list.v 161 KB
Newer Older
1
(* Copyright (c) 2012-2017, Robbert Krebbers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
5
From Coq Require Export Permutation.
6
From stdpp Require Export numbers base option.
7
Set Default Proof Using "Type*".
Robbert Krebbers's avatar
Robbert Krebbers committed
8

9
Arguments length {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
10 11
Arguments cons {_} _ _.
Arguments app {_} _ _.
12 13 14 15

Instance: Params (@length) 1.
Instance: Params (@cons) 1.
Instance: Params (@app) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
16

17 18 19
Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.
20

21
Arguments tail {_} _.
22 23 24
Arguments take {_} !_ !_ /.
Arguments drop {_} !_ !_ /.

25 26 27 28 29 30
Instance: Params (@tail) 1.
Instance: Params (@take) 1.
Instance: Params (@drop) 1.

Arguments Permutation {_} _ _.
Arguments Forall_cons {_} _ _ _ _ _.
31
Remove Hints Permutation_cons : typeclass_instances.
32

Robbert Krebbers's avatar
Robbert Krebbers committed
33 34 35 36 37 38 39
Notation "(::)" := cons (only parsing) : C_scope.
Notation "( x ::)" := (cons x) (only parsing) : C_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : C_scope.
Notation "(++)" := app (only parsing) : C_scope.
Notation "( l ++)" := (app l) (only parsing) : C_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : C_scope.

40 41 42 43 44 45 46 47 48
Infix "≡ₚ" := Permutation (at level 70, no associativity) : C_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : C_scope.
Notation "( x ≡ₚ)" := (Permutation x) (only parsing) : C_scope.
Notation "(≡ₚ x )" := (λ y, y ≡ₚ x) (only parsing) : C_scope.
Notation "(≢ₚ)" := (λ x y, ¬x ≡ₚ y) (only parsing) : C_scope.
Notation "x ≢ₚ y":= (¬x ≡ₚ y) (at level 70, no associativity) : C_scope.
Notation "( x ≢ₚ)" := (λ y, x ≢ₚ y) (only parsing) : C_scope.
Notation "(≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
49 50 51
Instance maybe_cons {A} : Maybe2 (@cons A) := λ l,
  match l with x :: l => Some (x,l) | _ => None end.

52
(** * Definitions *)
53 54 55 56 57 58
(** Setoid equality lifted to lists *)
Inductive list_equiv `{Equiv A} : Equiv (list A) :=
  | nil_equiv : [] ≡ []
  | cons_equiv x y l k : x ≡ y → l ≡ k → x :: l ≡ y :: k.
Existing Instance list_equiv.

59 60
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
61 62
Instance list_lookup {A} : Lookup nat A (list A) :=
  fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
63
  match l with
64
  | [] => None | x :: l => match i with 0 => Some x | S i => l !! i end
65
  end.
66 67 68

(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
69
Instance list_alter {A} : Alter nat A (list A) := λ f,
70
  fix go i l {struct l} :=
71 72
  match l with
  | [] => []
73
  | x :: l => match i with 0 => f x :: l | S i => x :: go i l end
74
  end.
75

76 77
(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
78 79
Instance list_insert {A} : Insert nat A (list A) :=
  fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
80 81 82 83
  match l with
  | [] => []
  | x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end
  end.
84 85 86 87 88
Fixpoint list_inserts {A} (i : nat) (k l : list A) : list A :=
  match k with
  | [] => l
  | y :: k => <[i:=y]>(list_inserts (S i) k l)
  end.
89
Instance: Params (@list_inserts) 1.
90

91 92 93
(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
94 95
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
96 97
  match l with
  | [] => []
98
  | x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end
99
  end.
100 101 102

(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
103
Definition option_list {A} : option A → list A := option_rect _ (λ x, [x]) [].
104 105
Instance: Params (@option_list) 1.
Instance maybe_list_singleton {A} : Maybe (λ x : A, [x]) := λ l,
106
  match l with [x] => Some x | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
107 108 109 110

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
111
  fix go P _ l := let _ : Filter _ _ := @go in
Robbert Krebbers's avatar
Robbert Krebbers committed
112 113
  match l with
  | [] => []
114
  | x :: l => if decide (P x) then x :: filter P l else filter P l
115 116 117 118
  end.

(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
119
Definition list_find {A} P `{∀ x, Decision (P x)} : list A → option (nat * A) :=
120 121
  fix go l :=
  match l with
122 123
  | [] => None
  | x :: l => if decide (P x) then Some (0,x) else prod_map S id <$> go l
124
  end.
125
Instance: Params (@list_find) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
126 127 128 129

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
130
  match n with 0 => [] | S n => x :: replicate n x end.
131
Instance: Params (@replicate) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
132 133 134

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].
135
Instance: Params (@reverse) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
136

137 138 139 140
(** The function [last l] returns the last element of the list [l], or [None]
if the list [l] is empty. *)
Fixpoint last {A} (l : list A) : option A :=
  match l with [] => None | [x] => Some x | _ :: l => last l end.
141
Instance: Params (@last) 1.
142

Robbert Krebbers's avatar
Robbert Krebbers committed
143 144 145 146 147 148
(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
149
  | x :: l => match n with 0 => [] | S n => x :: resize n y l end
Robbert Krebbers's avatar
Robbert Krebbers committed
150 151
  end.
Arguments resize {_} !_ _ !_.
152
Instance: Params (@resize) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
153

154 155 156
(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
157 158
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
159
  | [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
160
  end.
161
Instance: Params (@reshape) 2.
162

163
Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
164 165 166 167
  guard (i + n ≤ length l); Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A → list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.
168

169 170 171 172
(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.
Definition foldl {A B} (f : A → B → A) : A → list B → A :=
173
  fix go a l := match l with [] => a | x :: l => go (f a x) l end.
174 175 176

(** The monadic operations. *)
Instance list_ret: MRet list := λ A x, x :: @nil A.
177 178
Instance list_fmap : FMap list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x :: go l end.
179 180 181 182 183 184
Instance list_omap : OMap list := λ A B f,
  fix go (l : list A) :=
  match l with
  | [] => []
  | x :: l => match f x with Some y => y :: go l | None => go l end
  end.
185 186
Instance list_bind : MBind list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x ++ go l end.
187 188
Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
189
  match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.
190
Definition mapM `{MBind M, MRet M} {A B} (f : A → M B) : list A → M (list B) :=
191
  fix go l :=
192
  match l with [] => mret [] | x :: l => y ← f x; k ← go l; mret (y :: k) end.
193 194 195 196 197

(** We define stronger variants of map and fold that allow the mapped
function to use the index of the elements. *)
Definition imap_go {A B} (f : nat → A → B) : nat → list A → list B :=
  fix go (n : nat) (l : list A) :=
198
  match l with [] => [] | x :: l => f n x :: go (S n) l end.
199
Definition imap {A B} (f : nat → A → B) : list A → list B := imap_go f 0.
200 201
Arguments imap : simpl never.

202 203 204 205
Definition zipped_map {A B} (f : list A → list A → A → B) :
  list A → list A → list B := fix go l k :=
  match k with [] => [] | x :: k => f l k x :: go (x :: l) k end.

Robbert Krebbers's avatar
Robbert Krebbers committed
206 207 208 209 210 211 212 213 214
Definition imap2_go {A B C} (f : nat → A → B → C) :
    nat → list A → list B → list C:=
  fix go (n : nat) (l : list A) (k : list B) :=
  match l, k with
  | [], _ |_, [] => [] | x :: l, y :: k => f n x y :: go (S n) l k
  end.
Definition imap2 {A B C} (f : nat → A → B → C) :
  list A → list B → list C := imap2_go f 0.

215 216 217 218 219 220 221
Inductive zipped_Forall {A} (P : list A → list A → A → Prop) :
    list A → list A → Prop :=
  | zipped_Forall_nil l : zipped_Forall P l []
  | zipped_Forall_cons l k x :
     P l k x → zipped_Forall P (x :: l) k → zipped_Forall P l (x :: k).
Arguments zipped_Forall_nil {_ _} _.
Arguments zipped_Forall_cons {_ _} _ _ _ _ _.
222

223 224 225 226 227 228 229
(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A → A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l => (if β then f x else x) :: mask f βs l
  | _, _ => l
  end.
230 231 232 233

(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
234
  | [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::) <$> interleave x l)
235 236
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
237
  match l with [] => [[]] | x :: l => permutations l ≫= interleave x end.
238

Robbert Krebbers's avatar
Robbert Krebbers committed
239 240 241 242 243 244
(** The predicate [suffix] holds if the first list is a suffix of the second.
The predicate [prefix] holds if the first list is a prefix of the second. *)
Definition suffix {A} : relation (list A) := λ l1 l2, ∃ k, l2 = k ++ l1.
Definition prefix {A} : relation (list A) := λ l1 l2, ∃ k, l2 = l1 ++ k.
Infix "`suffix_of`" := suffix (at level 70) : C_scope.
Infix "`prefix_of`" := prefix (at level 70) : C_scope.
245 246
Hint Extern 0 (_ `prefix_of` _) => reflexivity.
Hint Extern 0 (_ `suffix_of` _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
247

248
Section prefix_suffix_ops.
249 250
  Context `{EqDecision A}.

Robbert Krebbers's avatar
Robbert Krebbers committed
251
  Definition max_prefix : list A → list A → list A * list A * list A :=
252 253 254 255 256
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
257
      if decide_rel (=) x1 x2
258
      then prod_map id (x1 ::) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
259
    end.
Robbert Krebbers's avatar
Robbert Krebbers committed
260 261
  Definition max_suffix (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix (reverse l1) (reverse l2) with
262 263
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.
Robbert Krebbers's avatar
Robbert Krebbers committed
264 265
  Definition strip_prefix (l1 l2 : list A) := (max_prefix l1 l2).1.2.
  Definition strip_suffix (l1 l2 : list A) := (max_suffix l1 l2).1.2.
266
End prefix_suffix_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
267

268
(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
269 270 271
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
272
  | sublist_skip x l1 l2 : sublist l1 l2 → sublist (x :: l1) (x :: l2)
273
  | sublist_cons x l1 l2 : sublist l1 l2 → sublist l1 (x :: l2).
Robbert Krebbers's avatar
Robbert Krebbers committed
274 275
Infix "`sublist_of`" := sublist (at level 70) : C_scope.
Hint Extern 0 (_ `sublist_of` _) => reflexivity.
276

Robbert Krebbers's avatar
Robbert Krebbers committed
277
(** A list [l2] submseteq a list [l1] if [l2] is obtained by removing elements
278
from [l1] while possiblity changing the order. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
279 280 281 282 283 284 285 286
Inductive submseteq {A} : relation (list A) :=
  | submseteq_nil : submseteq [] []
  | submseteq_skip x l1 l2 : submseteq l1 l2 → submseteq (x :: l1) (x :: l2)
  | submseteq_swap x y l : submseteq (y :: x :: l) (x :: y :: l)
  | submseteq_cons x l1 l2 : submseteq l1 l2 → submseteq l1 (x :: l2)
  | submseteq_trans l1 l2 l3 : submseteq l1 l2 → submseteq l2 l3 → submseteq l1 l3.
Infix "⊆+" := submseteq (at level 70) : C_scope.
Hint Extern 0 (_ ⊆+ _) => reflexivity.
287

288 289 290 291 292 293 294 295 296 297 298 299 300 301
(** Removes [x] from the list [l]. The function returns a [Some] when the
+removal succeeds and [None] when [x] is not in [l]. *)
Fixpoint list_remove `{EqDecision A} (x : A) (l : list A) : option (list A) :=
  match l with
  | [] => None
  | y :: l => if decide (x = y) then Some l else (y ::) <$> list_remove x l
  end.

(** Removes all elements in the list [k] from the list [l]. The function returns
a [Some] when the removal succeeds and [None] some element of [k] is not in [l]. *)
Fixpoint list_remove_list `{EqDecision A} (k : list A) (l : list A) : option (list A) :=
  match k with
  | [] => Some l | x :: k => list_remove x l ≫= list_remove_list k
  end.
302

303 304 305 306 307
Inductive Forall3 {A B C} (P : A → B → C → Prop) :
     list A → list B → list C → Prop :=
  | Forall3_nil : Forall3 P [] [] []
  | Forall3_cons x y z l k k' :
     P x y z → Forall3 P l k k' → Forall3 P (x :: l) (y :: k) (z :: k').
308

309 310
(** Set operations on lists *)
Instance list_subseteq {A} : SubsetEq (list A) := λ l1 l2, ∀ x, x ∈ l1 → x ∈ l2.
311

312
Section list_set.
313 314
  Context `{dec : EqDecision A}.
  Global Instance elem_of_list_dec (x : A) : ∀ l, Decision (x ∈ l).
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
  Proof.
   refine (
    fix go l :=
    match l return Decision (x ∈ l) with
    | [] => right _
    | y :: l => cast_if_or (decide (x = y)) (go l)
    end); clear go dec; subst; try (by constructor); abstract by inversion 1.
  Defined.
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel (∈) x l then remove_dups l else x :: remove_dups l
    end.
  Fixpoint list_difference (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel (∈) x k
334
      then list_difference l k else x :: list_difference l k
335
    end.
336
  Definition list_union (l k : list A) : list A := list_difference l k ++ k.
337 338 339 340 341
  Fixpoint list_intersection (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel (∈) x k
342
      then x :: list_intersection l k else list_intersection l k
343 344 345 346 347 348 349 350 351
    end.
  Definition list_intersection_with (f : A → A → option A) :
    list A → list A → list A := fix go l k :=
    match l with
    | [] => []
    | x :: l => foldr (λ y,
        match f x y with None => id | Some z => (z ::) end) (go l k) k
    end.
End list_set.
352 353

(** * Basic tactics on lists *)
Robbert Krebbers's avatar
Robbert Krebbers committed
354
(** The tactic [discriminate_list] discharges a goal if it submseteq
355 356
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
357
Tactic Notation "discriminate_list" hyp(H) :=
358
  apply (f_equal length) in H;
359
  repeat (csimpl in H || rewrite app_length in H); exfalso; lia.
360 361
Tactic Notation "discriminate_list" :=
  match goal with H : @eq (list _) _ _ |- _ => discriminate_list H end.
362

363
(** The tactic [simplify_list_eq] simplifies hypotheses involving
364 365
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
366
Lemma app_inj_1 {A} (l1 k1 l2 k2 : list A) :
367 368
  length l1 = length k1 → l1 ++ l2 = k1 ++ k2 → l1 = k1 ∧ l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
369
Lemma app_inj_2 {A} (l1 k1 l2 k2 : list A) :
370 371
  length l2 = length k2 → l1 ++ l2 = k1 ++ k2 → l1 = k1 ∧ l2 = k2.
Proof.
372
  intros ? Hl. apply app_inj_1; auto.
373 374
  apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
Qed.
375
Ltac simplify_list_eq :=
376
  repeat match goal with
377
  | _ => progress simplify_eq/=
378
  | H : _ ++ _ = _ ++ _ |- _ => first
379
    [ apply app_inv_head in H | apply app_inv_tail in H
380 381
    | apply app_inj_1 in H; [destruct H|done]
    | apply app_inj_2 in H; [destruct H|done] ]
Robbert Krebbers's avatar
Robbert Krebbers committed
382
  | H : [?x] !! ?i = Some ?y |- _ =>
383
    destruct i; [change (Some x = Some y) in H | discriminate]
384
  end.
385

386 387
(** * General theorems *)
Section general_properties.
Robbert Krebbers's avatar
Robbert Krebbers committed
388
Context {A : Type}.
389 390
Implicit Types x y z : A.
Implicit Types l k : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
391

392
Global Instance: Inj2 (=) (=) (=) (@cons A).
393
Proof. by injection 1. Qed.
394
Global Instance: ∀ k, Inj (=) (=) (k ++).
395
Proof. intros ???. apply app_inv_head. Qed.
396
Global Instance: ∀ k, Inj (=) (=) (++ k).
397
Proof. intros ???. apply app_inv_tail. Qed.
398
Global Instance: Assoc (=) (@app A).
399 400 401 402 403
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.
404

405
Lemma app_nil l1 l2 : l1 ++ l2 = [] ↔ l1 = [] ∧ l2 = [].
406
Proof. split. apply app_eq_nil. by intros [-> ->]. Qed.
407 408
Lemma app_singleton l1 l2 x :
  l1 ++ l2 = [x] ↔ l1 = [] ∧ l2 = [x] ∨ l1 = [x] ∧ l2 = [].
409
Proof. split. apply app_eq_unit. by intros [[-> ->]|[-> ->]]. Qed.
410 411 412
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : (∀ i, l1 !! i = l2 !! i) → l1 = l2.
413
Proof.
414
  revert l2. induction l1 as [|x l1 IH]; intros [|y l2] H.
415 416 417
  - done.
  - discriminate (H 0).
  - discriminate (H 0).
418
  - f_equal; [by injection (H 0)|]. apply (IH _ $ λ i, H (S i)).
419
Qed.
420 421
Global Instance list_eq_dec {dec : EqDecision A} : EqDecision (list A) :=
  list_eq_dec dec.
422 423 424
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with [] => left _ | _ => right _ end. Defined.
Lemma list_singleton_reflect l :
425
  option_reflect (λ x, l = [x]) (length l ≠ 1) (maybe (λ x, [x]) l).
426 427 428 429
Proof. by destruct l as [|? []]; constructor. Defined.

Definition nil_length : length (@nil A) = 0 := eq_refl.
Definition cons_length x l : length (x :: l) = S (length l) := eq_refl.
430
Lemma nil_or_length_pos l : l = [] ∨ length l ≠ 0.
431
Proof. destruct l; simpl; auto with lia. Qed.
432
Lemma nil_length_inv l : length l = 0 → l = [].
433 434
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
435
Proof. by destruct i. Qed.
436
Lemma lookup_tail l i : tail l !! i = l !! S i.
437
Proof. by destruct l. Qed.
438
Lemma lookup_lt_Some l i x : l !! i = Some x → i < length l.
439
Proof. revert i. induction l; intros [|?] ?; naive_solver auto with arith. Qed.
440 441 442
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i) → i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l → is_Some (l !! i).
443
Proof. revert i. induction l; intros [|?] ?; naive_solver eauto with lia. Qed.
444 445 446 447 448 449 450 451
Lemma lookup_lt_is_Some l i : is_Some (l !! i) ↔ i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None ↔ length l ≤ i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None → length l ≤ i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l ≤ i → l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
452 453 454
Lemma list_eq_same_length l1 l2 n :
  length l2 = n → length l1 = n →
  (∀ i x y, i < n → l1 !! i = Some x → l2 !! i = Some y → x = y) → l1 = l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
455
Proof.
456
  intros <- Hlen Hl; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
457
  - destruct (lookup_lt_is_Some_2 l1 i) as [y Hy].
458 459
    { rewrite Hlen; eauto using lookup_lt_Some. }
    rewrite Hy; f_equal; apply (Hl i); eauto using lookup_lt_Some.
460
  - by rewrite lookup_ge_None, Hlen, <-lookup_ge_None.
Robbert Krebbers's avatar
Robbert Krebbers committed
461
Qed.
462
Lemma lookup_app_l l1 l2 i : i < length l1 → (l1 ++ l2) !! i = l1 !! i.
463
Proof. revert i. induction l1; intros [|?]; naive_solver auto with lia. Qed.
464 465
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x → (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
466
Lemma lookup_app_r l1 l2 i :
467
  length l1 ≤ i → (l1 ++ l2) !! i = l2 !! (i - length l1).
468 469 470 471 472 473
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
Lemma lookup_app_Some l1 l2 i x :
  (l1 ++ l2) !! i = Some x ↔
    l1 !! i = Some x ∨ length l1 ≤ i ∧ l2 !! (i - length l1) = Some x.
Proof.
  split.
474
  - revert i. induction l1 as [|y l1 IH]; intros [|i] ?;
475
      simplify_eq/=; auto with lia.
476
    destruct (IH i) as [?|[??]]; auto with lia.
477
  - intros [?|[??]]; auto using lookup_app_l_Some. by rewrite lookup_app_r.
478
Qed.
479 480 481
Lemma list_lookup_middle l1 l2 x n :
  n = length l1 → (l1 ++ x :: l2) !! n = Some x.
Proof. intros ->. by induction l1. Qed.
482

483 484 485 486 487
Lemma nth_lookup l i d : nth i l d = from_option id d (l !! i).
Proof. revert i. induction l as [|x l IH]; intros [|i]; simpl; auto. Qed.
Lemma nth_lookup_Some l i d x : l !! i = Some x → nth i l d = x.
Proof. rewrite nth_lookup. by intros ->. Qed.
Lemma nth_lookup_or_length l i d : {l !! i = Some (nth i l d)} + {length l ≤ i}.
Ralf Jung's avatar
Ralf Jung committed
488
Proof.
489
  rewrite nth_lookup. destruct (l !! i) eqn:?; eauto using lookup_ge_None_1.
Ralf Jung's avatar
Ralf Jung committed
490 491
Qed.

492
Lemma list_insert_alter l i x : <[i:=x]>l = alter (λ _, x) i l.
493
Proof. by revert i; induction l; intros []; intros; f_equal/=. Qed.
494
Lemma alter_length f l i : length (alter f i l) = length l.
495
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
496
Lemma insert_length l i x : length (<[i:=x]>l) = length l.
497
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
498
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
499
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
500
Lemma list_lookup_alter_ne f l i j : i ≠ j → alter f i l !! j = l !! j.
501
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
502
Lemma list_lookup_insert l i x : i < length l → <[i:=x]>l !! i = Some x.
503
Proof. revert i. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
504
Lemma list_lookup_insert_ne l i j x : i ≠ j → <[i:=x]>l !! j = l !! j.
505
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
506 507 508 509 510 511
Lemma list_lookup_insert_Some l i x j y :
  <[i:=x]>l !! j = Some y ↔
    i = j ∧ x = y ∧ j < length l ∨ i ≠ j ∧ l !! j = Some y.
Proof.
  destruct (decide (i = j)) as [->|];
    [split|rewrite list_lookup_insert_ne by done; tauto].
512
  - intros Hy. assert (j < length l).
513 514
    { rewrite <-(insert_length l j x); eauto using lookup_lt_Some. }
    rewrite list_lookup_insert in Hy by done; naive_solver.
515
  - intros [(?&?&?)|[??]]; rewrite ?list_lookup_insert; naive_solver.
516 517 518
Qed.
Lemma list_insert_commute l i j x y :
  i ≠ j → <[i:=x]>(<[j:=y]>l) = <[j:=y]>(<[i:=x]>l).
519
Proof. revert i j. by induction l; intros [|?] [|?] ?; f_equal/=; auto. Qed.
520 521
Lemma list_lookup_other l i x :
  length l ≠ 1 → l !! i = Some x → ∃ j y, j ≠ i ∧ l !! j = Some y.
Robbert Krebbers's avatar
Robbert Krebbers committed
522
Proof.
523
  intros. destruct i, l as [|x0 [|x1 l]]; simplify_eq/=.
524 525
  - by exists 1, x1.
  - by exists 0, x0.
Robbert Krebbers's avatar
Robbert Krebbers committed
526
Qed.
527 528
Lemma alter_app_l f l1 l2 i :
  i < length l1 → alter f i (l1 ++ l2) = alter f i l1 ++ l2.
529
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
530
Lemma alter_app_r f l1 l2 i :
531
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
532
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
533 534
Lemma alter_app_r_alt f l1 l2 i :
  length l1 ≤ i → alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
535 536 537 538
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
539
Lemma list_alter_id f l i : (∀ x, f x = x) → alter f i l = l.
540
Proof. intros ?. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
541 542
Lemma list_alter_ext f g l k i :
  (∀ x, l !! i = Some x → f x = g x) → l = k → alter f i l = alter g i k.
543
Proof. intros H ->. revert i H. induction k; intros [|?] ?; f_equal/=; auto. Qed.
544 545
Lemma list_alter_compose f g l i :
  alter (f ∘ g) i l = alter f i (alter g i l).
546
Proof. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
547 548
Lemma list_alter_commute f g l i j :
  i ≠ j → alter f i (alter g j l) = alter g j (alter f i l).
549
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal/=; auto with lia. Qed.
550 551
Lemma insert_app_l l1 l2 i x :
  i < length l1 → <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
552
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
553
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
554
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
555 556
Lemma insert_app_r_alt l1 l2 i x :
  length l1 ≤ i → <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
557 558 559 560
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply insert_app_r.
Qed.
561
Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
562
Proof. induction l1; f_equal/=; auto. Qed.
563

564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
Lemma inserts_length l i k : length (list_inserts i k l) = length l.
Proof.
  revert i. induction k; intros ?; csimpl; rewrite ?insert_length; auto.
Qed.
Lemma list_lookup_inserts l i k j :
  i ≤ j < i + length k → j < length l →
  list_inserts i k l !! j = k !! (j - i).
Proof.
  revert i j. induction k as [|y k IH]; csimpl; intros i j ??; [lia|].
  destruct (decide (i = j)) as [->|].
  { by rewrite list_lookup_insert, Nat.sub_diag
      by (rewrite inserts_length; lia). }
  rewrite list_lookup_insert_ne, IH by lia.
  by replace (j - i) with (S (j - S i)) by lia.
Qed.
Lemma list_lookup_inserts_lt l i k j :
  j < i → list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; intros i j ?; csimpl;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_ge l i k j :
  i + length k ≤ j → list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; csimpl; intros i j ?;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_Some l i k j y :
  list_inserts i k l !! j = Some y ↔
    (j < i ∨ i + length k ≤ j) ∧ l !! j = Some y ∨
    i ≤ j < i + length k ∧ j < length l ∧ k !! (j - i) = Some y.
Proof.
  destruct (decide (j < i)).
  { rewrite list_lookup_inserts_lt by done; intuition lia. }
  destruct (decide (i + length k ≤ j)).
  { rewrite list_lookup_inserts_ge by done; intuition lia. }
  split.
601
  - intros Hy. assert (j < length l).
602 603
    { rewrite <-(inserts_length l i k); eauto using lookup_lt_Some. }
    rewrite list_lookup_inserts in Hy by lia. intuition lia.
604
  - intuition. by rewrite list_lookup_inserts by lia.
605 606 607 608 609 610 611 612
Qed.
Lemma list_insert_inserts_lt l i j x k :
  i < j → <[i:=x]>(list_inserts j k l) = list_inserts j k (<[i:=x]>l).
Proof.
  revert i j. induction k; intros i j ?; simpl;
    rewrite 1?list_insert_commute by lia; auto with f_equal.
Qed.

613
(** ** Properties of the [elem_of] predicate *)
614
Lemma not_elem_of_nil x : x ∉ [].
615
Proof. by inversion 1. Qed.
616
Lemma elem_of_nil x : x ∈ [] ↔ False.
617
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
618
Lemma elem_of_nil_inv l : (∀ x, x ∉ l) → l = [].
619
Proof. destruct l. done. by edestruct 1; constructor. Qed.
620 621
Lemma elem_of_not_nil x l : x ∈ l → l ≠ [].
Proof. intros ? ->. by apply (elem_of_nil x). Qed.
622
Lemma elem_of_cons l x y : x ∈ y :: l ↔ x = y ∨ x ∈ l.
Robbert Krebbers's avatar
Robbert Krebbers committed
623
Proof. by split; [inversion 1; subst|intros [->|?]]; constructor. Qed.
624
Lemma not_elem_of_cons l x y : x ∉ y :: l ↔ x ≠ y ∧ x ∉ l.
Robbert Krebbers's avatar
Robbert Krebbers committed
625
Proof. rewrite elem_of_cons. tauto. Qed.
626
Lemma elem_of_app l1 l2 x : x ∈ l1 ++ l2 ↔ x ∈ l1 ∨ x ∈ l2.
627
Proof.
628
  induction l1.
629 630
  - split; [by right|]. intros [Hx|]; [|done]. by destruct (elem_of_nil x).
  - simpl. rewrite !elem_of_cons, IHl1. tauto.
631
Qed.
632
Lemma not_elem_of_app l1 l2 x : x ∉ l1 ++ l2 ↔ x ∉ l1 ∧ x ∉ l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
633
Proof. rewrite elem_of_app. tauto. Qed.
634
Lemma elem_of_list_singleton x y : x ∈ [y] ↔ x = y.
635
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
636
Global Instance elem_of_list_permutation_proper x : Proper ((≡ₚ) ==> iff) (x ∈).
637
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
638
Lemma elem_of_list_split l x : x ∈ l → ∃ l1 l2, l = l1 ++ x :: l2.
639
Proof.
640
  induction 1 as [x l|x y l ? [l1 [l2 ->]]]; [by eexists [], l|].
641
  by exists (y :: l1), l2.
642
Qed.
643
Lemma elem_of_list_lookup_1 l x : x ∈ l → ∃ i, l !! i = Some x.
644
Proof.
645 646
  induction 1 as [|???? IH]; [by exists 0 |].
  destruct IH as [i ?]; auto. by exists (S i).
647
Qed.
648
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x → x ∈ l.
649
Proof.
650
  revert i. induction l; intros [|i] ?; simplify_eq/=; constructor; eauto.
651
Qed.
652 653
Lemma elem_of_list_lookup l x : x ∈ l ↔ ∃ i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.
654 655 656 657
Lemma elem_of_list_omap {B} (f : A → option B) l (y : B) :
  y ∈ omap f l ↔ ∃ x, x ∈ l ∧ f x = Some y.
Proof.
  split.
658
  - induction l as [|x l]; csimpl; repeat case_match; inversion 1; subst;
659
      setoid_rewrite elem_of_cons; naive_solver.
660
  - intros (x&Hx&?). by induction Hx; csimpl; repeat case_match;
661
      simplify_eq; try constructor; auto.
662
Qed.
663

664
(** ** Properties of the [NoDup] predicate *)
665 666
Lemma NoDup_nil : NoDup (@nil A) ↔ True.
Proof. split; constructor. Qed.
667
Lemma NoDup_cons x l : NoDup (x :: l) ↔ x ∉ l ∧ NoDup l.
668
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
669
Lemma NoDup_cons_11 x l : NoDup (x :: l) → x ∉ l.
670
Proof. rewrite NoDup_cons. by intros [??]. Qed.
671
Lemma NoDup_cons_12 x l : NoDup (x :: l) → NoDup l.
672
Proof. rewrite NoDup_cons. by intros [??]. Qed.
673
Lemma NoDup_singleton x : NoDup [x].
674
Proof. constructor. apply not_elem_of_nil. constructor. Qed.
675
Lemma NoDup_app l k : NoDup (l ++ k) ↔ NoDup l ∧ (∀ x, x ∈ l → x ∉ k) ∧ NoDup k.
Robbert Krebbers's avatar
Robbert Krebbers committed
676
Proof.
677
  induction l; simpl.
678 679
  - rewrite NoDup_nil. setoid_rewrite elem_of_nil. naive_solver.
  - rewrite !NoDup_cons.
Robbert Krebbers's avatar
Robbert Krebbers committed
680
    setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app. naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
681
Qed.
682
Global Instance NoDup_proper: Proper ((≡ₚ) ==> iff) (@NoDup A).
683 684
Proof.
  induction 1 as [|x l k Hlk IH | |].
685 686 687 688
  - by rewrite !NoDup_nil.
  - by rewrite !NoDup_cons, IH, Hlk.
  - rewrite !NoDup_cons, !elem_of_cons. intuition.
  - intuition.
689
Qed.
690 691
Lemma NoDup_lookup l i j x :
  NoDup l → l !! i = Some x → l !! j = Some x → i = j.
692 693
Proof.
  intros Hl. revert i j. induction Hl as [|x' l Hx Hl IH].
694 695
  { intros; simplify_eq. }
  intros [|i] [|j] ??; simplify_eq/=; eauto with f_equal;
696 697
    exfalso; eauto using elem_of_list_lookup_2.
Qed.
698 699
Lemma NoDup_alt l :
  NoDup l ↔ ∀ i j x, l !! i = Some x → l !! j = Some x → i = j.
700
Proof.
701 702
  split; eauto using NoDup_lookup.
  induction l as [|x l IH]; intros Hl; constructor.
703
  - rewrite elem_of_list_lookup. intros [i ?].
704
    by feed pose proof (Hl (S i) 0 x); auto.
705
  - apply IH. intros i j x' ??. by apply (inj S), (Hl (S i) (S j) x').
706
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
707

708
Section no_dup_dec.
709
  Context `{!EqDecision A}.
710 711 712 713
  Global Instance NoDup_dec: ∀ l, Decision (NoDup l) :=
    fix NoDup_dec l :=
    match l return Decision (NoDup l) with
    | [] => left NoDup_nil_2
714
    | x :: l =>
715 716 717 718 719 720 721 722
      match decide_rel (∈) x l with
      | left Hin => right (λ H, NoDup_cons_11 _ _ H Hin)
      | right Hin =>
        match NoDup_dec l with
        | left H => left (NoDup_cons_2 _ _ Hin H)
        | right H => right (H ∘ NoDup_cons_12 _ _)
        end
      end
723
    end.
724
  Lemma elem_of_remove_dups l x : x ∈ remove_dups l ↔ x ∈ l.
725 726
  Proof.
    split; induction l; simpl; repeat case_decide;
727
      rewrite ?elem_of_cons; intuition (simplify_eq; auto).
728
  Qed.
729
  Lemma NoDup_remove_dups l : NoDup (remove_dups l).
730 731 732 733
  Proof.
    induction l; simpl; repeat case_decide; try constructor; auto.
    by rewrite elem_of_remove_dups.
  Qed.
734
End no_dup_dec.
735

736 737
(** ** Set operations on lists *)
Section list_set.
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
  Lemma elem_of_list_intersection_with f l k x :
    x ∈ list_intersection_with f l k ↔ ∃ x1 x2,
        x1 ∈ l ∧ x2 ∈ k ∧ f x1 x2 = Some x.
  Proof.
    split.
    - induction l as [|x1 l IH]; simpl; [by rewrite elem_of_nil|].
      intros Hx. setoid_rewrite elem_of_cons.
      cut ((∃ x2, x2 ∈ k ∧ f x1 x2 = Some x)
           ∨ x ∈ list_intersection_with f l k); [naive_solver|].
      clear IH. revert Hx. generalize (list_intersection_with f l k).
      induction k; simpl; [by auto|].
      case_match; setoid_rewrite elem_of_cons; naive_solver.
    - intros (x1&x2&Hx1&Hx2&Hx). induction Hx1 as [x1|x1 ? l ? IH]; simpl.
      + generalize (list_intersection_with f l k).
        induction Hx2; simpl; [by rewrite Hx; left |].
        case_match; simpl; try setoid_rewrite elem_of_cons; auto.
      + generalize (IH Hx). clear Hx IH Hx2.
        generalize (list_intersection_with f l k).
        induction k; simpl; intros; [done|].
        case_match; simpl; rewrite ?elem_of_cons; auto.
  Qed.

760
  Context `{!EqDecision A}.
761 762 763 764 765 766 767 768
  Lemma elem_of_list_difference l k x : x ∈ list_difference l k ↔ x ∈ l ∧ x ∉ k.
  Proof.
    split; induction l; simpl; try case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_difference l k : NoDup l → NoDup (list_difference l k).
  Proof.
    induction 1; simpl; try case_decide.
769 770 771
    - constructor.
    - done.
    - constructor. rewrite elem_of_list_difference; intuition. done.
772 773 774 775 776 777 778 779 780
  Qed.
  Lemma elem_of_list_union l k x : x ∈ list_union l k ↔ x ∈ l ∨ x ∈ k.
  Proof.
    unfold list_union. rewrite elem_of_app, elem_of_list_difference.
    intuition. case (decide (x ∈ k)); intuition.
  Qed.
  Lemma NoDup_list_union l k : NoDup l → NoDup k → NoDup (list_union l k).
  Proof.
    intros. apply NoDup_app. repeat split.
781 782 783
    - by apply NoDup_list_difference.
    - intro. rewrite elem_of_list_difference. intuition.
    - done.
784 785 786 787 788 789 790 791 792 793
  Qed.
  Lemma elem_of_list_intersection l k x :
    x ∈ list_intersection l k ↔ x ∈ l ∧ x ∈ k.
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_intersection l k : NoDup l → NoDup (list_intersection l k).
  Proof.
    induction 1; simpl; try case_decide.
794 795 796
    - constructor.
    - constructor. rewrite elem_of_list_intersection; intuition. done.
    - done.
797 798 799
  Qed.
End list_set.

800
(** ** Properties of the [filter] function *)
801 802 803 804 805 806 807
Section filter.
  Context (P : A → Prop) `{∀ x, Decision (P x)}.
  Lemma elem_of_list_filter l x : x ∈ filter P l ↔ P x ∧ x ∈ l.
  Proof.
    unfold filter. induction l; simpl; repeat case_decide;
       rewrite ?elem_of_nil, ?elem_of_cons; naive_solver.
  Qed.
808
  Lemma NoDup_filter l : NoDup l → NoDup (filter P l).
809 810 811 812 813
  Proof.
    unfold filter. induction 1; simpl; repeat case_decide;
      rewrite ?NoDup_nil, ?NoDup_cons, ?elem_of_list_filter; tauto.
  Qed.
End filter.
Robbert Krebbers's avatar
Robbert Krebbers committed
814

815 816 817
(** ** Properties of the [find] function *)
Section find.
  Context (P : A → Prop) `{∀ x, Decision (P x)}.
818 819
  Lemma list_find_Some l i x :
    list_find P l = Some (i,x) → l !! i = Some x ∧ P x.
820
  Proof.
821 822 823
    revert i; induction l; intros [] ?; repeat first
      [ match goal with x : prod _ _ |- _ => destruct x end
      | simplify_option_eq ]; eauto.
824
  Qed.
825
  Lemma list_find_elem_of l x : x ∈ l → P x → is_Some (list_find P l).
826
  Proof.
827
    induction 1 as [|x y l ? IH]; intros; simplify_option_eq; eauto.
828
    by destruct IH as [[i x'] ->]; [|exists (S i, x')].
829 830 831
  Qed.
End find.

832
(** ** Properties of the [reverse] function *)
833 834
Lemma reverse_nil : reverse [] = @nil A.
Proof. done. Qed.
835
Lemma reverse_singleton x : reverse [x] = [x].
836
Proof. done. Qed.
837
Lemma reverse_cons l x : reverse (x :: l) = reverse l ++ [x].
838
Proof. unfold reverse. by rewrite <-!rev_alt. Qed.
839
Lemma reverse_snoc l x : reverse (l ++ [x]) = x :: reverse l.
840
Proof. unfold reverse. by rewrite <-!rev_alt, rev_unit. Qed.
841
Lemma reverse_app l1 l2 : reverse (l1 ++ l2) = reverse l2 ++ reverse l1.
842
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_app_distr. Qed.
843
Lemma reverse_length l : length (reverse l) = length l.
844
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_length. Qed.
845
Lemma reverse_involutive l : reverse (reverse l) = l.
846
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_involutive. Qed.
847 848 849 850 851 852 853 854 855 856
Lemma elem_of_reverse_2 x l : x ∈ l → x ∈ reverse l.
Proof.
  induction 1; rewrite reverse_cons, elem_of_app,
    ?elem_of_list_singleton; intuition.
Qed.
Lemma elem_of_reverse x l : x ∈ reverse l ↔ x ∈ l.
Proof.
  split; auto using elem_of_reverse_2.
  intros. rewrite <-(reverse_involutive l). by apply elem_of_reverse_2.
Qed.
857
Global Instance: Inj (=) (=) (@reverse A).
858 859 860 861
Proof.
  intros l1 l2 Hl.
  by rewrite <-(reverse_involutive l1), <-(reverse_involutive l2), Hl.
Qed.
862 863 864 865 866 867 868 869
Lemma sum_list_with_app (f : A → nat) l k :
  sum_list_with f (l ++ k) = sum_list_with f l + sum_list_with f k.
Proof. induction l; simpl; lia. Qed.
Lemma sum_list_with_reverse (f : A → nat) l :
  sum_list_with f (reverse l) = sum_list_with f l.
Proof.
  induction l; simpl; rewrite ?reverse_cons, ?sum_list_with_app; simpl; lia.
Qed.
870

871 872 873
(** ** Properties of the [last] function *)
Lemma last_snoc x l : last (l ++ [x]) = Some x.
Proof. induction l as [|? []]; simpl; auto. Qed.
874 875 876 877
Lemma last_reverse l : last (reverse l) = head l.
Proof. by destruct l as [|x l]; rewrite ?reverse_cons, ?last_snoc. Qed.
Lemma head_reverse l : head (reverse l) = last l.
Proof. by rewrite <-last_reverse, reverse_involutive. Qed.
878

879 880 881 882 883
(** ** Properties of the [take] function *)
Definition take_drop i l : take i l ++ drop i l = l := firstn_skipn i l.
Lemma take_drop_middle l i x :
  l !! i = Some x → take i l ++ x :: drop (S i) l = l.
Proof.
884
  revert i x. induction l; intros [|?] ??; simplify_eq/=; f_equal; auto.
885
Qed.
886
Lemma take_nil n : take n (@nil A) = [].
Robbert Krebbers's avatar
Robbert Krebbers committed
887
Proof. by destruct n. Qed.
888
Lemma take_app l k : take (length l) (l ++ k) = l.
889
Proof. induction l; f_equal/=; auto. Qed.
890
Lemma take_app_alt l k n : n = length l → take n (l ++ k) = l.
891 892
Proof. intros ->. by apply take_app. Qed.
Lemma take_app3_alt l1 l2 l3 n : n = length l1 → take n ((l1 ++ l2) ++ l3) = l1.
893
Proof. intros ->. by rewrite <-(assoc_L (++)), take_app. Qed.
894
Lemma take_app_le l k n : n ≤ length l → take n (l ++ k) = take n l.
895
Proof. revert n. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
896 897
Lemma take_plus_app l k n m :
  length l = n → take (n + m) (l ++ k) = l ++ take m k.
898
Proof. intros <-. induction l; f_equal/=; auto. Qed.
899 900
Lemma take_app_ge l k n :
  length l ≤ n → take n (l ++ k) = l ++ take (n - length l) k.
901
Proof. revert n. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
902
Lemma take_ge l n : length l ≤ n → take n l = l.
903
Proof. revert n. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
904
Lemma take_take l n m : take n (take m l) = take (min n m) l.
905
Proof. revert n m. induction l; intros [|?] [|?]; f_equal/=; auto. Qed.
906
Lemma take_idemp l n : take n (take n l) = take n l.
Robbert Krebbers's avatar
Robbert Krebbers committed
907
Proof. by rewrite take_take, Min.min_idempotent. Qed.
908
Lemma take_length l n : length (take n l) = min n (length l).
909
Proof. revert n. induction l; intros [|?]; f_equal/=; done. Qed.
910
Lemma take_length_le l n : n ≤ length l → length (take n l) = n.
Robbert Krebbers's avatar
Robbert Krebbers committed
911
Proof. rewrite take_length. apply Min.min_l. Qed.
912 913
Lemma take_length_ge l n : length l ≤ n → length (take n l) = length l.
Proof. rewrite take_length. apply Min.min_r. Qed.
914
Lemma take_drop_commute l n m : take n (drop m l) = drop m (take (m + n) l).
Robbert Krebbers's avatar
Robbert Krebbers committed
915
Proof.
916
  revert n m. induction l; intros [|?][|?]; simpl; auto using take_nil with lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
917
Qed.
918 919
Lemma lookup_take l n i : i < n → take n l !! i = l !! i.
Proof. revert n i. induction l; intros [|n] [|i] ?; simpl; auto with lia. Qed.
920
Lemma lookup_take_ge l n i : n ≤ i → take n l !! i = None.
Robbert Krebbers's avatar
Robbert Krebbers committed
921
Proof. revert n i. induction l; intros [|?] [|?] ?; simpl; auto with lia. Qed.
922
Lemma take_alter f l n i : n ≤ i → take n (alter f i l) = take n l.
Robbert Krebbers's avatar
Robbert Krebbers committed
923 924
Proof.
  intros. apply list_eq. intros j. destruct (le_lt_dec n j).
925 926
  - by rewrite !lookup_take_ge.
  - by rewrite !lookup_take, !list_lookup_alter_ne by lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
927
Qed.
928
Lemma take_insert l n i x : n ≤ i → take n (<[i:=x]>l) = take n l.
929 930
Proof.
  intros. apply list_eq. intros j. destruct (le_lt_dec n j).
931 932
  - by rewrite !lookup_take_ge.
  - by rewrite !lookup_take, !list_lookup_insert_ne by lia.
933
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed