base.v 50.3 KB
Newer Older
1
(* Copyright (c) 2012-2017, Coq-std++ developers. *)
2 3 4 5 6
(* This file is distributed under the terms of the BSD license. *)
(** This file collects type class interfaces, notations, and general theorems
that are used throughout the whole development. Most importantly it contains
abstract interfaces for ordered structures, collections, and various other data
structures. *)
7

8
From Coq Require Export Morphisms RelationClasses List Bool Utf8 Setoid.
9
Set Default Proof Using "Type".
10 11
Export ListNotations.
From Coq.Program Require Export Basics Syntax.
12

13 14 15 16 17 18 19 20
(** Enable implicit generalization. *)
(* This option enables implicit generalization in arguments of the form
   `{...} (i.e., anonymous arguments).  Unfortunately, it also enables
   implicit generalization in `Instance`.  We think that the fact taht both
   behaviors are coupled together is a [bug in
   Coq](https://github.com/coq/coq/issues/6030). *)
Global Generalizable All Variables.

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
(** * Tweak program *)
(** 1. Since we only use Program to solve logical side-conditions, they should
always be made Opaque, otherwise we end up with performance problems due to
Coq blindly unfolding them.

Note that in most cases we use [Next Obligation. (* ... *) Qed.], for which
this option does not matter. However, sometimes we write things like
[Solve Obligations with naive_solver (* ... *)], and then the obligations
should surely be opaque. *)
Global Unset Transparent Obligations.

(** 2. Do not let Program automatically simplify obligations. The default
obligation tactic is [Tactics.program_simpl], which, among other things,
introduces all variables and gives them fresh names. As such, it becomes
impossible to refer to hypotheses in a robust way. *)
36
Obligation Tactic := idtac.
37 38

(** 3. Hide obligations from the results of the [Search] commands. *)
39
Add Search Blacklist "_obligation_".
Robbert Krebbers's avatar
Robbert Krebbers committed
40

41
(** * Sealing off definitions *)
Ralf Jung's avatar
Ralf Jung committed
42 43 44 45
Section seal.
  Local Set Primitive Projections.
  Record seal {A} (f : A) := { unseal : A; seal_eq : unseal = f }.
End seal.
Ralf Jung's avatar
Ralf Jung committed
46 47
Arguments unseal {_ _} _ : assert.
Arguments seal_eq {_ _} _ : assert.
48

49
(** * Typeclass opaque definitions *)
50 51 52 53 54 55
(* The constant [tc_opaque] is used to make definitions opaque for just type
class search. Note that [simpl] is set up to always unfold [tc_opaque]. *)
Definition tc_opaque {A} (x : A) : A := x.
Typeclasses Opaque tc_opaque.
Arguments tc_opaque {_} _ /.

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
(* Below we define type class versions of the common logical operators. It is
important to note that we duplicate the definitions, and do not declare the
existing logical operators as type classes. That is, we do not say:

  Existing Class or.
  Existing Class and.

If we could define the existing logical operators as classes, there is no way
of disambiguating whether a premise of a lemma should be solved by type class
resolution or not.

These classes are useful for two purposes: writing complicated type class
premises in a more concise way, and for efficiency. For example, using the [Or]
class, instead of defining two instances [P → Q1 → R] and [P → Q2 → R] we could
have one instance [P → Or Q1 Q2 → R]. When we declare the instance that way, we
avoid the need to derive [P] twice. *)
72
Inductive TCOr (P1 P2 : Prop) : Prop :=
73 74 75 76 77
  | TCOr_l : P1  TCOr P1 P2
  | TCOr_r : P2  TCOr P1 P2.
Existing Class TCOr.
Existing Instance TCOr_l | 9.
Existing Instance TCOr_r | 10.
Robbert Krebbers's avatar
Robbert Krebbers committed
78

79
Inductive TCAnd (P1 P2 : Prop) : Prop := TCAnd_intro : P1  P2  TCAnd P1 P2.
80 81
Existing Class TCAnd.
Existing Instance TCAnd_intro.
82

83 84 85
Inductive TCTrue : Prop := TCTrue_intro : TCTrue.
Existing Class TCTrue.
Existing Instance TCTrue_intro.
86

87 88 89 90 91 92 93
Inductive TCForall {A} (P : A  Prop) : list A  Prop :=
  | TCForall_nil : TCForall P []
  | TCForall_cons x xs : P x  TCForall P xs  TCForall P (x :: xs).
Existing Class TCForall.
Existing Instance TCForall_nil.
Existing Instance TCForall_cons.

Robbert Krebbers's avatar
Robbert Krebbers committed
94 95 96 97 98 99 100 101
Inductive TCForall2 {A B} (P : A  B  Prop) : list A  list B  Prop :=
  | TCForall2_nil : TCForall2 P [] []
  | TCForall2_cons x y xs ys :
     P x y  TCForall2 P xs ys  TCForall2 P (x :: xs) (y :: ys).
Existing Class TCForall2.
Existing Instance TCForall2_nil.
Existing Instance TCForall2_cons.

102
(** Throughout this development we use [stdpp_scope] for all general purpose
103
notations that do not belong to a more specific scope. *)
104 105
Delimit Scope stdpp_scope with stdpp.
Global Open Scope stdpp_scope.
106

107
(** Change [True] and [False] into notations in order to enable overloading.
108 109
We will use this to give [True] and [False] a different interpretation for
embedded logics. *)
110 111
Notation "'True'" := True : type_scope.
Notation "'False'" := False : type_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
112 113


114
(** * Equality *)
115
(** Introduce some Haskell style like notations. *)
116 117 118 119 120 121
Notation "(=)" := eq (only parsing) : stdpp_scope.
Notation "( x =)" := (eq x) (only parsing) : stdpp_scope.
Notation "(= x )" := (λ y, eq y x) (only parsing) : stdpp_scope.
Notation "(≠)" := (λ x y, x  y) (only parsing) : stdpp_scope.
Notation "( x ≠)" := (λ y, x  y) (only parsing) : stdpp_scope.
Notation "(≠ x )" := (λ y, y  x) (only parsing) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
122

123
Hint Extern 0 (_ = _) => reflexivity.
124
Hint Extern 100 (_  _) => discriminate.
Robbert Krebbers's avatar
Robbert Krebbers committed
125

126 127 128 129
Instance: @PreOrder A (=).
Proof. split; repeat intro; congruence. Qed.

(** ** Setoid equality *)
Ralf Jung's avatar
Ralf Jung committed
130 131 132
(** We define an operational type class for setoid equality, i.e., the
"canonical" equivalence for a type. The typeclass is tied to the \equiv
symbol. This is based on (Spitters/van der Weegen, 2011). *)
133
Class Equiv A := equiv: relation A.
134 135 136
(* No Hint Mode set because of Coq bug #5735
Hint Mode Equiv ! : typeclass_instances. *)

137 138 139 140 141 142 143 144
Infix "≡" := equiv (at level 70, no associativity) : stdpp_scope.
Notation "(≡)" := equiv (only parsing) : stdpp_scope.
Notation "( X ≡)" := (equiv X) (only parsing) : stdpp_scope.
Notation "(≡ X )" := (λ Y, Y  X) (only parsing) : stdpp_scope.
Notation "(≢)" := (λ X Y, ¬X  Y) (only parsing) : stdpp_scope.
Notation "X ≢ Y":= (¬X  Y) (at level 70, no associativity) : stdpp_scope.
Notation "( X ≢)" := (λ Y, X  Y) (only parsing) : stdpp_scope.
Notation "(≢ X )" := (λ Y, Y  X) (only parsing) : stdpp_scope.
145 146 147 148 149 150

(** The type class [LeibnizEquiv] collects setoid equalities that coincide
with Leibniz equality. We provide the tactic [fold_leibniz] to transform such
setoid equalities into Leibniz equalities, and [unfold_leibniz] for the
reverse. *)
Class LeibnizEquiv A `{Equiv A} := leibniz_equiv x y : x  y  x = y.
151 152
Hint Mode LeibnizEquiv ! - : typeclass_instances.

153 154 155
Lemma leibniz_equiv_iff `{LeibnizEquiv A, !Reflexive (@equiv A _)} (x y : A) :
  x  y  x = y.
Proof. split. apply leibniz_equiv. intros ->; reflexivity. Qed.
156

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
Ltac fold_leibniz := repeat
  match goal with
  | H : context [ @equiv ?A _ _ _ ] |- _ =>
    setoid_rewrite (leibniz_equiv_iff (A:=A)) in H
  | |- context [ @equiv ?A _ _ _ ] =>
    setoid_rewrite (leibniz_equiv_iff (A:=A))
  end.
Ltac unfold_leibniz := repeat
  match goal with
  | H : context [ @eq ?A _ _ ] |- _ =>
    setoid_rewrite <-(leibniz_equiv_iff (A:=A)) in H
  | |- context [ @eq ?A _ _ ] =>
    setoid_rewrite <-(leibniz_equiv_iff (A:=A))
  end.

Definition equivL {A} : Equiv A := (=).

(** A [Params f n] instance forces the setoid rewriting mechanism not to
rewrite in the first [n] arguments of the function [f]. We will declare such
instances for all operational type classes in this development. *)
Instance: Params (@equiv) 2.

(** The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
Instance equiv_default_relation `{Equiv A} : DefaultRelation () | 3.
Hint Extern 0 (_  _) => reflexivity.
Hint Extern 0 (_  _) => symmetry; assumption.


(** * Type classes *)
(** ** Decidable propositions *)
(** This type class by (Spitters/van der Weegen, 2011) collects decidable
190
propositions. *)
191
Class Decision (P : Prop) := decide : {P} + {¬P}.
192
Hint Mode Decision ! : typeclass_instances.
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
Arguments decide _ {_} : simpl never, assert.

(** Although [RelDecision R] is just [∀ x y, Decision (R x y)], we make this
an explicit class instead of a notation for two reasons:

- It allows us to control [Hint Mode] more precisely. In particular, if it were
  defined as a notation, the above [Hint Mode] for [Decision] would not prevent
  diverging instance search when looking for [RelDecision (@eq ?A)], which would
  result in it looking for [Decision (@eq ?A x y)], i.e. an instance where the
  head position of [Decision] is not en evar.
- We use it to avoid inefficient computation due to eager evaluation of
  propositions by [vm_compute]. This inefficiency arises for example if
  [(x = y) := (f x = f y)]. Since [decide (x = y)] evaluates to
  [decide (f x = f y)], this would then lead to evaluation of [f x] and [f y].
  Using the [RelDecision], the [f] is hidden under a lambda, which prevents
  unnecessary evaluation. *)
Class RelDecision {A B} (R : A  B  Prop) :=
  decide_rel x y :> Decision (R x y).
Hint Mode RelDecision ! ! ! : typeclass_instances.
Arguments decide_rel {_ _} _ {_} _ _ : simpl never, assert.
Notation EqDecision A := (RelDecision (@eq A)).
214 215 216 217

(** ** Inhabited types *)
(** This type class collects types that are inhabited. *)
Class Inhabited (A : Type) : Type := populate { inhabitant : A }.
218
Hint Mode Inhabited ! : typeclass_instances.
219
Arguments populate {_} _ : assert.
220 221 222 223 224 225

(** ** Proof irrelevant types *)
(** This type class collects types that are proof irrelevant. That means, all
elements of the type are equal. We use this notion only used for propositions,
but by universe polymorphism we can generalize it. *)
Class ProofIrrel (A : Type) : Prop := proof_irrel (x y : A) : x = y.
226
Hint Mode ProofIrrel ! : typeclass_instances.
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262

(** ** Common properties *)
(** These operational type classes allow us to refer to common mathematical
properties in a generic way. For example, for injectivity of [(k ++)] it
allows us to write [inj (k ++)] instead of [app_inv_head k]. *)
Class Inj {A B} (R : relation A) (S : relation B) (f : A  B) : Prop :=
  inj x y : S (f x) (f y)  R x y.
Class Inj2 {A B C} (R1 : relation A) (R2 : relation B)
    (S : relation C) (f : A  B  C) : Prop :=
  inj2 x1 x2 y1 y2 : S (f x1 x2) (f y1 y2)  R1 x1 y1  R2 x2 y2.
Class Cancel {A B} (S : relation B) (f : A  B) (g : B  A) : Prop :=
  cancel :  x, S (f (g x)) x.
Class Surj {A B} (R : relation B) (f : A  B) :=
  surj y :  x, R (f x) y.
Class IdemP {A} (R : relation A) (f : A  A  A) : Prop :=
  idemp x : R (f x x) x.
Class Comm {A B} (R : relation A) (f : B  B  A) : Prop :=
  comm x y : R (f x y) (f y x).
Class LeftId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
  left_id x : R (f i x) x.
Class RightId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
  right_id x : R (f x i) x.
Class Assoc {A} (R : relation A) (f : A  A  A) : Prop :=
  assoc x y z : R (f x (f y z)) (f (f x y) z).
Class LeftAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
  left_absorb x : R (f i x) i.
Class RightAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
  right_absorb x : R (f x i) i.
Class AntiSymm {A} (R S : relation A) : Prop :=
  anti_symm x y : S x y  S y x  R x y.
Class Total {A} (R : relation A) := total x y : R x y  R y x.
Class Trichotomy {A} (R : relation A) :=
  trichotomy x y : R x y  x = y  R y x.
Class TrichotomyT {A} (R : relation A) :=
  trichotomyT x y : {R x y} + {x = y} + {R y x}.

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
Arguments irreflexivity {_} _ {_} _ _ : assert.
Arguments inj {_ _ _ _} _ {_} _ _ _ : assert.
Arguments inj2 {_ _ _ _ _ _} _ {_} _ _ _ _ _: assert.
Arguments cancel {_ _ _} _ _ {_} _ : assert.
Arguments surj {_ _ _} _ {_} _ : assert.
Arguments idemp {_ _} _ {_} _ : assert.
Arguments comm {_ _ _} _ {_} _ _ : assert.
Arguments left_id {_ _} _ _ {_} _ : assert.
Arguments right_id {_ _} _ _ {_} _ : assert.
Arguments assoc {_ _} _ {_} _ _ _ : assert.
Arguments left_absorb {_ _} _ _ {_} _ : assert.
Arguments right_absorb {_ _} _ _ {_} _ : assert.
Arguments anti_symm {_ _} _ {_} _ _ _ _ : assert.
Arguments total {_} _ {_} _ _ : assert.
Arguments trichotomy {_} _ {_} _ _ : assert.
Arguments trichotomyT {_} _ {_} _ _ : assert.
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342

Lemma not_symmetry `{R : relation A, !Symmetric R} x y : ¬R x y  ¬R y x.
Proof. intuition. Qed.
Lemma symmetry_iff `(R : relation A) `{!Symmetric R} x y : R x y  R y x.
Proof. intuition. Qed.

Lemma not_inj `{Inj A B R R' f} x y : ¬R x y  ¬R' (f x) (f y).
Proof. intuition. Qed.
Lemma not_inj2_1 `{Inj2 A B C R R' R'' f} x1 x2 y1 y2 :
  ¬R x1 x2  ¬R'' (f x1 y1) (f x2 y2).
Proof. intros HR HR''. destruct (inj2 f x1 y1 x2 y2); auto. Qed.
Lemma not_inj2_2 `{Inj2 A B C R R' R'' f} x1 x2 y1 y2 :
  ¬R' y1 y2  ¬R'' (f x1 y1) (f x2 y2).
Proof. intros HR' HR''. destruct (inj2 f x1 y1 x2 y2); auto. Qed.

Lemma inj_iff {A B} {R : relation A} {S : relation B} (f : A  B)
  `{!Inj R S f} `{!Proper (R ==> S) f} x y : S (f x) (f y)  R x y.
Proof. firstorder. Qed.
Instance inj2_inj_1 `{Inj2 A B C R1 R2 R3 f} y : Inj R1 R3 (λ x, f x y).
Proof. repeat intro; edestruct (inj2 f); eauto. Qed.
Instance inj2_inj_2 `{Inj2 A B C R1 R2 R3 f} x : Inj R2 R3 (f x).
Proof. repeat intro; edestruct (inj2 f); eauto. Qed.

Lemma cancel_inj `{Cancel A B R1 f g, !Equivalence R1, !Proper (R2 ==> R1) f} :
  Inj R1 R2 g.
Proof.
  intros x y E. rewrite <-(cancel f g x), <-(cancel f g y), E. reflexivity.
Qed.
Lemma cancel_surj `{Cancel A B R1 f g} : Surj R1 f.
Proof. intros y. exists (g y). auto. Qed.

(** The following lemmas are specific versions of the projections of the above
type classes for Leibniz equality. These lemmas allow us to enforce Coq not to
use the setoid rewriting mechanism. *)
Lemma idemp_L {A} f `{!@IdemP A (=) f} x : f x x = x.
Proof. auto. Qed.
Lemma comm_L {A B} f `{!@Comm A B (=) f} x y : f x y = f y x.
Proof. auto. Qed.
Lemma left_id_L {A} i f `{!@LeftId A (=) i f} x : f i x = x.
Proof. auto. Qed.
Lemma right_id_L {A} i f `{!@RightId A (=) i f} x : f x i = x.
Proof. auto. Qed.
Lemma assoc_L {A} f `{!@Assoc A (=) f} x y z : f x (f y z) = f (f x y) z.
Proof. auto. Qed.
Lemma left_absorb_L {A} i f `{!@LeftAbsorb A (=) i f} x : f i x = i.
Proof. auto. Qed.
Lemma right_absorb_L {A} i f `{!@RightAbsorb A (=) i f} x : f x i = i.
Proof. auto. Qed.

(** ** Generic orders *)
(** The classes [PreOrder], [PartialOrder], and [TotalOrder] use an arbitrary
relation [R] instead of [⊆] to support multiple orders on the same type. *)
Definition strict {A} (R : relation A) : relation A := λ X Y, R X Y  ¬R Y X.
Instance: Params (@strict) 2.
Class PartialOrder {A} (R : relation A) : Prop := {
  partial_order_pre :> PreOrder R;
  partial_order_anti_symm :> AntiSymm (=) R
}.
Class TotalOrder {A} (R : relation A) : Prop := {
  total_order_partial :> PartialOrder R;
  total_order_trichotomy :> Trichotomy (strict R)
}.

(** * Logic *)
343 344 345
Notation "(∧)" := and (only parsing) : stdpp_scope.
Notation "( A ∧)" := (and A) (only parsing) : stdpp_scope.
Notation "(∧ B )" := (λ A, A  B) (only parsing) : stdpp_scope.
346

347 348 349
Notation "(∨)" := or (only parsing) : stdpp_scope.
Notation "( A ∨)" := (or A) (only parsing) : stdpp_scope.
Notation "(∨ B )" := (λ A, A  B) (only parsing) : stdpp_scope.
350

351 352 353
Notation "(↔)" := iff (only parsing) : stdpp_scope.
Notation "( A ↔)" := (iff A) (only parsing) : stdpp_scope.
Notation "(↔ B )" := (λ A, A  B) (only parsing) : stdpp_scope.
354 355 356 357 358 359 360 361 362 363 364 365 366 367

Hint Extern 0 (_  _) => reflexivity.
Hint Extern 0 (_  _) => symmetry; assumption.

Lemma or_l P Q : ¬Q  P  Q  P.
Proof. tauto. Qed.
Lemma or_r P Q : ¬P  P  Q  Q.
Proof. tauto. Qed.
Lemma and_wlog_l (P Q : Prop) : (Q  P)  Q  (P  Q).
Proof. tauto. Qed.
Lemma and_wlog_r (P Q : Prop) : P  (P  Q)  (P  Q).
Proof. tauto. Qed.
Lemma impl_transitive (P Q R : Prop) : (P  Q)  (Q  R)  (P  R).
Proof. tauto. Qed.
368 369 370 371 372 373
Lemma forall_proper {A} (P Q : A  Prop) :
  ( x, P x  Q x)  ( x, P x)  ( x, Q x).
Proof. firstorder. Qed.
Lemma exist_proper {A} (P Q : A  Prop) :
  ( x, P x  Q x)  ( x, P x)  ( x, Q x).
Proof. firstorder. Qed.
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416

Instance: Comm () (@eq A).
Proof. red; intuition. Qed.
Instance: Comm () (λ x y, @eq A y x).
Proof. red; intuition. Qed.
Instance: Comm () ().
Proof. red; intuition. Qed.
Instance: Comm () ().
Proof. red; intuition. Qed.
Instance: Assoc () ().
Proof. red; intuition. Qed.
Instance: IdemP () ().
Proof. red; intuition. Qed.
Instance: Comm () ().
Proof. red; intuition. Qed.
Instance: Assoc () ().
Proof. red; intuition. Qed.
Instance: IdemP () ().
Proof. red; intuition. Qed.
Instance: LeftId () True ().
Proof. red; intuition. Qed.
Instance: RightId () True ().
Proof. red; intuition. Qed.
Instance: LeftAbsorb () False ().
Proof. red; intuition. Qed.
Instance: RightAbsorb () False ().
Proof. red; intuition. Qed.
Instance: LeftId () False ().
Proof. red; intuition. Qed.
Instance: RightId () False ().
Proof. red; intuition. Qed.
Instance: LeftAbsorb () True ().
Proof. red; intuition. Qed.
Instance: RightAbsorb () True ().
Proof. red; intuition. Qed.
Instance: LeftId () True impl.
Proof. unfold impl. red; intuition. Qed.
Instance: RightAbsorb () True impl.
Proof. unfold impl. red; intuition. Qed.


(** * Common data types *)
(** ** Functions *)
417 418 419
Notation "(→)" := (λ A B, A  B) (only parsing) : stdpp_scope.
Notation "( A →)" := (λ B, A  B) (only parsing) : stdpp_scope.
Notation "(→ B )" := (λ A, A  B) (only parsing) : stdpp_scope.
420

421
Notation "t $ r" := (t r)
422 423 424
  (at level 65, right associativity, only parsing) : stdpp_scope.
Notation "($)" := (λ f x, f x) (only parsing) : stdpp_scope.
Notation "($ x )" := (λ f, f x) (only parsing) : stdpp_scope.
425

426 427 428 429
Infix "∘" := compose : stdpp_scope.
Notation "(∘)" := compose (only parsing) : stdpp_scope.
Notation "( f ∘)" := (compose f) (only parsing) : stdpp_scope.
Notation "(∘ f )" := (λ g, compose g f) (only parsing) : stdpp_scope.
430

Robbert Krebbers's avatar
Robbert Krebbers committed
431 432 433
Instance impl_inhabited {A} `{Inhabited B} : Inhabited (A  B) :=
  populate (λ _, inhabitant).

434 435
(** Ensure that [simpl] unfolds [id], [compose], and [flip] when fully
applied. *)
436 437 438 439
Arguments id _ _ / : assert.
Arguments compose _ _ _ _ _ _ / : assert.
Arguments flip _ _ _ _ _ _ / : assert.
Arguments const _ _ _ _ / : assert.
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
Typeclasses Transparent id compose flip const.

Definition fun_map {A A' B B'} (f: A'  A) (g: B  B') (h : A  B) : A'  B' :=
  g  h  f.

Instance const_proper `{R1 : relation A, R2 : relation B} (x : B) :
  Reflexive R2  Proper (R1 ==> R2) (λ _, x).
Proof. intros ? y1 y2; reflexivity. Qed.

Instance id_inj {A} : Inj (=) (=) (@id A).
Proof. intros ??; auto. Qed.
Instance compose_inj {A B C} R1 R2 R3 (f : A  B) (g : B  C) :
  Inj R1 R2 f  Inj R2 R3 g  Inj R1 R3 (g  f).
Proof. red; intuition. Qed.

Instance id_surj {A} : Surj (=) (@id A).
Proof. intros y; exists y; reflexivity. Qed.
Instance compose_surj {A B C} R (f : A  B) (g : B  C) :
  Surj (=) f  Surj R g  Surj R (g  f).
Proof.
  intros ?? x. unfold compose. destruct (surj g x) as [y ?].
  destruct (surj f y) as [z ?]. exists z. congruence.
Qed.

Instance id_comm {A B} (x : B) : Comm (=) (λ _ _ : A, x).
Proof. intros ?; reflexivity. Qed.
Instance id_assoc {A} (x : A) : Assoc (=) (λ _ _ : A, x).
Proof. intros ???; reflexivity. Qed.
Instance const1_assoc {A} : Assoc (=) (λ x _ : A, x).
Proof. intros ???; reflexivity. Qed.
Instance const2_assoc {A} : Assoc (=) (λ _ x : A, x).
Proof. intros ???; reflexivity. Qed.
Instance const1_idemp {A} : IdemP (=) (λ x _ : A, x).
Proof. intros ?; reflexivity. Qed.
Instance const2_idemp {A} : IdemP (=) (λ _ x : A, x).
Proof. intros ?; reflexivity. Qed.

(** ** Lists *)
Instance list_inhabited {A} : Inhabited (list A) := populate [].

Definition zip_with {A B C} (f : A  B  C) : list A  list B  list C :=
  fix go l1 l2 :=
  match l1, l2 with x1 :: l1, x2 :: l2 => f x1 x2 :: go l1 l2 | _ , _ => [] end.
Notation zip := (zip_with pair).

(** ** Booleans *)
(** The following coercion allows us to use Booleans as propositions. *)
Coercion Is_true : bool >-> Sortclass.
Hint Unfold Is_true.
Hint Immediate Is_true_eq_left.
Hint Resolve orb_prop_intro andb_prop_intro.
Notation "(&&)" := andb (only parsing).
Notation "(||)" := orb (only parsing).
Infix "&&*" := (zip_with (&&)) (at level 40).
Infix "||*" := (zip_with (||)) (at level 50).

Instance bool_inhabated : Inhabited bool := populate true.
497

498 499 500 501 502
Definition bool_le (β1 β2 : bool) : Prop := negb β1 || β2.
Infix "=.>" := bool_le (at level 70).
Infix "=.>*" := (Forall2 bool_le) (at level 70).
Instance: PartialOrder bool_le.
Proof. repeat split; repeat intros [|]; compute; tauto. Qed.
503

504 505 506 507 508 509 510 511
Lemma andb_True b1 b2 : b1 && b2  b1  b2.
Proof. destruct b1, b2; simpl; tauto. Qed.
Lemma orb_True b1 b2 : b1 || b2  b1  b2.
Proof. destruct b1, b2; simpl; tauto. Qed.
Lemma negb_True b : negb b  ¬b.
Proof. destruct b; simpl; tauto. Qed.
Lemma Is_true_false (b : bool) : b = false  ¬b.
Proof. now intros -> ?. Qed.
512

513 514 515 516
(** ** Unit *)
Instance unit_equiv : Equiv unit := λ _ _, True.
Instance unit_equivalence : Equivalence (@equiv unit _).
Proof. repeat split. Qed.
517 518
Instance unit_leibniz : LeibnizEquiv unit.
Proof. intros [] []; reflexivity. Qed.
519
Instance unit_inhabited: Inhabited unit := populate ().
520

521
(** ** Products *)
522 523
Notation "( x ,)" := (pair x) (only parsing) : stdpp_scope.
Notation "(, y )" := (λ x, (x,y)) (only parsing) : stdpp_scope.
524

525 526
Notation "p .1" := (fst p) (at level 2, left associativity, format "p .1").
Notation "p .2" := (snd p) (at level 2, left associativity, format "p .2").
527

528
Instance: Params (@pair) 2.
529 530
Instance: Params (@fst) 2.
Instance: Params (@snd) 2.
531

532 533 534 535 536 537 538
Notation curry := prod_curry.
Notation uncurry := prod_uncurry.
Definition curry3 {A B C D} (f : A  B  C  D) (p : A * B * C) : D :=
  let '(a,b,c) := p in f a b c.
Definition curry4 {A B C D E} (f : A  B  C  D  E) (p : A * B * C * D) : E :=
  let '(a,b,c,d) := p in f a b c d.

539 540 541 542 543
Definition uncurry3 {A B C D} (f : A * B * C  D) (a : A) (b : B) (c : C) : D :=
  f (a, b, c).
Definition uncurry4 {A B C D E} (f : A * B * C * D  E)
  (a : A) (b : B) (c : C) (d : D) : E := f (a, b, c, d).

544 545
Definition prod_map {A A' B B'} (f: A  A') (g: B  B') (p : A * B) : A' * B' :=
  (f (p.1), g (p.2)).
546
Arguments prod_map {_ _ _ _} _ _ !_ / : assert.
547

548 549
Definition prod_zip {A A' A'' B B' B''} (f : A  A'  A'') (g : B  B'  B'')
    (p : A * B) (q : A' * B') : A'' * B'' := (f (p.1) (q.1), g (p.2) (q.2)).
550
Arguments prod_zip {_ _ _ _ _ _} _ _ !_ !_ / : assert.
551

552 553 554
Instance prod_inhabited {A B} (iA : Inhabited A)
    (iB : Inhabited B) : Inhabited (A * B) :=
  match iA, iB with populate x, populate y => populate (x,y) end.
555

556 557 558 559 560 561 562 563
Instance pair_inj : Inj2 (=) (=) (=) (@pair A B).
Proof. injection 1; auto. Qed.
Instance prod_map_inj {A A' B B'} (f : A  A') (g : B  B') :
  Inj (=) (=) f  Inj (=) (=) g  Inj (=) (=) (prod_map f g).
Proof.
  intros ?? [??] [??] ?; simpl in *; f_equal;
    [apply (inj f)|apply (inj g)]; congruence.
Qed.
564

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) :
  relation (A * B) := λ x y, R1 (x.1) (y.1)  R2 (x.2) (y.2).
Section prod_relation.
  Context `{R1 : relation A, R2 : relation B}.
  Global Instance prod_relation_refl :
    Reflexive R1  Reflexive R2  Reflexive (prod_relation R1 R2).
  Proof. firstorder eauto. Qed.
  Global Instance prod_relation_sym :
    Symmetric R1  Symmetric R2  Symmetric (prod_relation R1 R2).
  Proof. firstorder eauto. Qed.
  Global Instance prod_relation_trans :
    Transitive R1  Transitive R2  Transitive (prod_relation R1 R2).
  Proof. firstorder eauto. Qed.
  Global Instance prod_relation_equiv :
    Equivalence R1  Equivalence R2  Equivalence (prod_relation R1 R2).
  Proof. split; apply _. Qed.
581

582 583
  Global Instance pair_proper' : Proper (R1 ==> R2 ==> prod_relation R1 R2) pair.
  Proof. firstorder eauto. Qed.
584 585
  Global Instance pair_inj' : Inj2 R1 R2 (prod_relation R1 R2) pair.
  Proof. inversion_clear 1; eauto. Qed.
586 587 588 589 590
  Global Instance fst_proper' : Proper (prod_relation R1 R2 ==> R1) fst.
  Proof. firstorder eauto. Qed.
  Global Instance snd_proper' : Proper (prod_relation R1 R2 ==> R2) snd.
  Proof. firstorder eauto. Qed.
End prod_relation.
Robbert Krebbers's avatar
Robbert Krebbers committed
591

592 593
Instance prod_equiv `{Equiv A,Equiv B} : Equiv (A * B) := prod_relation () ().
Instance pair_proper `{Equiv A, Equiv B} :
594 595
  Proper (() ==> () ==> ()) (@pair A B) := _.
Instance pair_equiv_inj `{Equiv A, Equiv B} : Inj2 () () () (@pair A B) := _.
596 597 598
Instance fst_proper `{Equiv A, Equiv B} : Proper (() ==> ()) (@fst A B) := _.
Instance snd_proper `{Equiv A, Equiv B} : Proper (() ==> ()) (@snd A B) := _.
Typeclasses Opaque prod_equiv.
599

Robbert Krebbers's avatar
Robbert Krebbers committed
600 601
Instance prod_leibniz `{LeibnizEquiv A, LeibnizEquiv B} : LeibnizEquiv (A * B).
Proof. intros [??] [??] [??]; f_equal; apply leibniz_equiv; auto. Qed.
602

603
(** ** Sums *)
604 605
Definition sum_map {A A' B B'} (f: A  A') (g: B  B') (xy : A + B) : A' + B' :=
  match xy with inl x => inl (f x) | inr y => inr (g y) end.
606
Arguments sum_map {_ _ _ _} _ _ !_ / : assert.
607

608
Instance sum_inhabited_l {A B} (iA : Inhabited A) : Inhabited (A + B) :=
609
  match iA with populate x => populate (inl x) end.
610
Instance sum_inhabited_r {A B} (iB : Inhabited A) : Inhabited (A + B) :=
611
  match iB with populate y => populate (inl y) end.
612

613 614 615 616
Instance inl_inj : Inj (=) (=) (@inl A B).
Proof. injection 1; auto. Qed.
Instance inr_inj : Inj (=) (=) (@inr A B).
Proof. injection 1; auto. Qed.
617

618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
Instance sum_map_inj {A A' B B'} (f : A  A') (g : B  B') :
  Inj (=) (=) f  Inj (=) (=) g  Inj (=) (=) (sum_map f g).
Proof. intros ?? [?|?] [?|?] [=]; f_equal; apply (inj _); auto. Qed.

Inductive sum_relation {A B}
     (R1 : relation A) (R2 : relation B) : relation (A + B) :=
  | inl_related x1 x2 : R1 x1 x2  sum_relation R1 R2 (inl x1) (inl x2)
  | inr_related y1 y2 : R2 y1 y2  sum_relation R1 R2 (inr y1) (inr y2).

Section sum_relation.
  Context `{R1 : relation A, R2 : relation B}.
  Global Instance sum_relation_refl :
    Reflexive R1  Reflexive R2  Reflexive (sum_relation R1 R2).
  Proof. intros ?? [?|?]; constructor; reflexivity. Qed.
  Global Instance sum_relation_sym :
    Symmetric R1  Symmetric R2  Symmetric (sum_relation R1 R2).
  Proof. destruct 3; constructor; eauto. Qed.
  Global Instance sum_relation_trans :
    Transitive R1  Transitive R2  Transitive (sum_relation R1 R2).
  Proof. destruct 3; inversion_clear 1; constructor; eauto. Qed.
  Global Instance sum_relation_equiv :
    Equivalence R1  Equivalence R2  Equivalence (sum_relation R1 R2).
  Proof. split; apply _. Qed.
  Global Instance inl_proper' : Proper (R1 ==> sum_relation R1 R2) inl.
  Proof. constructor; auto. Qed.
  Global Instance inr_proper' : Proper (R2 ==> sum_relation R1 R2) inr.
  Proof. constructor; auto. Qed.
645 646 647 648
  Global Instance inl_inj' : Inj R1 (sum_relation R1 R2) inl.
  Proof. inversion_clear 1; auto. Qed.
  Global Instance inr_inj' : Inj R2 (sum_relation R1 R2) inr.
  Proof. inversion_clear 1; auto. Qed.
649 650 651 652 653
End sum_relation.

Instance sum_equiv `{Equiv A, Equiv B} : Equiv (A + B) := sum_relation () ().
Instance inl_proper `{Equiv A, Equiv B} : Proper (() ==> ()) (@inl A B) := _.
Instance inr_proper `{Equiv A, Equiv B} : Proper (() ==> ()) (@inr A B) := _.
654 655
Instance inl_equiv_inj `{Equiv A, Equiv B} : Inj () () (@inl A B) := _.
Instance inr_equiv_inj `{Equiv A, Equiv B} : Inj () () (@inr A B) := _.
656 657
Typeclasses Opaque sum_equiv.

658 659
(** ** Option *)
Instance option_inhabited {A} : Inhabited (option A) := populate None.
Robbert Krebbers's avatar
Robbert Krebbers committed
660

661
(** ** Sigma types *)
662 663 664
Arguments existT {_ _} _ _ : assert.
Arguments projT1 {_ _} _ : assert.
Arguments projT2 {_ _} _ : assert.
665

666 667 668
Arguments exist {_} _ _ _ : assert.
Arguments proj1_sig {_ _} _ : assert.
Arguments proj2_sig {_ _} _ : assert.
669 670
Notation "x ↾ p" := (exist _ x p) (at level 20) : stdpp_scope.
Notation "` x" := (proj1_sig x) (at level 10, format "` x") : stdpp_scope.
671

672 673 674
Lemma proj1_sig_inj {A} (P : A  Prop) x (Px : P x) y (Py : P y) :
  xPx = yPy  x = y.
Proof. injection 1; trivial. Qed.
675

676 677 678 679 680 681 682 683 684 685
Section sig_map.
  Context `{P : A  Prop} `{Q : B  Prop} (f : A  B) (Hf :  x, P x  Q (f x)).
  Definition sig_map (x : sig P) : sig Q := f (`x)  Hf _ (proj2_sig x).
  Global Instance sig_map_inj:
    ( x, ProofIrrel (P x))  Inj (=) (=) f  Inj (=) (=) sig_map.
  Proof.
    intros ?? [x Hx] [y Hy]. injection 1. intros Hxy.
    apply (inj f) in Hxy; subst. rewrite (proof_irrel _ Hy). auto.
  Qed.
End sig_map.
686
Arguments sig_map _ _ _ _ _ _ !_ / : assert.
687

Robbert Krebbers's avatar
Robbert Krebbers committed
688

689
(** * Operations on collections *)
690
(** We define operational type classes for the traditional operations and
691
relations on collections: the empty collection [∅], the union [(∪)],
692
intersection [(∩)], and difference [(∖)], the singleton [{[_]}], the subset
693
[(⊆)] and element of [(∈)] relation, and disjointess [(##)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
694
Class Empty A := empty: A.
695
Hint Mode Empty ! : typeclass_instances.
696
Notation "∅" := empty : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
697

698 699
Instance empty_inhabited `(Empty A) : Inhabited A := populate .

Robbert Krebbers's avatar
Robbert Krebbers committed
700
Class Union A := union: A  A  A.
701
Hint Mode Union ! : typeclass_instances.
702
Instance: Params (@union) 2.
703 704 705 706 707 708
Infix "∪" := union (at level 50, left associativity) : stdpp_scope.
Notation "(∪)" := union (only parsing) : stdpp_scope.
Notation "( x ∪)" := (union x) (only parsing) : stdpp_scope.
Notation "(∪ x )" := (λ y, union y x) (only parsing) : stdpp_scope.
Infix "∪*" := (zip_with ()) (at level 50, left associativity) : stdpp_scope.
Notation "(∪*)" := (zip_with ()) (only parsing) : stdpp_scope.
709
Infix "∪**" := (zip_with (zip_with ()))
710
  (at level 50, left associativity) : stdpp_scope.
711
Infix "∪*∪**" := (zip_with (prod_zip () (*)))
712
  (at level 50, left associativity) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
713

714
Definition union_list `{Empty A} `{Union A} : list A  A := fold_right () .
715
Arguments union_list _ _ _ !_ / : assert.
716
Notation "⋃ l" := (union_list l) (at level 20, format "⋃  l") : stdpp_scope.
717

Robbert Krebbers's avatar
Robbert Krebbers committed
718
Class Intersection A := intersection: A  A  A.
719
Hint Mode Intersection ! : typeclass_instances.
720
Instance: Params (@intersection) 2.
721 722 723 724
Infix "∩" := intersection (at level 40) : stdpp_scope.
Notation "(∩)" := intersection (only parsing) : stdpp_scope.
Notation "( x ∩)" := (intersection x) (only parsing) : stdpp_scope.
Notation "(∩ x )" := (λ y, intersection y x) (only parsing) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
725 726

Class Difference A := difference: A  A  A.
727
Hint Mode Difference ! : typeclass_instances.
728
Instance: Params (@difference) 2.
729 730 731 732 733 734
Infix "∖" := difference (at level 40, left associativity) : stdpp_scope.
Notation "(∖)" := difference (only parsing) : stdpp_scope.
Notation "( x ∖)" := (difference x) (only parsing) : stdpp_scope.
Notation "(∖ x )" := (λ y, difference y x) (only parsing) : stdpp_scope.
Infix "∖*" := (zip_with ()) (at level 40, left associativity) : stdpp_scope.
Notation "(∖*)" := (zip_with ()) (only parsing) : stdpp_scope.
735
Infix "∖**" := (zip_with (zip_with ()))
736
  (at level 40, left associativity) : stdpp_scope.
737
Infix "∖*∖**" := (zip_with (prod_zip () (*)))
738
  (at level 50, left associativity) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
739

740
Class Singleton A B := singleton: A  B.
741
Hint Mode Singleton - ! : typeclass_instances.
742
Instance: Params (@singleton) 3.
743
Notation "{[ x ]}" := (singleton x) (at level 1) : stdpp_scope.
744
Notation "{[ x ; y ; .. ; z ]}" :=
745
  (union .. (union (singleton x) (singleton y)) .. (singleton z))
746
  (at level 1) : stdpp_scope.
747
Notation "{[ x , y ]}" := (singleton (x,y))
748
  (at level 1, y at next level) : stdpp_scope.
749
Notation "{[ x , y , z ]}" := (singleton (x,y,z))
750
  (at level 1, y at next level, z at next level) : stdpp_scope.
751

752
Class SubsetEq A := subseteq: relation A.
753
Hint Mode SubsetEq ! : typeclass_instances.
754
Instance: Params (@subseteq) 2.
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
Infix "⊆" := subseteq (at level 70) : stdpp_scope.
Notation "(⊆)" := subseteq (only parsing) : stdpp_scope.
Notation "( X ⊆)" := (subseteq X) (only parsing) : stdpp_scope.
Notation "(⊆ X )" := (λ Y, Y  X) (only parsing) : stdpp_scope.
Notation "X ⊈ Y" := (¬X  Y) (at level 70) : stdpp_scope.
Notation "(⊈)" := (λ X Y, X  Y) (only parsing) : stdpp_scope.
Notation "( X ⊈)" := (λ Y, X  Y) (only parsing) : stdpp_scope.
Notation "(⊈ X )" := (λ Y, Y  X) (only parsing) : stdpp_scope.
Infix "⊆*" := (Forall2 ()) (at level 70) : stdpp_scope.
Notation "(⊆*)" := (Forall2 ()) (only parsing) : stdpp_scope.
Infix "⊆**" := (Forall2 (*)) (at level 70) : stdpp_scope.
Infix "⊆1*" := (Forall2 (λ p q, p.1  q.1)) (at level 70) : stdpp_scope.
Infix "⊆2*" := (Forall2 (λ p q, p.2  q.2)) (at level 70) : stdpp_scope.
Infix "⊆1**" := (Forall2 (λ p q, p.1 * q.1)) (at level 70) : stdpp_scope.
Infix "⊆2**" := (Forall2 (λ p q, p.2 * q.2)) (at level 70) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
770

771
Hint Extern 0 (_  _) => reflexivity.
772 773 774
Hint Extern 0 (_ * _) => reflexivity.
Hint Extern 0 (_ ** _) => reflexivity.

775 776 777 778 779 780 781 782
Infix "⊂" := (strict ()) (at level 70) : stdpp_scope.
Notation "(⊂)" := (strict ()) (only parsing) : stdpp_scope.
Notation "( X ⊂)" := (strict () X) (only parsing) : stdpp_scope.
Notation "(⊂ X )" := (λ Y, Y  X) (only parsing) : stdpp_scope.
Notation "X ⊄ Y" := (¬X  Y) (at level 70) : stdpp_scope.
Notation "(⊄)" := (λ X Y, X  Y) (only parsing) : stdpp_scope.
Notation "( X ⊄)" := (λ Y, X  Y) (only parsing) : stdpp_scope.
Notation "(⊄ X )" := (λ Y, Y  X) (only parsing) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
783

784 785 786 787
Notation "X ⊆ Y ⊆ Z" := (X  Y  Y  Z) (at level 70, Y at next level) : stdpp_scope.
Notation "X ⊆ Y ⊂ Z" := (X  Y  Y  Z) (at level 70, Y at next level) : stdpp_scope.
Notation "X ⊂ Y ⊆ Z" := (X  Y  Y  Z) (at level 70, Y at next level) : stdpp_scope.
Notation "X ⊂ Y ⊂ Z" := (X  Y  Y  Z) (at level 70, Y at next level) : stdpp_scope.
788

789 790 791 792
(** The class [Lexico A] is used for the lexicographic order on [A]. This order
is used to create finite maps, finite sets, etc, and is typically different from
the order [(⊆)]. *)
Class Lexico A := lexico: relation A.
793
Hint Mode Lexico ! : typeclass_instances.
794

Robbert Krebbers's avatar
Robbert Krebbers committed
795
Class ElemOf A B := elem_of: A  B  Prop.
796
Hint Mode ElemOf - ! : typeclass_instances.
797
Instance: Params (@elem_of) 3.
798 799 800 801 802 803 804 805
Infix "∈" := elem_of (at level 70) : stdpp_scope.
Notation "(∈)" := elem_of (only parsing) : stdpp_scope.
Notation "( x ∈)" := (elem_of x) (only parsing) : stdpp_scope.
Notation "(∈ X )" := (λ x, elem_of x X) (only parsing) : stdpp_scope.
Notation "x ∉ X" := (¬x  X) (at level 80) : stdpp_scope.
Notation "(∉)" := (λ x X, x  X) (only parsing) : stdpp_scope.
Notation "( x ∉)" := (λ X, x  X) (only parsing) : stdpp_scope.
Notation "(∉ X )" := (λ x, x  X) (only parsing) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
806

Robbert Krebbers's avatar
Robbert Krebbers committed
807
Class Disjoint A := disjoint : A  A  Prop.
808
 Hint Mode Disjoint ! : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
809
Instance: Params (@disjoint) 2.
810 811 812 813 814 815 816 817 818 819 820
Infix "##" := disjoint (at level 70) : stdpp_scope.
Notation "(##)" := disjoint (only parsing) : stdpp_scope.
Notation "( X ##.)" := (disjoint X) (only parsing) : stdpp_scope.
Notation "(.## X )" := (λ Y, Y ## X) (only parsing) : stdpp_scope.
Infix "##*" := (Forall2 (##)) (at level 70) : stdpp_scope.
Notation "(##*)" := (Forall2 (##)) (only parsing) : stdpp_scope.
Infix "##**" := (Forall2 (##*)) (at level 70) : stdpp_scope.
Infix "##1*" := (Forall2 (λ p q, p.1 ## q.1)) (at level 70) : stdpp_scope.
Infix "##2*" := (Forall2 (λ p q, p.2 ## q.2)) (at level 70) : stdpp_scope.
Infix "##1**" := (Forall2 (λ p q, p.1 ##* q.1)) (at level 70) : stdpp_scope.
Infix "##2**" := (Forall2 (λ p q, p.2 ##* q.2)) (at level 70) : stdpp_scope.
821 822
Hint Extern 0 (_ ## _) => symmetry; eassumption.
Hint Extern 0 (_ ##* _) => symmetry; eassumption.
823 824

Class DisjointE E A := disjointE : E  A  A  Prop.
825
Hint Mode DisjointE - ! : typeclass_instances.
826
Instance: Params (@disjointE) 4.
827
Notation "X ##{ Γ } Y" := (disjointE Γ X Y)
828 829
  (at level 70, format "X  ##{ Γ }  Y") : stdpp_scope.
Notation "(##{ Γ } )" := (disjointE Γ) (only parsing, Γ at level 1) : stdpp_scope.
830
Notation "Xs ##{ Γ }* Ys" := (Forall2 (##{Γ}) Xs Ys)
831
  (at level 70, format "Xs  ##{ Γ }*  Ys") : stdpp_scope.
832
Notation "(##{ Γ }* )" := (Forall2 (##{Γ}))
833
  (only parsing, Γ at level 1) : stdpp_scope.
834
Notation "X ##{ Γ1 , Γ2 , .. , Γ3 } Y" := (disjoint (pair .. (Γ1, Γ2) .. Γ3) X Y)
835
  (at level 70, format "X  ##{ Γ1 , Γ2 , .. , Γ3 }  Y") : stdpp_scope.
836
Notation "Xs ##{ Γ1 , Γ2 , .. , Γ3 }* Ys" :=
837
  (Forall2 (disjoint (pair .. (Γ1, Γ2) .. Γ3)) Xs Ys)
838
  (at level 70, format "Xs  ##{ Γ1 ,  Γ2 , .. , Γ3 }*  Ys") : stdpp_scope.
839
Hint Extern 0 (_ ##{_} _) => symmetry; eassumption.
840 841

Class DisjointList A := disjoint_list : list A  Prop.
842
Hint Mode DisjointList ! : typeclass_instances.
843
Instance: Params (@disjoint_list) 2.
844
Notation "## Xs" := (disjoint_list Xs) (at level 20, format "##  Xs") : stdpp_scope.
845

846 847
Section disjoint_list.
  Context `{Disjoint A, Union A, Empty A}.
848 849
  Implicit Types X : A.

850
  Inductive disjoint_list_default : DisjointList A :=
851 852
    | disjoint_nil_2 : ## (@nil A)
    | disjoint_cons_2 (X : A) (Xs : list A) : X ##  Xs  ## Xs  ## (X :: Xs).
853
  Global Existing Instance disjoint_list_default.
854

855
  Lemma disjoint_list_nil  : ## @nil A  True.
856
  Proof. split; constructor. Qed.
857
  Lemma disjoint_list_cons X Xs : ## (X :: Xs)  X ##  Xs  ## Xs.
858
  Proof. split. inversion_clear 1; auto. intros [??]. constructor; auto. Qed.
859
End disjoint_list.
860 861

Class Filter A B := filter:  (P : A  Prop) `{ x, Decision (P x)}, B  B.
862
Hint Mode Filter - ! : typeclass_instances.
863

864
Class UpClose A B := up_close : A  B.
865
Hint Mode UpClose - ! : typeclass_instances.
866
Notation "↑ x" := (up_close x) (at level 20, format "↑ x").
867 868

(** * Monadic operations *)
869
(** We define operational type classes for the monadic operations bind, join 
870 871 872
and fmap. We use these type classes merely for convenient overloading of
notations and do not formalize any theory on monads (we do not even define a
class with the monad laws). *)
873
Class MRet (M : Type  Type) := mret:  {A}, A  M A.
874
Arguments mret {_ _ _} _ : assert.
875
Instance: Params (@mret) 3.
876
Class MBind (M : Type  Type) := mbind :  {A B}, (A  M B)  M A  M B.
877
Arguments mbind {_ _ _ _} _ !_ / : assert.
878
Instance: Params (@mbind) 4.
879
Class MJoin (M : Type  Type) := mjoin:  {A}, M (M A)  M A.
880
Arguments mjoin {_ _ _} !_ / : assert.
881
Instance: Params (@mjoin) 3.
882
Class FMap (M : Type  Type) := fmap :  {A B}, (A  B)  M A  M B.
883
Arguments fmap {_ _ _ _} _ !_ / : assert.
884
Instance: Params (@fmap) 4.
885
Class OMap (M : Type  Type) := omap:  {A B}, (A  option B)  M A  M B.
886
Arguments omap {_ _ _ _} _ !_ / : assert.
887
Instance: Params (@omap) 4.
888

889 890 891 892
Notation "m ≫= f" := (mbind f m) (at level 60, right associativity) : stdpp_scope.
Notation "( m ≫=)" := (λ f, mbind f m) (only parsing) : stdpp_scope.
Notation "(≫= f )" := (mbind f) (only parsing) : stdpp_scope.
Notation "(≫=)" := (λ m f, mbind f m) (only parsing) : stdpp_scope.
893 894

Notation "x ← y ; z" := (y = (λ x : _, z))
895 896 897 898 899
  (at level 20, y at level 100, z at level 200, only parsing) : stdpp_scope.

Notation "' x1 .. xn ← y ; z" := (y = (λ x1, .. (λ xn, z) .. ))
  (at level 20, x1 binder, xn binder, y at level 100, z at level 200,
   only parsing, right associativity) : stdpp_scope.
900

901 902
Infix "<$>" := fmap (at level 61, left associativity) : stdpp_scope.

903
Notation "x ;; z" := (x = λ _, z)
904
  (at level 100, z at level 200, only parsing, right associativity): stdpp_scope.
905

906
Notation "ps .*1" := (fmap (M:=list) fst ps)
907
  (at level 2, left associativity, format "ps .*1").
908
Notation "ps .*2" := (fmap (M:=list) snd ps)
909
  (at level 2, left associativity, format "ps .*2").
910

911
Class MGuard (M : Type  Type) :=
912
  mguard:  P {dec : Decision P} {A}, (P  M A)  M A.
913
Arguments mguard _ _ _ !_ _ _ / : assert.
914
Notation "'guard' P ; z" := (mguard P (λ _, z))
915
  (at level 20, z at level 200, only parsing, right associativity) : stdpp_scope.
916
Notation "'guard' P 'as' H ; z" := (mguard P (λ H, z))
917
  (at level 20, z at level 200, only parsing, right associativity) : stdpp_scope.
918 919

(** * Operations on maps *)
920 921
(** In this section we define operational type classes for the operations