. Qed.
175
  Global Instance set_unfold_subseteq (P Q : A  Prop) X Y :
176 177
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x).
178
  Proof. constructor. apply forall_proper; naive_solver. Qed.
179
  Global Instance set_unfold_subset (P Q : A  Prop) X :
180
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
181
    SetUnfold (X  Y) (( x, P x  Q x)  ¬∀ x, Q x  P x).
182
  Proof.
183 184
    constructor. unfold strict.
    repeat f_equiv; apply forall_proper; naive_solver.
185
  Qed.
186
  Global Instance set_unfold_disjoint (P Q : A  Prop) X Y :
Robbert Krebbers's avatar
Robbert Krebbers committed
187
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
188
    SetUnfold (X ## Y) ( x, P x  Q x  False).
189
  Proof. constructor. unfold disjoint, collection_disjoint. naive_solver. Qed.
190 191 192 193 194 195

  Context `{!LeibnizEquiv C}.
  Global Instance set_unfold_equiv_same_L X : SetUnfold (X = X) True | 1.
  Proof. done. Qed.
  Global Instance set_unfold_equiv_empty_l_L X (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold ( = X) ( x, ¬P x) | 5.
196
  Proof. constructor. unfold_leibniz. by apply set_unfold_equiv_empty_l. Qed.
197
  Global Instance set_unfold_equiv_empty_r_L (P : A  Prop) X :
198
    ( x, SetUnfold (x  X) (P x))  SetUnfold (X = ) ( x, ¬P x) | 5.
199
  Proof. constructor. unfold_leibniz. by apply set_unfold_equiv_empty_r. Qed.
200
  Global Instance set_unfold_equiv_L (P Q : A  Prop) X Y :
201 202
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X = Y) ( x, P x  Q x) | 10.
203
  Proof. constructor. unfold_leibniz. by apply set_unfold_equiv. Qed.
204 205 206 207 208 209 210 211 212 213
End set_unfold_simple.

Section set_unfold.
  Context `{Collection A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.

  Global Instance set_unfold_intersection x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
  Proof.
214 215
    intros ??; constructor. rewrite elem_of_intersection.
    by rewrite (set_unfold (x  X) P), (set_unfold (x  Y) Q).
216 217 218 219
  Qed.
  Global Instance set_unfold_difference x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  ¬Q).
  Proof.
220 221
    intros ??; constructor. rewrite elem_of_difference.
    by rewrite (set_unfold (x  X) P), (set_unfold (x  Y) Q).
222 223 224 225
  Qed.
End set_unfold.

Section set_unfold_monad.
226
  Context `{CollectionMonad M}.
227

228 229
  Global Instance set_unfold_ret {A} (x y : A) :
    SetUnfold (x  mret (M:=M) y) (x = y).
230
  Proof. constructor; apply elem_of_ret. Qed.
231
  Global Instance set_unfold_bind {A B} (f : A  M B) X (P Q : A  Prop) :
232 233 234
    ( y, SetUnfold (y  X) (P y))  ( y, SetUnfold (x  f y) (Q y)) 
    SetUnfold (x  X = f) ( y, Q y  P y).
  Proof. constructor. rewrite elem_of_bind; naive_solver. Qed.
235
  Global Instance set_unfold_fmap {A B} (f : A  B) (X : M A) (P : A  Prop) :
236 237 238
    ( y, SetUnfold (y  X) (P y)) 
    SetUnfold (x  f <$> X) ( y, x = f y  P y).
  Proof. constructor. rewrite elem_of_fmap; naive_solver. Qed.
239
  Global Instance set_unfold_join {A} (X : M (M A)) (P : M A  Prop) :
240 241 242 243
    ( Y, SetUnfold (Y  X) (P Y))  SetUnfold (x  mjoin X) ( Y, x  Y  P Y).
  Proof. constructor. rewrite elem_of_join; naive_solver. Qed.
End set_unfold_monad.

Robbert Krebbers's avatar
Robbert Krebbers committed
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
Section set_unfold_list.
  Context {A : Type}.
  Implicit Types x : A.
  Implicit Types l : list A.

  Global Instance set_unfold_nil x : SetUnfold (x  []) False.
  Proof. constructor; apply elem_of_nil. Qed.
  Global Instance set_unfold_cons x y l P :
    SetUnfold (x  l) P  SetUnfold (x  y :: l) (x = y  P).
  Proof. constructor. by rewrite elem_of_cons, (set_unfold (x  l) P). Qed.
  Global Instance set_unfold_app x l k P Q :
    SetUnfold (x  l) P  SetUnfold (x  k) Q  SetUnfold (x  l ++ k) (P  Q).
  Proof.
    intros ??; constructor.
    by rewrite elem_of_app, (set_unfold (x  l) P), (set_unfold (x  k) Q).
  Qed.
  Global Instance set_unfold_included l k (P Q : A  Prop) :
    ( x, SetUnfold (x  l) (P x))  ( x, SetUnfold (x  k) (Q x)) 
    SetUnfold (l  k) ( x, P x  Q x).
  Proof.
    constructor; unfold subseteq, list_subseteq.
    apply forall_proper; naive_solver.
  Qed.
End set_unfold_list.

269 270 271
Ltac set_unfold :=
  let rec unfold_hyps :=
    try match goal with
272 273 274 275 276 277 278
    | H : ?P |- _ =>
       lazymatch type of P with
       | Prop =>
         apply set_unfold_1 in H; revert H;
         first [unfold_hyps; intros H | intros H; fail 1]
       | _ => fail
       end
279 280 281
    end in
  apply set_unfold_2; unfold_hyps; csimpl in *.

282 283
(** Since [firstorder] already fails or loops on very small goals generated by
[set_solver], we use the [naive_solver] tactic as a substitute. *)
284
Tactic Notation "set_solver" "by" tactic3(tac) :=
285
  try fast_done;
286 287 288 289 290 291 292 293 294 295 296 297 298
  intros; setoid_subst;
  set_unfold;
  intros; setoid_subst;
  try match goal with |- _  _ => apply dec_stable end;
  naive_solver tac.
Tactic Notation "set_solver" "-" hyp_list(Hs) "by" tactic3(tac) :=
  clear Hs; set_solver by tac.
Tactic Notation "set_solver" "+" hyp_list(Hs) "by" tactic3(tac) :=
  clear -Hs; set_solver by tac.
Tactic Notation "set_solver" := set_solver by idtac.
Tactic Notation "set_solver" "-" hyp_list(Hs) := clear Hs; set_solver.
Tactic Notation "set_solver" "+" hyp_list(Hs) := clear -Hs; set_solver.

299 300 301 302
Hint Extern 1000 (_  _) => set_solver : set_solver.
Hint Extern 1000 (_  _) => set_solver : set_solver.
Hint Extern 1000 (_  _) => set_solver : set_solver.

303

304 305
(** * Collections with [∪], [∅] and [{[_]}] *)
Section simple_collection.
306
  Context `{SimpleCollection A C}.
307 308 309 310 311 312 313 314 315 316 317
  Implicit Types x y : A.
  Implicit Types X Y : C.
  Implicit Types Xs Ys : list C.

  (** Equality *)
  Lemma elem_of_equiv X Y : X  Y   x, x  X  x  Y.
  Proof. set_solver. Qed.
  Lemma collection_equiv_spec X Y : X  Y  X  Y  Y  X.
  Proof. set_solver. Qed.

  (** Subset relation *)
318
  Global Instance collection_subseteq_antisymm: AntiSymm () (@{C}).
319 320
  Proof. intros ??. set_solver. Qed.

321
  Global Instance collection_subseteq_preorder: PreOrder (@{C}).
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
  Proof. split. by intros ??. intros ???; set_solver. Qed.

  Lemma subseteq_union X Y : X  Y  X  Y  Y.
  Proof. set_solver. Qed.
  Lemma subseteq_union_1 X Y : X  Y  X  Y  Y.
  Proof. by rewrite subseteq_union. Qed.
  Lemma subseteq_union_2 X Y : X  Y  Y  X  Y.
  Proof. by rewrite subseteq_union. Qed.

  Lemma union_subseteq_l X Y : X  X  Y.
  Proof. set_solver. Qed.
  Lemma union_subseteq_r X Y : Y  X  Y.
  Proof. set_solver. Qed.
  Lemma union_least X Y Z : X  Z  Y  Z  X  Y  Z.
  Proof. set_solver. Qed.

  Lemma elem_of_subseteq X Y : X  Y   x, x  X  x  Y.
  Proof. done. Qed.
  Lemma elem_of_subset X Y : X  Y  ( x, x  X  x  Y)  ¬( x, x  Y  x  X).
  Proof. set_solver. Qed.

  (** Union *)
344 345
  Lemma union_subseteq X Y Z : X  Y  Z  X  Z  Y  Z.
  Proof. set_solver. Qed.
346 347 348 349 350 351
  Lemma not_elem_of_union x X Y : x  X  Y  x  X  x  Y.
  Proof. set_solver. Qed.
  Lemma elem_of_union_l x X Y : x  X  x  X  Y.
  Proof. set_solver. Qed.
  Lemma elem_of_union_r x X Y : x  Y  x  X  Y.
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
352
  Lemma union_mono_l X Y1 Y2 : Y1  Y2  X  Y1  X  Y2.
353
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
354
  Lemma union_mono_r X1 X2 Y : X1  X2  X1  Y  X2  Y.
355
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
356
  Lemma union_mono X1 X2 Y1 Y2 : X1  X2  Y1  Y2  X1  Y1  X2  Y2.
357 358
  Proof. set_solver. Qed.

359
  Global Instance union_idemp : IdemP (@{C}) ().
360
  Proof. intros X. set_solver. Qed.
361
  Global Instance union_empty_l : LeftId (@{C})  ().
362
  Proof. intros X. set_solver. Qed.
363
  Global Instance union_empty_r : RightId (@{C})  ().
364
  Proof. intros X. set_solver. Qed.
365
  Global Instance union_comm : Comm (@{C}) ().
366
  Proof. intros X Y. set_solver. Qed.
367
  Global Instance union_assoc : Assoc (@{C}) ().
368 369 370 371 372
  Proof. intros X Y Z. set_solver. Qed.

  Lemma empty_union X Y : X  Y    X    Y  .
  Proof. set_solver. Qed.

373
  Lemma union_cancel_l X Y Z : Z ## X  Z ## Y  Z  X  Z  Y  X  Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
374
  Proof. set_solver. Qed.
375
  Lemma union_cancel_r X Y Z : X ## Z  Y ## Z  X  Z  Y  Z  X  Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
376 377
  Proof. set_solver. Qed.

378
  (** Empty *)
Robbert Krebbers's avatar
Robbert Krebbers committed
379 380
  Lemma empty_subseteq X :   X.
  Proof. set_solver. Qed.
381 382
  Lemma elem_of_equiv_empty X : X     x, x  X.
  Proof. set_solver. Qed.
383
  Lemma elem_of_empty x : x  ( : C)  False.
384 385 386 387 388 389 390 391 392 393 394
  Proof. set_solver. Qed.
  Lemma equiv_empty X : X    X  .
  Proof. set_solver. Qed.
  Lemma union_positive_l X Y : X  Y    X  .
  Proof. set_solver. Qed.
  Lemma union_positive_l_alt X Y : X    X  Y  .
  Proof. set_solver. Qed.
  Lemma non_empty_inhabited x X : x  X  X  .
  Proof. set_solver. Qed.

  (** Singleton *)
395
  Lemma elem_of_singleton_1 x y : x  ({[y]} : C)  x = y.
396
  Proof. by rewrite elem_of_singleton. Qed.
397
  Lemma elem_of_singleton_2 x y : x = y  x  ({[y]} : C).
398 399 400 401 402
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma elem_of_subseteq_singleton x X : x  X  {[ x ]}  X.
  Proof. set_solver. Qed.
  Lemma non_empty_singleton x : ({[ x ]} : C)  .
  Proof. set_solver. Qed.
403
  Lemma not_elem_of_singleton x y : x  ({[ y ]} : C)  x  y.
404 405 406
  Proof. by rewrite elem_of_singleton. Qed.

  (** Disjointness *)
407
  Lemma elem_of_disjoint X Y : X ## Y   x, x  X  x  Y  False.
408 409
  Proof. done. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
410
  Global Instance disjoint_sym : Symmetric (##@{C}).
411
  Proof. intros X Y. set_solver. Qed.
412
  Lemma disjoint_empty_l Y :  ## Y.
413
  Proof. set_solver. Qed.
414
  Lemma disjoint_empty_r X : X ## .
415
  Proof. set_solver. Qed.
416
  Lemma disjoint_singleton_l x Y : {[ x ]} ## Y  x  Y.
417
  Proof. set_solver. Qed.
418
  Lemma disjoint_singleton_r y X : X ## {[ y ]}  y  X.
419
  Proof. set_solver. Qed.
420
  Lemma disjoint_union_l X1 X2 Y : X1  X2 ## Y  X1 ## Y  X2 ## Y.
421
  Proof. set_solver. Qed.
422
  Lemma disjoint_union_r X Y1 Y2 : X ## Y1  Y2  X ## Y1  X ## Y2.
423 424 425 426
  Proof. set_solver. Qed.

  (** Big unions *)
  Lemma elem_of_union_list Xs x : x   Xs   X, X  Xs  x  X.
427 428
  Proof.
    split.
429 430
    - induction Xs; simpl; intros HXs; [by apply elem_of_empty in HXs|].
      setoid_rewrite elem_of_cons. apply elem_of_union in HXs. naive_solver.
Ralf Jung's avatar
Ralf Jung committed
431
    - intros [X [Hx]]. induction Hx; simpl; [by apply elem_of_union_l |].
432
      intros. apply elem_of_union_r; auto.
433
  Qed.
434

435 436 437 438 439 440 441
  Lemma union_list_nil :  @nil C = .
  Proof. done. Qed.
  Lemma union_list_cons X Xs :  (X :: Xs) = X   Xs.
  Proof. done. Qed.
  Lemma union_list_singleton X :  [X]  X.
  Proof. simpl. by rewrite (right_id  _). Qed.
  Lemma union_list_app Xs1 Xs2 :  (Xs1 ++ Xs2)   Xs1   Xs2.
442
  Proof.
443 444
    induction Xs1 as [|X Xs1 IH]; simpl; [by rewrite (left_id  _)|].
    by rewrite IH, (assoc _).
445
  Qed.
446
  Lemma union_list_reverse Xs :  (reverse Xs)   Xs.
447
  Proof.
448 449 450
    induction Xs as [|X Xs IH]; simpl; [done |].
    by rewrite reverse_cons, union_list_app,
      union_list_singleton, (comm _), IH.
451
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
452 453
  Lemma union_list_mono Xs Ys : Xs * Ys   Xs   Ys.
  Proof. induction 1; simpl; auto using union_mono. Qed.
454
  Lemma empty_union_list Xs :  Xs    Forall ( ) Xs.
455
  Proof.
456 457 458
    split.
    - induction Xs; simpl; rewrite ?empty_union; intuition.
    - induction 1 as [|?? E1 ? E2]; simpl. done. by apply empty_union.
459
  Qed.
460

461 462 463 464 465 466 467 468 469
  Section leibniz.
    Context `{!LeibnizEquiv C}.

    Lemma elem_of_equiv_L X Y : X = Y   x, x  X  x  Y.
    Proof. unfold_leibniz. apply elem_of_equiv. Qed.
    Lemma collection_equiv_spec_L X Y : X = Y  X  Y  Y  X.
    Proof. unfold_leibniz. apply collection_equiv_spec. Qed.

    (** Subset relation *)
470
    Global Instance collection_subseteq_partialorder : PartialOrder (@{C}).
471 472 473 474 475 476 477 478 479 480
    Proof. split. apply _. intros ??. unfold_leibniz. apply (anti_symm _). Qed.

    Lemma subseteq_union_L X Y : X  Y  X  Y = Y.
    Proof. unfold_leibniz. apply subseteq_union. Qed.
    Lemma subseteq_union_1_L X Y : X  Y  X  Y = Y.
    Proof. unfold_leibniz. apply subseteq_union_1. Qed.
    Lemma subseteq_union_2_L X Y : X  Y = Y  X  Y.
    Proof. unfold_leibniz. apply subseteq_union_2. Qed.

    (** Union *)
481
    Global Instance union_idemp_L : IdemP (=@{C}) ().
482
    Proof. intros ?. unfold_leibniz. apply (idemp _). Qed.
483
    Global Instance union_empty_l_L : LeftId (=@{C})  ().
484
    Proof. intros ?. unfold_leibniz. apply (left_id _ _). Qed.
485
    Global Instance union_empty_r_L : RightId (=@{C})  ().
486
    Proof. intros ?. unfold_leibniz. apply (right_id _ _). Qed.
487
    Global Instance union_comm_L : Comm (=@{C}) ().
488
    Proof. intros ??. unfold_leibniz. apply (comm _). Qed.
489
    Global Instance union_assoc_L : Assoc (=@{C}) ().
490 491 492 493 494
    Proof. intros ???. unfold_leibniz. apply (assoc _). Qed.

    Lemma empty_union_L X Y : X  Y =   X =   Y = .
    Proof. unfold_leibniz. apply empty_union. Qed.

495
    Lemma union_cancel_l_L X Y Z : Z ## X  Z ## Y  Z  X = Z  Y  X = Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
496
    Proof. unfold_leibniz. apply union_cancel_l. Qed.
497
    Lemma union_cancel_r_L X Y Z : X ## Z  Y ## Z  X  Z = Y  Z  X = Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
498 499
    Proof. unfold_leibniz. apply union_cancel_r. Qed.

500 501 502 503 504 505 506 507 508 509 510 511 512
    (** Empty *)
    Lemma elem_of_equiv_empty_L X : X =    x, x  X.
    Proof. unfold_leibniz. apply elem_of_equiv_empty. Qed.
    Lemma equiv_empty_L X : X    X = .
    Proof. unfold_leibniz. apply equiv_empty. Qed.
    Lemma union_positive_l_L X Y : X  Y =   X = .
    Proof. unfold_leibniz. apply union_positive_l. Qed.
    Lemma union_positive_l_alt_L X Y : X    X  Y  .
    Proof. unfold_leibniz. apply union_positive_l_alt. Qed.
    Lemma non_empty_inhabited_L x X : x  X  X  .
    Proof. unfold_leibniz. apply non_empty_inhabited. Qed.

    (** Singleton *)
513
    Lemma non_empty_singleton_L x : {[ x ]}  ( : C).
514 515 516 517 518 519 520 521 522 523 524 525 526 527
    Proof. unfold_leibniz. apply non_empty_singleton. Qed.

    (** Big unions *)
    Lemma union_list_singleton_L X :  [X] = X.
    Proof. unfold_leibniz. apply union_list_singleton. Qed.
    Lemma union_list_app_L Xs1 Xs2 :  (Xs1 ++ Xs2) =  Xs1   Xs2.
    Proof. unfold_leibniz. apply union_list_app. Qed.
    Lemma union_list_reverse_L Xs :  (reverse Xs) =  Xs.
    Proof. unfold_leibniz. apply union_list_reverse. Qed.
    Lemma empty_union_list_L Xs :  Xs =   Forall (= ) Xs.
    Proof. unfold_leibniz. by rewrite empty_union_list. Qed. 
  End leibniz.

  Section dec.
528
    Context `{!RelDecision (@{C})}.
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
    Lemma collection_subseteq_inv X Y : X  Y  X  Y  X  Y.
    Proof. destruct (decide (X  Y)); [by right|left;set_solver]. Qed.
    Lemma collection_not_subset_inv X Y : X  Y  X  Y  X  Y.
    Proof. destruct (decide (X  Y)); [by right|left;set_solver]. Qed.

    Lemma non_empty_union X Y : X  Y    X    Y  .
    Proof. rewrite empty_union. destruct (decide (X  )); intuition. Qed.
    Lemma non_empty_union_list Xs :  Xs    Exists ( ) Xs.
    Proof. rewrite empty_union_list. apply (not_Forall_Exists _). Qed.

    Context `{!LeibnizEquiv C}.
    Lemma collection_subseteq_inv_L X Y : X  Y  X  Y  X = Y.
    Proof. unfold_leibniz. apply collection_subseteq_inv. Qed.
    Lemma collection_not_subset_inv_L X Y : X  Y  X  Y  X = Y.
    Proof. unfold_leibniz. apply collection_not_subset_inv. Qed.
    Lemma non_empty_union_L X Y : X  Y    X    Y  .
    Proof. unfold_leibniz. apply non_empty_union. Qed.
    Lemma non_empty_union_list_L Xs :  Xs    Exists ( ) Xs.
    Proof. unfold_leibniz. apply non_empty_union_list. Qed.
  End dec.
End simple_collection.


(** * Collections with [∪], [∩], [∖], [∅] and [{[_]}] *)
Robbert Krebbers's avatar
Robbert Krebbers committed
553 554
Section collection.
  Context `{Collection A C}.
555
  Implicit Types x y : A.
556
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
557

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
  (** Intersection *)
  Lemma subseteq_intersection X Y : X  Y  X  Y  X.
  Proof. set_solver. Qed. 
  Lemma subseteq_intersection_1 X Y : X  Y  X  Y  X.
  Proof. apply subseteq_intersection. Qed.
  Lemma subseteq_intersection_2 X Y : X  Y  X  X  Y.
  Proof. apply subseteq_intersection. Qed.

  Lemma intersection_subseteq_l X Y : X  Y  X.
  Proof. set_solver. Qed.
  Lemma intersection_subseteq_r X Y : X  Y  Y.
  Proof. set_solver. Qed.
  Lemma intersection_greatest X Y Z : Z  X  Z  Y  Z  X  Y.
  Proof. set_solver. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
573
  Lemma intersection_mono_l X Y1 Y2 : Y1  Y2  X  Y1  X  Y2.
574
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
575
  Lemma intersection_mono_r X1 X2 Y : X1  X2  X1  Y  X2  Y.
576
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
577
  Lemma intersection_mono X1 X2 Y1 Y2 :
578
    X1  X2  Y1  Y2  X1  Y1  X2  Y2.
579
  Proof. set_solver. Qed.
580

581
  Global Instance intersection_idemp : IdemP (@{C}) ().
582
  Proof. intros X; set_solver. Qed.
583
  Global Instance intersection_comm : Comm (@{C}) ().
584
  Proof. intros X Y; set_solver. Qed.
585
  Global Instance intersection_assoc : Assoc (@{C}) ().
586
  Proof. intros X Y Z; set_solver. Qed.
587
  Global Instance intersection_empty_l : LeftAbsorb (@{C})  ().
588
  Proof. intros X; set_solver. Qed.
589
  Global Instance intersection_empty_r: RightAbsorb (@{C})  ().
590 591
  Proof. intros X; set_solver. Qed.

592
  Lemma intersection_singletons x : ({[x]} : C)  {[x]}  {[x]}.
593
  Proof. set_solver. Qed.
594 595 596 597 598 599 600 601 602 603 604

  Lemma union_intersection_l X Y Z : X  (Y  Z)  (X  Y)  (X  Z).
  Proof. set_solver. Qed.
  Lemma union_intersection_r X Y Z : (X  Y)  Z  (X  Z)  (Y  Z).
  Proof. set_solver. Qed.
  Lemma intersection_union_l X Y Z : X  (Y  Z)  (X  Y)  (X  Z).
  Proof. set_solver. Qed.
  Lemma intersection_union_r X Y Z : (X  Y)  Z  (X  Z)  (Y  Z).
  Proof. set_solver. Qed.

  (** Difference *)
Robbert Krebbers's avatar
Robbert Krebbers committed
605
  Lemma difference_twice X Y : (X  Y)  Y  X  Y.
606
  Proof. set_solver. Qed.
607
  Lemma subseteq_empty_difference X Y : X  Y  X  Y  .
608
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
609
  Lemma difference_diag X : X  X  .
610
  Proof. set_solver. Qed.
611 612
  Lemma difference_empty X : X    X.
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
613
  Lemma difference_union_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
614
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
615
  Lemma difference_union_distr_r X Y Z : Z  (X  Y)  (Z  X)  (Z  Y).
616
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
617
  Lemma difference_intersection_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
618
  Proof. set_solver. Qed.
619
  Lemma difference_disjoint X Y : X ## Y  X  Y  X.
620
  Proof. set_solver. Qed.
621 622 623
  Lemma subset_difference_elem_of {x: A} {s: C} (inx: x  s): s  {[ x ]}  s.
  Proof. set_solver. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
624

Robbert Krebbers's avatar
Robbert Krebbers committed
625
  Lemma difference_mono X1 X2 Y1 Y2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
626 627
    X1  X2  Y2  Y1  X1  Y1  X2  Y2.
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
628
  Lemma difference_mono_l X Y1 Y2 : Y2  Y1  X  Y1  X  Y2.
Robbert Krebbers's avatar
Robbert Krebbers committed
629
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
630
  Lemma difference_mono_r X1 X2 Y : X1  X2  X1  Y  X2  Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
631 632
  Proof. set_solver. Qed.

633
  (** Disjointness *)
634
  Lemma disjoint_intersection X Y : X ## Y  X  Y  .
635 636
  Proof. set_solver. Qed.

637 638
  Section leibniz.
    Context `{!LeibnizEquiv C}.
639 640 641 642 643 644 645 646 647

    (** Intersection *)
    Lemma subseteq_intersection_L X Y : X  Y  X  Y = X.
    Proof. unfold_leibniz. apply subseteq_intersection. Qed.
    Lemma subseteq_intersection_1_L X Y : X  Y  X  Y = X.
    Proof. unfold_leibniz. apply subseteq_intersection_1. Qed.
    Lemma subseteq_intersection_2_L X Y : X  Y = X  X  Y.
    Proof. unfold_leibniz. apply subseteq_intersection_2. Qed.

648
    Global Instance intersection_idemp_L : IdemP (=@{C}) ().
649
    Proof. intros ?. unfold_leibniz. apply (idemp _). Qed.
650
    Global Instance intersection_comm_L : Comm (=@{C}) ().
651
    Proof. intros ??. unfold_leibniz. apply (comm _). Qed.
652
    Global Instance intersection_assoc_L : Assoc (=@{C}) ().
653
    Proof. intros ???. unfold_leibniz. apply (assoc _). Qed.
654
    Global Instance intersection_empty_l_L: LeftAbsorb (=@{C})  ().
655
    Proof. intros ?. unfold_leibniz. apply (left_absorb _ _). Qed.
656
    Global Instance intersection_empty_r_L: RightAbsorb (=@{C})  ().
657 658
    Proof. intros ?. unfold_leibniz. apply (right_absorb _ _). Qed.

659
    Lemma intersection_singletons_L x : {[x]}  {[x]} = ({[x]} : C).
660
    Proof. unfold_leibniz. apply intersection_singletons. Qed.
661 662 663 664 665

    Lemma union_intersection_l_L X Y Z : X  (Y  Z) = (X  Y)  (X  Z).
    Proof. unfold_leibniz; apply union_intersection_l. Qed.
    Lemma union_intersection_r_L X Y Z : (X  Y)  Z = (X  Z)  (Y  Z).
    Proof. unfold_leibniz; apply union_intersection_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
666
    Lemma intersection_union_l_L X Y Z : X  (Y  Z) = (X  Y)  (X  Z).
667
    Proof. unfold_leibniz; apply intersection_union_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
668
    Lemma intersection_union_r_L X Y Z : (X  Y)  Z = (X  Z)  (Y  Z).
669 670 671
    Proof. unfold_leibniz; apply intersection_union_r. Qed.

    (** Difference *)
672 673
    Lemma difference_twice_L X Y : (X  Y)  Y = X  Y.
    Proof. unfold_leibniz. apply difference_twice. Qed.
674 675
    Lemma subseteq_empty_difference_L X Y : X  Y  X  Y = .
    Proof. unfold_leibniz. apply subseteq_empty_difference. Qed.
676 677
    Lemma difference_diag_L X : X  X = .
    Proof. unfold_leibniz. apply difference_diag. Qed.
678 679
    Lemma difference_empty_L X : X   = X.
    Proof. unfold_leibniz. apply difference_empty. Qed.
680 681
    Lemma difference_union_distr_l_L X Y Z : (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_union_distr_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
682 683
    Lemma difference_union_distr_r_L X Y Z : Z  (X  Y) = (Z  X)  (Z  Y).
    Proof. unfold_leibniz. apply difference_union_distr_r. Qed.
684 685 686
    Lemma difference_intersection_distr_l_L X Y Z :
      (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_intersection_distr_l. Qed.
687
    Lemma difference_disjoint_L X Y : X ## Y  X  Y = X.
688
    Proof. unfold_leibniz. apply difference_disjoint. Qed.
689 690

    (** Disjointness *)
691
    Lemma disjoint_intersection_L X Y : X ## Y  X  Y = .
692
    Proof. unfold_leibniz. apply disjoint_intersection. Qed.
693 694 695
  End leibniz.

  Section dec.
Robbert Krebbers's avatar
Robbert Krebbers committed
696
    Context `{!RelDecision (@{C})}.
697
    Lemma not_elem_of_intersection x X Y : x  X  Y  x  X  x  Y.
698
    Proof. rewrite elem_of_intersection. destruct (decide (x  X)); tauto. Qed.
699
    Lemma not_elem_of_difference x X Y : x  X  Y  x  X  x  Y.
700
    Proof. rewrite elem_of_difference. destruct (decide (x  Y)); tauto. Qed.
701 702
    Lemma union_difference X Y : X  Y  Y  X  Y  X.
    Proof.
703
      intros ? x; split; rewrite !elem_of_union, elem_of_difference; [|intuition].
704
      destruct (decide (x  X)); intuition.