base.v 42.5 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2 3 4 5 6
(* This file is distributed under the terms of the BSD license. *)
(** This file collects type class interfaces, notations, and general theorems
that are used throughout the whole development. Most importantly it contains
abstract interfaces for ordered structures, collections, and various other data
structures. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7 8
Global Generalizable All Variables.
Global Set Automatic Coercions Import.
Robbert Krebbers's avatar
Robbert Krebbers committed
9
Global Set Asymmetric Patterns.
10
Require Export Morphisms RelationClasses List Bool Utf8 Program Setoid.
Robbert Krebbers's avatar
Robbert Krebbers committed
11

12
(** * General *)
13 14 15 16 17
(** Zipping lists. *)
Definition zip_with {A B C} (f : A  B  C) : list A  list B  list C :=
  fix go l1 l2 :=
  match l1, l2 with x1 :: l1, x2 :: l2 => f x1 x2 :: go l1 l2 | _ , _ => [] end.
Notation zip := (zip_with pair).
18

19 20
(** Ensure that [simpl] unfolds [id], [compose], and [flip] when fully
applied. *)
21
Arguments id _ _ /.
22
Arguments compose _ _ _ _ _ _ /.
23
Arguments flip _ _ _ _ _ _ /.
24 25
Arguments const _ _ _ _ /.
Typeclasses Transparent id compose flip const.
26

27 28 29 30
(** Change [True] and [False] into notations in order to enable overloading.
We will use this in the file [assertions] to give [True] and [False] a
different interpretation in [assert_scope] used for assertions of our axiomatic
semantics. *)
31 32
Notation "'True'" := True : type_scope.
Notation "'False'" := False : type_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
33

34 35
Notation curry := prod_curry.
Notation uncurry := prod_uncurry.
36 37 38 39
Definition curry3 {A B C D} (f : A  B  C  D) (p : A * B * C) : D :=
  let '(a,b,c) := p in f a b c.
Definition curry4 {A B C D E} (f : A  B  C  D  E) (p : A * B * C * D) : E :=
  let '(a,b,c,d) := p in f a b c d.
40

41 42
(** Throughout this development we use [C_scope] for all general purpose
notations that do not belong to a more specific scope. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
43 44 45
Delimit Scope C_scope with C.
Global Open Scope C_scope.

46
(** Introduce some Haskell style like notations. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
47 48 49 50 51 52 53 54
Notation "(=)" := eq (only parsing) : C_scope.
Notation "( x =)" := (eq x) (only parsing) : C_scope.
Notation "(= x )" := (λ y, eq y x) (only parsing) : C_scope.
Notation "(≠)" := (λ x y, x  y) (only parsing) : C_scope.
Notation "( x ≠)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≠ x )" := (λ y, y  x) (only parsing) : C_scope.

Hint Extern 0 (?x = ?x) => reflexivity.
55
Hint Extern 100 (_  _) => discriminate.
Robbert Krebbers's avatar
Robbert Krebbers committed
56

57 58 59 60
Notation "(→)" := (λ A B, A  B) (only parsing) : C_scope.
Notation "( A →)" := (λ B, A  B) (only parsing) : C_scope.
Notation "(→ B )" := (λ A, A  B) (only parsing) : C_scope.

61
Notation "t $ r" := (t r)
62
  (at level 65, right associativity, only parsing) : C_scope.
63 64 65
Notation "($)" := (λ f x, f x) (only parsing) : C_scope.
Notation "($ x )" := (λ f, f x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
66 67 68 69
Infix "∘" := compose : C_scope.
Notation "(∘)" := compose (only parsing) : C_scope.
Notation "( f ∘)" := (compose f) (only parsing) : C_scope.
Notation "(∘ f )" := (λ g, compose g f) (only parsing) : C_scope.
70

71 72 73 74 75 76 77 78 79 80 81 82
Notation "(∧)" := and (only parsing) : C_scope.
Notation "( A ∧)" := (and A) (only parsing) : C_scope.
Notation "(∧ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(∨)" := or (only parsing) : C_scope.
Notation "( A ∨)" := (or A) (only parsing) : C_scope.
Notation "(∨ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(↔)" := iff (only parsing) : C_scope.
Notation "( A ↔)" := (iff A) (only parsing) : C_scope.
Notation "(↔ B )" := (λ A, A  B) (only parsing) : C_scope.

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
Hint Extern 0 (_  _) => reflexivity.
Hint Extern 0 (_  _) => symmetry; assumption.

Notation "( x ,)" := (pair x) (only parsing) : C_scope.
Notation "(, y )" := (λ x, (x,y)) (only parsing) : C_scope.

Notation "p .1" := (fst p) (at level 10, format "p .1").
Notation "p .2" := (snd p) (at level 10, format "p .2").

Definition prod_map {A A' B B'} (f : A  A') (g : B  B')
  (p : A * B) : A' * B' := (f (p.1), g (p.2)).
Arguments prod_map {_ _ _ _} _ _ !_ /.
Definition prod_zip {A A' A'' B B' B''} (f : A  A'  A'') (g : B  B'  B'')
    (p : A * B) (q : A' * B') : A'' * B'' := (f (p.1) (q.1), g (p.2) (q.2)).
Arguments prod_zip {_ _ _ _ _ _} _ _ !_ !_ /.

99 100
(** Set convenient implicit arguments for [existT] and introduce notations. *)
Arguments existT {_ _} _ _.
101
Arguments proj1_sig {_ _} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
102
Notation "x ↾ p" := (exist _ x p) (at level 20) : C_scope.
103
Notation "` x" := (proj1_sig x) (at level 10, format "` x") : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
104

105 106 107 108
(** * Type classes *)
(** ** Provable propositions *)
(** This type class collects provable propositions. It is useful to constraint
type classes by arbitrary propositions. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
109 110
Class PropHolds (P : Prop) := prop_holds: P.

111 112
Hint Extern 0 (PropHolds _) => assumption : typeclass_instances.
Instance: Proper (iff ==> iff) PropHolds.
113
Proof. repeat intro; trivial. Qed.
114 115 116

Ltac solve_propholds :=
  match goal with
117 118
  | |- PropHolds (?P) => apply _
  | |- ?P => change (PropHolds P); apply _
119 120 121 122 123 124 125
  end.

(** ** Decidable propositions *)
(** This type class by (Spitters/van der Weegen, 2011) collects decidable
propositions. For example to declare a parameter expressing decidable equality
on a type [A] we write [`{∀ x y : A, Decision (x = y)}] and use it by writing
[decide (x = y)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
126 127 128
Class Decision (P : Prop) := decide : {P} + {¬P}.
Arguments decide _ {_}.

129 130 131 132 133 134 135 136 137
(** ** Inhabited types *)
(** This type class collects types that are inhabited. *)
Class Inhabited (A : Type) : Prop := populate { _ : A }.
Arguments populate {_} _.

Instance unit_inhabited: Inhabited unit := populate ().
Instance list_inhabited {A} : Inhabited (list A) := populate [].
Instance prod_inhabited {A B} (iA : Inhabited A)
    (iB : Inhabited B) : Inhabited (A * B) :=
138
  match iA, iB with populate x, populate y => populate (x,y) end.
139
Instance sum_inhabited_l {A B} (iA : Inhabited A) : Inhabited (A + B) :=
140
  match iA with populate x => populate (inl x) end.
141
Instance sum_inhabited_r {A B} (iB : Inhabited A) : Inhabited (A + B) :=
142
  match iB with populate y => populate (inl y) end.
143 144
Instance option_inhabited {A} : Inhabited (option A) := populate None.

145 146 147 148 149 150
(** ** Proof irrelevant types *)
(** This type class collects types that are proof irrelevant. That means, all
elements of the type are equal. We use this notion only used for propositions,
but by universe polymorphism we can generalize it. *)
Class ProofIrrel (A : Type) : Prop := proof_irrel (x y : A) : x = y.

151 152 153
(** ** Setoid equality *)
(** We define an operational type class for setoid equality. This is based on
(Spitters/van der Weegen, 2011). *)
Robbert Krebbers's avatar
Robbert Krebbers committed
154 155 156
Class Equiv A := equiv: relation A.
Infix "≡" := equiv (at level 70, no associativity) : C_scope.
Notation "(≡)" := equiv (only parsing) : C_scope.
157 158 159 160 161 162
Notation "( X ≡)" := (equiv X) (only parsing) : C_scope.
Notation "(≡ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Notation "(≢)" := (λ X Y, ¬X  Y) (only parsing) : C_scope.
Notation "X ≢ Y":= (¬X  Y) (at level 70, no associativity) : C_scope.
Notation "( X ≢)" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "(≢ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
163

164 165 166 167 168
Class EquivE E A := equivE: E  relation A.
Instance: Params (@equivE) 4.
Notation "X ≡{ Γ } Y" := (equivE Γ X Y)
  (at level 70, format "X  ≡{ Γ }  Y") : C_scope.
Notation "(≡{ Γ } )" := (equivE Γ) (only parsing, Γ at level 1) : C_scope.
169 170 171 172 173
Notation "X ≡{ Γ1 , Γ2 , .. , Γ3 } Y" :=
  (equivE (pair .. (Γ1, Γ2) .. Γ3) X Y)
  (at level 70, format "'[' X  ≡{ Γ1 , Γ2 , .. , Γ3 }  '/' Y ']'") : C_scope.
Notation "(≡{ Γ1 , Γ2 , .. , Γ3 } )" := (equivE (pair .. (Γ1, Γ2) .. Γ3))
  (only parsing, Γ1 at level 1) : C_scope.
174

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
(** The type class [LeibnizEquiv] collects setoid equalities that coincide
with Leibniz equality. We provide the tactic [fold_leibniz] to transform such
setoid equalities into Leibniz equalities, and [unfold_leibniz] for the
reverse. *)
Class LeibnizEquiv A `{Equiv A} := leibniz_equiv x y : x  y  x = y.

Ltac fold_leibniz := repeat
  match goal with
  | H : context [ @equiv ?A _ _ _ ] |- _ =>
    setoid_rewrite (leibniz_equiv (A:=A)) in H
  | |- context [ @equiv ?A _ _ _ ] =>
    setoid_rewrite (leibniz_equiv (A:=A))
  end.
Ltac unfold_leibniz := repeat
  match goal with
  | H : context [ @eq ?A _ _ ] |- _ =>
    setoid_rewrite <-(leibniz_equiv (A:=A)) in H
  | |- context [ @eq ?A _ _ ] =>
    setoid_rewrite <-(leibniz_equiv (A:=A))
  end.

196 197 198 199 200 201 202 203
(** A [Params f n] instance forces the setoid rewriting mechanism not to
rewrite in the first [n] arguments of the function [f]. We will declare such
instances for all operational type classes in this development. *)
Instance: Params (@equiv) 2.

(** The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
204
Instance equiv_default_relation `{Equiv A} : DefaultRelation () | 3.
205 206
Hint Extern 0 (_  _) => reflexivity.
Hint Extern 0 (_  _) => symmetry; assumption.
207 208
Hint Extern 0 (_ {_} _) => reflexivity.
Hint Extern 0 (_ {_} _) => symmetry; assumption.
Robbert Krebbers's avatar
Robbert Krebbers committed
209

210
(** ** Operations on collections *)
211
(** We define operational type classes for the traditional operations and
212
relations on collections: the empty collection [∅], the union [(∪)],
213 214
intersection [(∩)], and difference [(∖)], the singleton [{[_]}], the subset
[(⊆)] and element of [(∈)] relation, and disjointess [(⊥)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
215 216 217 218
Class Empty A := empty: A.
Notation "∅" := empty : C_scope.

Class Union A := union: A  A  A.
219
Instance: Params (@union) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
220 221 222 223
Infix "∪" := union (at level 50, left associativity) : C_scope.
Notation "(∪)" := union (only parsing) : C_scope.
Notation "( x ∪)" := (union x) (only parsing) : C_scope.
Notation "(∪ x )" := (λ y, union y x) (only parsing) : C_scope.
224 225 226 227 228 229
Infix "∪*" := (zip_with ()) (at level 50, left associativity) : C_scope.
Notation "(∪*)" := (zip_with ()) (only parsing) : C_scope.
Infix "∪**" := (zip_with (zip_with ()))
  (at level 50, left associativity) : C_scope.
Infix "∪*∪**" := (zip_with (prod_zip () (*)))
  (at level 50, left associativity) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
230

231
Definition union_list `{Empty A} `{Union A} : list A  A := fold_right () .
232 233 234
Arguments union_list _ _ _ !_ /.
Notation "⋃ l" := (union_list l) (at level 20, format "⋃  l") : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
235
Class Intersection A := intersection: A  A  A.
236
Instance: Params (@intersection) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
237 238 239 240 241 242
Infix "∩" := intersection (at level 40) : C_scope.
Notation "(∩)" := intersection (only parsing) : C_scope.
Notation "( x ∩)" := (intersection x) (only parsing) : C_scope.
Notation "(∩ x )" := (λ y, intersection y x) (only parsing) : C_scope.

Class Difference A := difference: A  A  A.
243
Instance: Params (@difference) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
244 245 246 247
Infix "∖" := difference (at level 40) : C_scope.
Notation "(∖)" := difference (only parsing) : C_scope.
Notation "( x ∖)" := (difference x) (only parsing) : C_scope.
Notation "(∖ x )" := (λ y, difference y x) (only parsing) : C_scope.
248 249 250 251 252 253
Infix "∖*" := (zip_with ()) (at level 40, left associativity) : C_scope.
Notation "(∖*)" := (zip_with ()) (only parsing) : C_scope.
Infix "∖**" := (zip_with (zip_with ()))
  (at level 40, left associativity) : C_scope.
Infix "∖*∖**" := (zip_with (prod_zip () (*)))
  (at level 50, left associativity) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
254

255 256
Class Singleton A B := singleton: A  B.
Instance: Params (@singleton) 3.
257
Notation "{[ x ]}" := (singleton x) (at level 1) : C_scope.
258
Notation "{[ x ; y ; .. ; z ]}" :=
259 260 261 262 263 264
  (union .. (union (singleton x) (singleton y)) .. (singleton z))
  (at level 1) : C_scope.
Notation "{[ x , y ]}" := (singleton (x,y))
  (at level 1, y at next level) : C_scope.
Notation "{[ x , y , z ]}" := (singleton (x,y,z))
  (at level 1, y at next level, z at next level) : C_scope.
265

266
Class SubsetEq A := subseteq: relation A.
267
Instance: Params (@subseteq) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
268 269 270
Infix "⊆" := subseteq (at level 70) : C_scope.
Notation "(⊆)" := subseteq (only parsing) : C_scope.
Notation "( X ⊆ )" := (subseteq X) (only parsing) : C_scope.
271
Notation "( ⊆ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
272 273 274 275
Notation "X ⊈ Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊈)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊈ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊈ X )" := (λ Y, Y  X) (only parsing) : C_scope.
276 277 278 279 280 281 282
Infix "⊆*" := (Forall2 ()) (at level 70) : C_scope.
Notation "(⊆*)" := (Forall2 ()) (only parsing) : C_scope.
Infix "⊆**" := (Forall2 (*)) (at level 70) : C_scope.
Infix "⊆1*" := (Forall2 (λ p q, p.1  q.1)) (at level 70) : C_scope.
Infix "⊆2*" := (Forall2 (λ p q, p.2  q.2)) (at level 70) : C_scope.
Infix "⊆1**" := (Forall2 (λ p q, p.1 * q.1)) (at level 70) : C_scope.
Infix "⊆2**" := (Forall2 (λ p q, p.2 * q.2)) (at level 70) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
283

284
Hint Extern 0 (_  _) => reflexivity.
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
Hint Extern 0 (_ * _) => reflexivity.
Hint Extern 0 (_ ** _) => reflexivity.

Class SubsetEqE E A := subseteqE: E  relation A.
Instance: Params (@subseteqE) 4.
Notation "X ⊆{ Γ } Y" := (subseteqE Γ X Y)
  (at level 70, format "X  ⊆{ Γ }  Y") : C_scope.
Notation "(⊆{ Γ } )" := (subseteqE Γ) (only parsing, Γ at level 1) : C_scope.
Notation "X ⊈{ Γ } Y" := (¬X {Γ} Y)
  (at level 70, format "X  ⊈{ Γ }  Y") : C_scope.
Notation "(⊈{ Γ } )" := (λ X Y, X {Γ} Y)
  (only parsing, Γ at level 1) : C_scope.
Notation "Xs ⊆{ Γ }* Ys" := (Forall2 ({Γ}) Xs Ys)
  (at level 70, format "Xs  ⊆{ Γ }*  Ys") : C_scope.
Notation "(⊆{ Γ }* )" := (Forall2 ({Γ}))
  (only parsing, Γ at level 1) : C_scope.
Notation "X ⊆{ Γ1 , Γ2 , .. , Γ3 } Y" :=
  (subseteqE (pair .. (Γ1, Γ2) .. Γ3) X Y)
  (at level 70, format "'[' X  ⊆{ Γ1 , Γ2 , .. , Γ3 }  '/' Y ']'") : C_scope.
Notation "(⊆{ Γ1 , Γ2 , .. , Γ3 } )" := (subseteqE (pair .. (Γ1, Γ2) .. Γ3))
  (only parsing, Γ1 at level 1) : C_scope.
Notation "X ⊈{ Γ1 , Γ2 , .. , Γ3 } Y" := (¬X {pair .. (Γ1, Γ2) .. Γ3} Y)
  (at level 70, format "X  ⊈{ Γ1 , Γ2 , .. , Γ3 }  Y") : C_scope.
Notation "(⊈{ Γ1 , Γ2 , .. , Γ3 } )" := (λ X Y, X {pair .. (Γ1, Γ2) .. Γ3} Y)
  (only parsing) : C_scope.
Notation "Xs ⊆{ Γ1 , Γ2 , .. , Γ3 }* Ys" :=
  (Forall2 ({pair .. (Γ1, Γ2) .. Γ3}) Xs Ys)
  (at level 70, format "Xs  ⊆{ Γ1 , Γ2 , .. , Γ3 }*  Ys") : C_scope.
Notation "(⊆{ Γ1 , Γ2 , .. , Γ3 }* )" := (Forall2 ({pair .. (Γ1, Γ2) .. Γ3}))
  (only parsing, Γ1 at level 1) : C_scope.
Hint Extern 0 (_ {_} _) => reflexivity.
316

317 318
Definition strict {A} (R : relation A) : relation A := λ X Y, R X Y  ¬R Y X.
Instance: Params (@strict) 2.
319 320 321 322
Infix "⊂" := (strict ()) (at level 70) : C_scope.
Notation "(⊂)" := (strict ()) (only parsing) : C_scope.
Notation "( X ⊂ )" := (strict () X) (only parsing) : C_scope.
Notation "( ⊂ X )" := (λ Y, Y  X) (only parsing) : C_scope.
323 324 325 326
Notation "X ⊄  Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊄)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊄ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊄ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
327

328 329 330 331 332
(** The class [Lexico A] is used for the lexicographic order on [A]. This order
is used to create finite maps, finite sets, etc, and is typically different from
the order [(⊆)]. *)
Class Lexico A := lexico: relation A.

Robbert Krebbers's avatar
Robbert Krebbers committed
333
Class ElemOf A B := elem_of: A  B  Prop.
334
Instance: Params (@elem_of) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
335 336 337 338 339 340 341 342 343
Infix "∈" := elem_of (at level 70) : C_scope.
Notation "(∈)" := elem_of (only parsing) : C_scope.
Notation "( x ∈)" := (elem_of x) (only parsing) : C_scope.
Notation "(∈ X )" := (λ x, elem_of x X) (only parsing) : C_scope.
Notation "x ∉ X" := (¬x  X) (at level 80) : C_scope.
Notation "(∉)" := (λ x X, x  X) (only parsing) : C_scope.
Notation "( x ∉)" := (λ X, x  X) (only parsing) : C_scope.
Notation "(∉ X )" := (λ x, x  X) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
344 345 346 347
Class Disjoint A := disjoint : A  A  Prop.
Instance: Params (@disjoint) 2.
Infix "⊥" := disjoint (at level 70) : C_scope.
Notation "(⊥)" := disjoint (only parsing) : C_scope.
348
Notation "( X ⊥.)" := (disjoint X) (only parsing) : C_scope.
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
Notation "(.⊥ X )" := (λ Y, Y   X) (only parsing) : C_scope.
Infix "⊥*" := (Forall2 ()) (at level 70) : C_scope.
Notation "(⊥*)" := (Forall2 ()) (only parsing) : C_scope.
Infix "⊥**" := (Forall2 (*)) (at level 70) : C_scope.
Infix "⊥1*" := (Forall2 (λ p q, p.1  q.1)) (at level 70) : C_scope.
Infix "⊥2*" := (Forall2 (λ p q, p.2  q.2)) (at level 70) : C_scope.
Infix "⊥1**" := (Forall2 (λ p q, p.1 * q.1)) (at level 70) : C_scope.
Infix "⊥2**" := (Forall2 (λ p q, p.2 * q.2)) (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Hint Extern 0 (_ * _) => symmetry; eassumption.

Class DisjointE E A := disjointE : E  A  A  Prop.
Instance: Params (@disjointE) 4.
Notation "X ⊥{ Γ } Y" := (disjointE Γ X Y)
  (at level 70, format "X  ⊥{ Γ }  Y") : C_scope.
Notation "(⊥{ Γ } )" := (disjointE Γ) (only parsing, Γ at level 1) : C_scope.
Notation "Xs ⊥{ Γ }* Ys" := (Forall2 ({Γ}) Xs Ys)
  (at level 70, format "Xs  ⊥{ Γ }*  Ys") : C_scope.
Notation "(⊥{ Γ }* )" := (Forall2 ({Γ}))
  (only parsing, Γ at level 1) : C_scope.
Notation "X ⊥{ Γ1 , Γ2 , .. , Γ3 } Y" := (disjoint (pair .. (Γ1, Γ2) .. Γ3) X Y)
  (at level 70, format "X  ⊥{ Γ1 , Γ2 , .. , Γ3 }  Y") : C_scope.
Notation "Xs ⊥{ Γ1 , Γ2 , .. , Γ3 }* Ys" :=
  (Forall2 (disjoint (pair .. (Γ1, Γ2) .. Γ3)) Xs Ys)
  (at level 70, format "Xs  ⊥{ Γ1 ,  Γ2 , .. , Γ3 }*  Ys") : C_scope.
Hint Extern 0 (_ {_} _) => symmetry; eassumption.
375 376 377

Class DisjointList A := disjoint_list : list A  Prop.
Instance: Params (@disjoint_list) 2.
378
Notation "⊥ Xs" := (disjoint_list Xs) (at level 20, format "⊥  Xs") : C_scope.
379

380 381 382 383 384 385
Section disjoint_list.
  Context `{Disjoint A, Union A, Empty A}.
  Inductive disjoint_list_default : DisjointList A :=
    | disjoint_nil_2 :  (@nil A)
    | disjoint_cons_2 (X : A) (Xs : list A) : X   Xs   Xs   (X :: Xs).
  Global Existing Instance disjoint_list_default.
386

387
  Lemma disjoint_list_nil  :  @nil A  True.
388 389 390
  Proof. split; constructor. Qed.
  Lemma disjoint_list_cons X Xs :  (X :: Xs)  X   Xs   Xs.
  Proof. split. inversion_clear 1; auto. intros [??]. constructor; auto. Qed.
391
End disjoint_list.
392 393

Class Filter A B := filter:  (P : A  Prop) `{ x, Decision (P x)}, B  B.
394 395 396

(** ** Monadic operations *)
(** We define operational type classes for the monadic operations bind, join 
397 398 399
and fmap. We use these type classes merely for convenient overloading of
notations and do not formalize any theory on monads (we do not even define a
class with the monad laws). *)
400 401 402
Class MRet (M : Type  Type) := mret:  {A}, A  M A.
Instance: Params (@mret) 3.
Arguments mret {_ _ _} _.
403 404
Class MBind (M : Type  Type) := mbind :  {A B}, (A  M B)  M A  M B.
Arguments mbind {_ _ _ _} _ !_ /.
405 406 407
Instance: Params (@mbind) 5.
Class MJoin (M : Type  Type) := mjoin:  {A}, M (M A)  M A.
Instance: Params (@mjoin) 3.
408
Arguments mjoin {_ _ _} !_ /.
409
Class FMap (M : Type  Type) := fmap :  {A B}, (A  B)  M A  M B.
410
Instance: Params (@fmap) 6.
411 412
Arguments fmap {_ _ _ _} _ !_ /.
Class OMap (M : Type  Type) := omap:  {A B}, (A  option B)  M A  M B.
413
Instance: Params (@omap) 6.
414
Arguments omap {_ _ _ _} _ !_ /.
415

416 417 418 419 420 421
Notation "m ≫= f" := (mbind f m) (at level 60, right associativity) : C_scope.
Notation "( m ≫=)" := (λ f, mbind f m) (only parsing) : C_scope.
Notation "(≫= f )" := (mbind f) (only parsing) : C_scope.
Notation "(≫=)" := (λ m f, mbind f m) (only parsing) : C_scope.

Notation "x ← y ; z" := (y = (λ x : _, z))
Robbert Krebbers's avatar
Robbert Krebbers committed
422
  (at level 65, only parsing, right associativity) : C_scope.
423
Infix "<$>" := fmap (at level 60, right associativity) : C_scope.
424
Notation "' ( x1 , x2 ) ← y ; z" :=
425
  (y = (λ x : _, let ' (x1, x2) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
426
  (at level 65, only parsing, right associativity) : C_scope.
427
Notation "' ( x1 , x2 , x3 ) ← y ; z" :=
428
  (y = (λ x : _, let ' (x1,x2,x3) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
429
  (at level 65, only parsing, right associativity) : C_scope.
430
Notation "' ( x1 , x2 , x3  , x4 ) ← y ; z" :=
431
  (y = (λ x : _, let ' (x1,x2,x3,x4) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
432
  (at level 65, only parsing, right associativity) : C_scope.
433 434
Notation "' ( x1 , x2 , x3  , x4 , x5 ) ← y ; z" :=
  (y = (λ x : _, let ' (x1,x2,x3,x4,x5) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
435
  (at level 65, only parsing, right associativity) : C_scope.
436 437
Notation "' ( x1 , x2 , x3  , x4 , x5 , x6 ) ← y ; z" :=
  (y = (λ x : _, let ' (x1,x2,x3,x4,x5,x6) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
438
  (at level 65, only parsing, right associativity) : C_scope.
439

440 441 442 443 444
Notation "ps .*1" := (fmap (M:=list) fst ps)
  (at level 10, format "ps .*1").
Notation "ps .*2" := (fmap (M:=list) snd ps)
  (at level 10, format "ps .*2").

445
Class MGuard (M : Type  Type) :=
446 447 448
  mguard:  P {dec : Decision P} {A}, (P  M A)  M A.
Arguments mguard _ _ _ !_ _ _ /.
Notation "'guard' P ; o" := (mguard P (λ _, o))
Robbert Krebbers's avatar
Robbert Krebbers committed
449
  (at level 65, only parsing, right associativity) : C_scope.
450
Notation "'guard' P 'as' H ; o" := (mguard P (λ H, o))
Robbert Krebbers's avatar
Robbert Krebbers committed
451
  (at level 65, only parsing, right associativity) : C_scope.
452

453
(** ** Operations on maps *)
454 455
(** In this section we define operational type classes for the operations
on maps. In the file [fin_maps] we will axiomatize finite maps.
456
The function look up [m !! k] should yield the element at key [k] in [m]. *)
457
Class Lookup (K A M : Type) := lookup: K  M  option A.
458 459 460
Instance: Params (@lookup) 4.
Notation "m !! i" := (lookup i m) (at level 20) : C_scope.
Notation "(!!)" := lookup (only parsing) : C_scope.
461
Notation "( m !!)" := (λ i, m !! i) (only parsing) : C_scope.
462
Notation "(!! i )" := (lookup i) (only parsing) : C_scope.
463
Arguments lookup _ _ _ _ !_ !_ / : simpl nomatch.
464 465 466

(** The function insert [<[k:=a]>m] should update the element at key [k] with
value [a] in [m]. *)
467
Class Insert (K A M : Type) := insert: K  A  M  M.
468 469 470
Instance: Params (@insert) 4.
Notation "<[ k := a ]>" := (insert k a)
  (at level 5, right associativity, format "<[ k := a ]>") : C_scope.
471
Arguments insert _ _ _ _ !_ _ !_ / : simpl nomatch.
472

473 474 475
(** The function delete [delete k m] should delete the value at key [k] in
[m]. If the key [k] is not a member of [m], the original map should be
returned. *)
476
Class Delete (K M : Type) := delete: K  M  M.
477 478
Instance: Params (@delete) 3.
Arguments delete _ _ _ !_ !_ / : simpl nomatch.
479 480

(** The function [alter f k m] should update the value at key [k] using the
481
function [f], which is called with the original value. *)
482
Class Alter (K A M : Type) := alter: (A  A)  K  M  M.
483
Instance: Params (@alter) 5.
484
Arguments alter {_ _ _ _} _ !_ !_ / : simpl nomatch.
485 486

(** The function [alter f k m] should update the value at key [k] using the
487 488 489
function [f], which is called with the original value at key [k] or [None]
if [k] is not a member of [m]. The value at [k] should be deleted if [f] 
yields [None]. *)
490 491
Class PartialAlter (K A M : Type) :=
  partial_alter: (option A  option A)  K  M  M.
492
Instance: Params (@partial_alter) 4.
493
Arguments partial_alter _ _ _ _ _ !_ !_ / : simpl nomatch.
494 495 496

(** The function [dom C m] should yield the domain of [m]. That is a finite
collection of type [C] that contains the keys that are a member of [m]. *)
497 498 499
Class Dom (M C : Type) := dom: M  C.
Instance: Params (@dom) 3.
Arguments dom {_} _ {_} !_ / : simpl nomatch, clear implicits.
500 501

(** The function [merge f m1 m2] should merge the maps [m1] and [m2] by
502 503 504 505 506
constructing a new map whose value at key [k] is [f (m1 !! k) (m2 !! k)].*)
Class Merge (M : Type  Type) :=
  merge:  {A B C}, (option A  option B  option C)  M A  M B  M C.
Instance: Params (@merge) 4.
Arguments merge _ _ _ _ _ _ !_ !_ / : simpl nomatch.
507

508 509 510 511 512
(** The function [union_with f m1 m2] is supposed to yield the union of [m1]
and [m2] using the function [f] to combine values of members that are in
both [m1] and [m2]. *)
Class UnionWith (A M : Type) :=
  union_with: (A  A  option A)  M  M  M.
513
Instance: Params (@union_with) 3.
514
Arguments union_with {_ _ _} _ !_ !_ / : simpl nomatch.
515

516 517 518
(** Similarly for intersection and difference. *)
Class IntersectionWith (A M : Type) :=
  intersection_with: (A  A  option A)  M  M  M.
519
Instance: Params (@intersection_with) 3.
520 521
Arguments intersection_with {_ _ _} _ !_ !_ / : simpl nomatch.

522 523
Class DifferenceWith (A M : Type) :=
  difference_with: (A  A  option A)  M  M  M.
524
Instance: Params (@difference_with) 3.
525
Arguments difference_with {_ _ _} _ !_ !_ / : simpl nomatch.
Robbert Krebbers's avatar
Robbert Krebbers committed
526

527 528 529 530
Definition intersection_with_list `{IntersectionWith A M}
  (f : A  A  option A) : M  list M  M := fold_right (intersection_with f).
Arguments intersection_with_list _ _ _ _ _ !_ /.

531 532 533 534 535 536 537 538 539 540 541 542 543
Class LookupE (E K A M : Type) := lookupE: E  K  M  option A.
Instance: Params (@lookupE) 6.
Notation "m !!{ Γ } i" := (lookupE Γ i m)
  (at level 20, format "m  !!{ Γ }  i") : C_scope.
Notation "(!!{ Γ } )" := (lookupE Γ) (only parsing, Γ at level 1) : C_scope.
Arguments lookupE _ _ _ _ _ _ !_ !_ / : simpl nomatch.

Class InsertE (E K A M : Type) := insertE: E  K  A  M  M.
Instance: Params (@insert) 6.
Notation "<[ k := a ]{ Γ }>" := (insertE Γ k a)
  (at level 5, right associativity, format "<[ k := a ]{ Γ }>") : C_scope.
Arguments insertE _ _ _ _ _ _ !_ _ !_ / : simpl nomatch.

544 545 546 547
(** ** Common properties *)
(** These operational type classes allow us to refer to common mathematical
properties in a generic way. For example, for injectivity of [(k ++)] it
allows us to write [injective (k ++)] instead of [app_inv_head k]. *)
548 549 550 551 552
Class Injective {A B} (R : relation A) (S : relation B) (f : A  B) : Prop :=
  injective:  x y, S (f x) (f y)  R x y.
Class Injective2 {A B C} (R1 : relation A) (R2 : relation B)
    (S : relation C) (f : A  B  C) : Prop :=
  injective2:  x1 x2  y1 y2, S (f x1 x2) (f y1 y2)  R1 x1 y1  R2 x2 y2.
553 554 555 556
Class Cancel {A B} (S : relation B) (f : A  B) (g : B  A) : Prop :=
  cancel:  x, S (f (g x)) x.
Class Surjective {A B} (R : relation B) (f : A  B) :=
  surjective :  y,  x, R (f x) y.
557
Class Idempotent {A} (R : relation A) (f : A  A  A) : Prop :=
558
  idempotent:  x, R (f x x) x.
559
Class Commutative {A B} (R : relation A) (f : B  B  A) : Prop :=
560
  commutative:  x y, R (f x y) (f y x).
561
Class LeftId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
562
  left_id:  x, R (f i x) x.
563
Class RightId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
564
  right_id:  x, R (f x i) x.
565
Class Associative {A} (R : relation A) (f : A  A  A) : Prop :=
566
  associative:  x y z, R (f x (f y z)) (f (f x y) z).
567
Class LeftAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
568
  left_absorb:  x, R (f i x) i.
569
Class RightAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
570
  right_absorb:  x, R (f x i) i.
571 572 573 574
Class LeftDistr {A} (R : relation A) (f g : A  A  A) : Prop :=
  left_distr:  x y z, R (f x (g y z)) (g (f x y) (f x z)).
Class RightDistr {A} (R : relation A) (f g : A  A  A) : Prop :=
  right_distr:  y z x, R (f (g y z) x) (g (f y x) (f z x)).
575 576
Class AntiSymmetric {A} (R S : relation A) : Prop :=
  anti_symmetric:  x y, S x y  S y x  R x y.
577 578
Class Total {A} (R : relation A) := total x y : R x y  R y x.
Class Trichotomy {A} (R : relation A) :=
579
  trichotomy :  x y, R x y  x = y  R y x.
580
Class TrichotomyT {A} (R : relation A) :=
581
  trichotomyT :  x y, {R x y} + {x = y} + {R y x}.
Robbert Krebbers's avatar
Robbert Krebbers committed
582

583
Arguments irreflexivity {_} _ {_} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
584
Arguments injective {_ _ _ _} _ {_} _ _ _.
585
Arguments injective2 {_ _ _ _ _ _} _ {_} _ _ _ _ _.
586 587
Arguments cancel {_ _ _} _ _ {_} _.
Arguments surjective {_ _ _} _ {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
588 589 590 591 592
Arguments idempotent {_ _} _ {_} _.
Arguments commutative {_ _ _} _ {_} _ _.
Arguments left_id {_ _} _ _ {_} _.
Arguments right_id {_ _} _ _ {_} _.
Arguments associative {_ _} _ {_} _ _ _.
593 594
Arguments left_absorb {_ _} _ _ {_} _.
Arguments right_absorb {_ _} _ _ {_} _.
595 596
Arguments left_distr {_ _} _ _ {_} _ _ _.
Arguments right_distr {_ _} _ _ {_} _ _ _.
597
Arguments anti_symmetric {_ _} _ {_} _ _ _ _.
598 599 600
Arguments total {_} _ {_} _ _.
Arguments trichotomy {_} _ {_} _ _.
Arguments trichotomyT {_} _ {_} _ _.
601

602 603 604
Instance id_injective {A} : Injective (=) (=) (@id A).
Proof. intros ??; auto. Qed.

605 606 607 608
(** The following lemmas are specific versions of the projections of the above
type classes for Leibniz equality. These lemmas allow us to enforce Coq not to
use the setoid rewriting mechanism. *)
Lemma idempotent_L {A} (f : A  A  A) `{!Idempotent (=) f} x : f x x = x.
609
Proof. auto. Qed.
610
Lemma commutative_L {A B} (f : B  B  A) `{!Commutative (=) f} x y :
611
  f x y = f y x.
612
Proof. auto. Qed.
613
Lemma left_id_L {A} (i : A) (f : A  A  A) `{!LeftId (=) i f} x : f i x = x.
614
Proof. auto. Qed.
615
Lemma right_id_L {A} (i : A) (f : A  A  A) `{!RightId (=) i f} x : f x i = x.
616
Proof. auto. Qed.
617
Lemma associative_L {A} (f : A  A  A) `{!Associative (=) f} x y z :
618
  f x (f y z) = f (f x y) z.
619
Proof. auto. Qed.
620
Lemma left_absorb_L {A} (i : A) (f : A  A  A) `{!LeftAbsorb (=) i f} x :
621 622
  f i x = i.
Proof. auto. Qed.
623
Lemma right_absorb_L {A} (i : A) (f : A  A  A) `{!RightAbsorb (=) i f} x :
624 625
  f x i = i.
Proof. auto. Qed.
626
Lemma left_distr_L {A} (f g : A  A  A) `{!LeftDistr (=) f g} x y z :
627 628
  f x (g y z) = g (f x y) (f x z).
Proof. auto. Qed.
629
Lemma right_distr_L {A} (f g : A  A  A) `{!RightDistr (=) f g} y z x :
630 631
  f (g y z) x = g (f y x) (f z x).
Proof. auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
632

633
(** ** Axiomatization of ordered structures *)
634 635
(** The classes [PreOrder], [PartialOrder], and [TotalOrder] use an arbitrary
relation [R] instead of [⊆] to support multiple orders on the same type. *)
636
Class PartialOrder {A} (R : relation A) : Prop := {
637 638
  partial_order_pre :> PreOrder R;
  partial_order_anti_symmetric :> AntiSymmetric (=) R
639 640
}.
Class TotalOrder {A} (R : relation A) : Prop := {
641 642
  total_order_partial :> PartialOrder R;
  total_order_trichotomy :> Trichotomy (strict R)
643 644
}.

645 646 647 648 649 650
(** We do not use a setoid equality in the following interfaces to avoid the
need for proofs that the relations and operations are proper. Instead, we
define setoid equality generically [λ X Y, X ⊆ Y ∧ Y ⊆ X]. *)
Class EmptySpec A `{Empty A, SubsetEq A} : Prop := subseteq_empty X :   X.
Class JoinSemiLattice A `{SubsetEq A, Union A} : Prop := {
  join_semi_lattice_pre :>> PreOrder ();
651 652 653
  union_subseteq_l X Y : X  X  Y;
  union_subseteq_r X Y : Y  X  Y;
  union_least X Y Z : X  Z  Y  Z  X  Y  Z
Robbert Krebbers's avatar
Robbert Krebbers committed
654
}.
655 656
Class MeetSemiLattice A `{SubsetEq A, Intersection A} : Prop := {
  meet_semi_lattice_pre :>> PreOrder ();
657 658 659
  intersection_subseteq_l X Y : X  Y  X;
  intersection_subseteq_r X Y : X  Y  Y;
  intersection_greatest X Y Z : Z  X  Z  Y  Z  X  Y
Robbert Krebbers's avatar
Robbert Krebbers committed
660
}.
661 662 663 664
Class Lattice A `{SubsetEq A, Union A, Intersection A} : Prop := {
  lattice_join :>> JoinSemiLattice A;
  lattice_meet :>> MeetSemiLattice A;
  lattice_distr X Y Z : (X  Y)  (X  Z)  X  (Y  Z)
665
}.
666

667
(** ** Axiomatization of collections *)
668 669
(** The class [SimpleCollection A C] axiomatizes a collection of type [C] with
elements of type [A]. *)
670
Instance: Params (@map) 3.
671 672
Class SimpleCollection A C `{ElemOf A C,
    Empty C, Singleton A C, Union C} : Prop := {
673
  not_elem_of_empty (x : A) : x  ;
674
  elem_of_singleton (x y : A) : x  {[ y ]}  x = y;
675 676
  elem_of_union X Y (x : A) : x  X  Y  x  X  x  Y
}.
677 678
Class Collection A C `{ElemOf A C, Empty C, Singleton A C,
    Union C, Intersection C, Difference C} : Prop := {
679
  collection_simple :>> SimpleCollection A C;
Robbert Krebbers's avatar
Robbert Krebbers committed
680
  elem_of_intersection X Y (x : A) : x  X  Y  x  X  x  Y;
681 682
  elem_of_difference X Y (x : A) : x  X  Y  x  X  x  Y
}.
683 684
Class CollectionOps A C `{ElemOf A C, Empty C, Singleton A C, Union C,
    Intersection C, Difference C, IntersectionWith A C, Filter A C} : Prop := {
685
  collection_ops :>> Collection A C;
686
  elem_of_intersection_with (f : A  A  option A) X Y (x : A) :
687
    x  intersection_with f X Y   x1 x2, x1  X  x2  Y  f x1 x2 = Some x;
688
  elem_of_filter X P `{ x, Decision (P x)} x : x  filter P X  P x  x  X
Robbert Krebbers's avatar
Robbert Krebbers committed
689 690
}.

691 692 693
(** We axiomative a finite collection as a collection whose elements can be
enumerated as a list. These elements, given by the [elements] function, may be
in any order and should not contain duplicates. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
694
Class Elements A C := elements: C  list A.
695
Instance: Params (@elements) 3.
696 697 698 699 700 701 702 703 704 705 706 707 708

(** We redefine the standard library's [In] and [NoDup] using type classes. *)
Inductive elem_of_list {A} : ElemOf A (list A) :=
  | elem_of_list_here (x : A) l : x  x :: l
  | elem_of_list_further (x y : A) l : x  l  x  y :: l.
Existing Instance elem_of_list.

Inductive NoDup {A} : list A  Prop :=
  | NoDup_nil_2 : NoDup []
  | NoDup_cons_2 x l : x  l  NoDup l  NoDup (x :: l).

(** Decidability of equality of the carrier set is admissible, but we add it
anyway so as to avoid cycles in type class search. *)
709 710 711
Class FinCollection A C `{ElemOf A C, Empty C, Singleton A C,
    Union C, Intersection C, Difference C,
    Elements A C,  x y : A, Decision (x = y)} : Prop := {
Robbert Krebbers's avatar
Robbert Krebbers committed
712
  fin_collection :>> Collection A C;
713 714
  elem_of_elements X x : x  elements X  x  X;
  NoDup_elements X : NoDup (elements X)
715 716
}.
Class Size C := size: C  nat.
717
Arguments size {_ _} !_ / : simpl nomatch.
718
Instance: Params (@size) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
719

720 721 722 723 724 725 726 727
(** The class [Collection M] axiomatizes a type constructor [M] that can be
used to construct a collection [M A] with elements of type [A]. The advantage
of this class, compared to [Collection], is that it also axiomatizes the
the monadic operations. The disadvantage, is that not many inhabits are
possible (we will only provide an inhabitant using unordered lists without
duplicates removed). More interesting implementations typically need
decidability of equality, or a total order on the elements, which do not fit
in a type constructor of type [Type → Type]. *)
728 729 730
Class CollectionMonad M `{ A, ElemOf A (M A),
     A, Empty (M A),  A, Singleton A (M A),  A, Union (M A),
    !MBind M, !MRet M, !FMap M, !MJoin M} : Prop := {
731 732 733
  collection_monad_simple A :> SimpleCollection A (M A);
  elem_of_bind {A B} (f : A  M B) (X : M A) (x : B) :
    x  X = f   y, x  f y  y  X;
734
  elem_of_ret {A} (x y : A) : x  mret y  x = y;
735 736
  elem_of_fmap {A B} (f : A  B) (X : M A) (x : B) :
    x  f <$> X   y, x = f y  y  X;
737
  elem_of_join {A} (X : M (M A)) (x : A) : x  mjoin X   Y, x  Y  Y  X
738 739
}.

740 741 742
(** The function [fresh X] yields an element that is not contained in [X]. We
will later prove that [fresh] is [Proper] with respect to the induced setoid
equality on collections. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
743
Class Fresh A C := fresh: C  A.
744
Instance: Params (@fresh) 3.
745 746
Class FreshSpec A C `{ElemOf A C,
    Empty C, Singleton A C, Union C, Fresh A C} : Prop := {