fin_maps.v 69.8 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5
induction principles for finite maps and implements the tactic
6
[simplify_map_eq] to simplify goals involving finite maps. *)
7 8
From Coq Require Import Permutation.
From stdpp Require Export relations vector orders.
9

10 11
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
12 13 14 15 16
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
17

Robbert Krebbers's avatar
Robbert Krebbers committed
18 19
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
20
prove well founded recursion on finite maps. *)
21

22 23 24
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
25

26
Class FinMapToList K A M := map_to_list: M  list (K * A).
Robbert Krebbers's avatar
Robbert Krebbers committed
27

28 29 30
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
     i j : K, Decision (i = j)} := {
31 32
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
33 34 35 36
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
37
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
38
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
39 40
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
41
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
42 43 44
  lookup_merge {A B C} (f : option A  option B  option C)
      `{!PropHolds (f None None = None)} m1 m2 i :
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
45 46
}.

47 48 49
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
50 51
significant performance loss to make including them in the finite map interface
worthwhile. *)
52 53 54 55 56
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
57
  partial_alter (λ _, None).
58
Instance map_singleton `{PartialAlter K A M, Empty M} :
59
  SingletonM K A M := λ i x, <[i:=x]> .
Robbert Krebbers's avatar
Robbert Krebbers committed
60

61
Definition map_of_list `{Insert K A M, Empty M} : list (K * A)  M :=
62
  fold_right (λ p, <[p.1:=p.2]>) .
63 64 65
Definition map_of_collection `{Elements K C, Insert K A M, Empty M}
    (f : K  option A) (X : C) : M :=
  map_of_list (omap (λ i, (i,) <$> f i) (elements X)).
Robbert Krebbers's avatar
Robbert Krebbers committed
66

67 68 69 70 71 72
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
73

74 75
Instance map_equiv `{ A, Lookup K A (M A), Equiv A} : Equiv (M A) | 18 :=
  λ m1 m2,  i, m1 !! i  m2 !! i.
Robbert Krebbers's avatar
Robbert Krebbers committed
76

77 78
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
79
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
80
  λ m,  i x, m !! i = Some x  P i x.
Robbert Krebbers's avatar
Robbert Krebbers committed
81 82 83
Definition map_relation `{ A, Lookup K A (M A)} {A B} (R : A  B  Prop)
    (P : A  Prop) (Q : B  Prop) (m1 : M A) (m2 : M B) : Prop :=  i,
  option_relation R P Q (m1 !! i) (m2 !! i).
84
Definition map_included `{ A, Lookup K A (M A)} {A}
Robbert Krebbers's avatar
Robbert Krebbers committed
85 86 87 88 89 90 91
  (R : relation A) : relation (M A) := map_relation R (λ _, False) (λ _, True).
Definition map_disjoint `{ A, Lookup K A (M A)} {A} : relation (M A) :=
  map_relation (λ _ _, False) (λ _, True) (λ _, True).
Infix "⊥ₘ" := map_disjoint (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Notation "( m ⊥ₘ.)" := (map_disjoint m) (only parsing) : C_scope.
Notation "(.⊥ₘ m )" := (λ m2, m2  m) (only parsing) : C_scope.
92
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
93
  map_included (=).
Robbert Krebbers's avatar
Robbert Krebbers committed
94 95 96 97 98

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
99
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
100 101 102
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

103 104
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
105
Instance map_difference `{Merge M} {A} : Difference (M A) :=
106
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
107

108 109 110 111 112 113
(** A stronger variant of map that allows the mapped function to use the index
of the elements. Implemented by conversion to lists, so not very efficient. *)
Definition map_imap `{ A, Insert K A (M A),  A, Empty (M A),
     A, FinMapToList K A (M A)} {A B} (f : K  A  option B) (m : M A) : M B :=
  map_of_list (omap (λ ix, (fst ix,) <$> curry f ix) (map_to_list m)).

114 115 116 117
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

Robbert Krebbers's avatar
Robbert Krebbers committed
118 119
(** ** Setoids *)
Section setoid.
120 121
  Context `{Equiv A} `{!Equivalence (() : relation A)}.
  Global Instance map_equivalence : Equivalence (() : relation (M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
122 123
  Proof.
    split.
124 125
    - by intros m i.
    - by intros m1 m2 ? i.
126
    - by intros m1 m2 m3 ?? i; trans (m2 !! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
127 128 129 130 131
  Qed.
  Global Instance lookup_proper (i : K) :
    Proper (() ==> ()) (lookup (M:=M A) i).
  Proof. by intros m1 m2 Hm. Qed.
  Global Instance partial_alter_proper :
132
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (partial_alter (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
133 134 135 136 137 138 139 140
  Proof.
    by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|];
      rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done;
      try apply Hf; apply lookup_proper.
  Qed.
  Global Instance insert_proper (i : K) :
    Proper (() ==> () ==> ()) (insert (M:=M A) i).
  Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed.
141 142 143
  Global Instance singleton_proper k :
    Proper (() ==> ()) (singletonM k : A  M A).
  Proof. by intros ???; apply insert_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
144 145 146 147 148 149 150 151 152 153 154 155
  Global Instance delete_proper (i : K) :
    Proper (() ==> ()) (delete (M:=M A) i).
  Proof. by apply partial_alter_proper; [constructor|]. Qed.
  Global Instance alter_proper :
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (alter (A:=A) (M:=M A)).
  Proof.
    intros ?? Hf; apply partial_alter_proper.
    by destruct 1; constructor; apply Hf.
  Qed.
  Lemma merge_ext f g
      `{!PropHolds (f None None = None), !PropHolds (g None None = None)} :
    (() ==> () ==> ())%signature f g 
156
    (() ==> () ==> ())%signature (merge (M:=M) f) (merge g).
Robbert Krebbers's avatar
Robbert Krebbers committed
157 158 159 160
  Proof.
    by intros Hf ?? Hm1 ?? Hm2 i; rewrite !lookup_merge by done; apply Hf.
  Qed.
  Global Instance union_with_proper :
161
    Proper ((() ==> () ==> ()) ==> () ==> () ==>()) (union_with (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
162 163 164
  Proof.
    intros ?? Hf ?? Hm1 ?? Hm2 i; apply (merge_ext _ _); auto.
    by do 2 destruct 1; first [apply Hf | constructor].
165
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
166 167
  Global Instance map_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (M A).
  Proof.
168 169
    intros m1 m2 Hm; apply map_eq; intros i.
    by unfold_leibniz; apply lookup_proper.
Robbert Krebbers's avatar
Robbert Krebbers committed
170
  Qed.
171 172 173 174 175
  Lemma map_equiv_empty (m : M A) : m    m = .
  Proof.
    split; [intros Hm; apply map_eq; intros i|by intros ->].
    by rewrite lookup_empty, <-equiv_None, Hm, lookup_empty.
  Qed.
176
  Lemma map_equiv_lookup_l (m1 m2 : M A) i x :
177
    m1  m2  m1 !! i = Some x   y, m2 !! i = Some y  x  y.
178
  Proof. generalize (equiv_Some_inv_l (m1 !! i) (m2 !! i) x); naive_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
179 180 181
End setoid.

(** ** General properties *)
182 183 184 185 186
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
187
  unfold subseteq, map_subseteq, map_relation. split; intros Hm i;
188 189
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
190
Global Instance: EmptySpec (M A).
191
Proof.
192 193
  intros A m. rewrite !map_subseteq_spec.
  intros i x. by rewrite lookup_empty.
194
Qed.
195 196
Global Instance:  {A} (R : relation A), PreOrder R  PreOrder (map_included R).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
197
  split; [intros m i; by destruct (m !! i); simpl|].
198
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
199
  destruct (m1 !! i), (m2 !! i), (m3 !! i); simplify_eq/=;
200
    done || etrans; eauto.
201
Qed.
202
Global Instance: PartialOrder (() : relation (M A)).
203
Proof.
204 205 206
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
207 208 209
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
210
Proof. rewrite !map_subseteq_spec. auto. Qed.
211 212 213 214 215 216
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
217 218
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
219 220
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
221 222
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
223 224 225 226 227 228 229 230 231
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬ !! i = Some x.
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
232 233 234
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
235 236
Lemma map_fmap_empty {A B} (f : A  B) : f <$> ( : M A) = .
Proof. by apply map_eq; intros i; rewrite lookup_fmap, !lookup_empty. Qed.
237 238

(** ** Properties of the [partial_alter] operation *)
239 240 241
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
242 243
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
244 245
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
246 247
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
248 249
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
250
Qed.
251
Lemma partial_alter_commute {A} f g (m : M A) i j :
252
  i  j  partial_alter f i (partial_alter g j m) =
253 254
    partial_alter g j (partial_alter f i m).
Proof.
255 256 257 258
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
259
  - by rewrite lookup_partial_alter,
260
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
261
  - by rewrite !lookup_partial_alter_ne by congruence.
262 263 264 265
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
266 267
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
268
Qed.
269
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
270
Proof. by apply partial_alter_self_alt. Qed.
271
Lemma partial_alter_subseteq {A} f (m : M A) i :
272
  m !! i = None  m  partial_alter f i m.
273 274 275 276
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
277
Lemma partial_alter_subset {A} f (m : M A) i :
278
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
279
Proof.
280 281 282 283
  intros Hi Hfi. split; [by apply partial_alter_subseteq|].
  rewrite !map_subseteq_spec. inversion Hfi as [x Hx]. intros Hm.
  apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
  by rewrite lookup_partial_alter.
284 285 286
Qed.

(** ** Properties of the [alter] operation *)
287 288
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
289
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal/=; auto. Qed.
290
Lemma lookup_alter {A} (f : A  A) m i : alter f i m !! i = f <$> m !! i.
291
Proof. unfold alter. apply lookup_partial_alter. Qed.
292
Lemma lookup_alter_ne {A} (f : A  A) m i j : i  j  alter f i m !! j = m !! j.
293
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
294 295 296 297 298 299 300 301 302
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
303 304 305 306
Lemma lookup_alter_Some {A} (f : A  A) m i j y :
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
307
  destruct (decide (i = j)) as [->|?].
308
  - rewrite lookup_alter. naive_solver (simplify_option_eq; eauto).
309
  - rewrite lookup_alter_ne by done. naive_solver.
310 311 312 313
Qed.
Lemma lookup_alter_None {A} (f : A  A) m i j :
  alter f i m !! j = None  m !! j = None.
Proof.
314 315
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
316
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
317 318
Lemma alter_id {A} (f : A  A) m i :
  ( x, m !! i = Some x  f x = x)  alter f i m = m.
319
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
320
  intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
321
  { rewrite lookup_alter; destruct (m !! j); f_equal/=; auto. }
Robbert Krebbers's avatar
Robbert Krebbers committed
322
  by rewrite lookup_alter_ne by done.
323 324 325 326 327 328 329 330 331 332 333
Qed.

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
334
  - destruct (decide (i = j)) as [->|?];
335
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
336
  - intros [??]. by rewrite lookup_delete_ne.
337
Qed.
338 339 340
Lemma lookup_delete_is_Some {A} (m : M A) i j :
  is_Some (delete i m !! j)  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_delete_Some; naive_solver. Qed.
341 342 343
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
344 345
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
346 347 348
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
349
Lemma delete_singleton {A} i (x : A) : delete i {[i := x]} = .
350 351 352 353 354 355 356
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
357
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
358
Proof.
359 360
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
Qed.
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
Lemma insert_delete {A} (m : M A) i x :
  m !! i = Some x  <[i:=x]>(delete i m) = m.
Proof.
  intros Hmi. unfold delete, map_delete, insert, map_insert.
  rewrite <-partial_alter_compose. unfold compose. rewrite <-Hmi.
  by apply partial_alter_self_alt.
Qed.
378
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
379 380 381
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
382
Lemma delete_subseteq_compat {A} (m1 m2 : M A) i :
383
  m1  m2  delete i m1  delete i m2.
384 385 386 387
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
Qed.
388
Lemma delete_subset_alt {A} (m : M A) i x : m !! i = Some x  delete i m  m.
389
Proof.
390 391 392
  split; [apply delete_subseteq|].
  rewrite !map_subseteq_spec. intros Hi. apply (None_ne_Some x).
  by rewrite <-(lookup_delete m i), (Hi i x).
393
Qed.
394
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
395 396 397 398 399
Proof. inversion 1. eauto using delete_subset_alt. Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
400
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
401
Proof. rewrite lookup_insert. congruence. Qed.
402
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
403
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
404 405
Lemma insert_insert {A} (m : M A) i x y : <[i:=x]>(<[i:=y]>m) = <[i:=x]>m.
Proof. unfold insert, map_insert. by rewrite <-partial_alter_compose. Qed.
406 407 408 409 410 411 412
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
413
  - destruct (decide (i = j)) as [->|?];
414
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
415
  - intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
416
Qed.
417 418 419
Lemma lookup_insert_is_Some {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_insert_Some; naive_solver. Qed.
420 421 422
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
423 424 425
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
426
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
427
Lemma insert_id {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
428 429 430 431 432 433 434 435
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
436 437
  - rewrite lookup_insert. destruct (m !! j); simpl; eauto.
  - rewrite lookup_insert_ne by done. by destruct (m !! j); simpl.
438
Qed.
439
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
440
Proof. apply partial_alter_subseteq. Qed.
441
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
442 443
Proof. intro. apply partial_alter_subset; eauto. Qed.
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
444
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
445
Proof.
446 447 448
  rewrite !map_subseteq_spec. intros ?? j ?.
  destruct (decide (j = i)) as [->|?]; [congruence|].
  rewrite lookup_insert_ne; auto.
449 450
Qed.
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
451
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
452
Proof.
453 454 455 456
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
457 458
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
459
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
460
Proof.
461 462
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
463 464
  - rewrite lookup_insert. congruence.
  - rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
465 466
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
467
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
468
Proof.
469 470 471
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
472 473
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
474
  m1 !! i = None  <[i:=x]> m1  m2 
475 476
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
477
  intros Hi Hm1m2. exists (delete i m2). split_and?.
478
  - rewrite insert_delete. done. eapply lookup_weaken, strict_include; eauto.
479
    by rewrite lookup_insert.
480 481
  - eauto using insert_delete_subset.
  - by rewrite lookup_delete.
482
Qed.
483
Lemma insert_empty {A} i (x : A) : <[i:=x]> = {[i := x]}.
484
Proof. done. Qed.
485 486 487

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
488
  {[i := x]} !! j = Some y  i = j  x = y.
489
Proof.
490
  rewrite <-insert_empty,lookup_insert_Some, lookup_empty; intuition congruence.
491
Qed.
492
Lemma lookup_singleton_None {A} i j (x : A) : {[i := x]} !! j = None  i  j.
493
Proof. rewrite <-insert_empty,lookup_insert_None, lookup_empty; tauto. Qed.
494
Lemma lookup_singleton {A} i (x : A) : {[i := x]} !! i = Some x.
495
Proof. by rewrite lookup_singleton_Some. Qed.
496
Lemma lookup_singleton_ne {A} i j (x : A) : i  j  {[i := x]} !! j = None.
497
Proof. by rewrite lookup_singleton_None. Qed.
498
Lemma map_non_empty_singleton {A} i (x : A) : {[i := x]}  .
499 500 501 502
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
503
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i := x]} = {[i := y]}.
504
Proof.
505
  unfold singletonM, map_singleton, insert, map_insert.
506 507
  by rewrite <-partial_alter_compose.
Qed.
508
Lemma alter_singleton {A} (f : A  A) i x : alter f i {[i := x]} = {[i := f x]}.
509
Proof.
510
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
511 512
  - by rewrite lookup_alter, !lookup_singleton.
  - by rewrite lookup_alter_ne, !lookup_singleton_ne.
513 514
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
515
  i  j  alter f i {[j := x]} = {[j := x]}.
516
Proof.
517 518
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
519 520
Qed.

521 522 523 524 525
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.
526 527 528
Lemma fmap_insert {A B} (f: A  B) m i x: f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
529 530
  - by rewrite lookup_fmap, !lookup_insert.
  - by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
531 532 533 534 535
Qed.
Lemma omap_insert {A B} (f : A  option B) m i x y :
  f x = Some y  omap f (<[i:=x]>m) = <[i:=y]>(omap f m).
Proof.
  intros; apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
536 537
  - by rewrite lookup_omap, !lookup_insert.
  - by rewrite lookup_omap, !lookup_insert_ne, lookup_omap by done.
538
Qed.
539
Lemma map_fmap_singleton {A B} (f : A  B) i x : f <$> {[i := x]} = {[i := f x]}.
540 541 542
Proof.
  by unfold singletonM, map_singleton; rewrite fmap_insert, map_fmap_empty.
Qed.
543
Lemma omap_singleton {A B} (f : A  option B) i x y :
544
  f x = Some y  omap f {[ i := x ]} = {[ i := y ]}.
545
Proof.
546 547
  intros. unfold singletonM, map_singleton.
  by erewrite omap_insert, omap_empty by eauto.
548
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
549 550 551 552 553
Lemma map_fmap_id {A} (m : M A) : id <$> m = m.
Proof. apply map_eq; intros i; by rewrite lookup_fmap, option_fmap_id. Qed.
Lemma map_fmap_compose {A B C} (f : A  B) (g : B  C) (m : M A) :
  g  f <$> m = g <$> f <$> m.
Proof. apply map_eq; intros i; by rewrite !lookup_fmap,option_fmap_compose. Qed.
554 555 556 557 558 559
Lemma map_fmap_setoid_ext `{Equiv A, Equiv B} (f1 f2 : A  B) m :
  ( i x, m !! i = Some x  f1 x  f2 x)  f1 <$> m  f2 <$> m.
Proof.
  intros Hi i; rewrite !lookup_fmap.
  destruct (m !! i) eqn:?; constructor; eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
560 561 562 563 564 565
Lemma map_fmap_ext {A B} (f1 f2 : A  B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  f1 <$> m = f2 <$> m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_fmap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
566 567 568 569 570 571
Lemma omap_ext {A B} (f1 f2 : A  option B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  omap f1 m = omap f2 m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_omap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
572

573 574
(** ** Properties of conversion to lists *)
Lemma map_to_list_unique {A} (m : M A) i x y :
575
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
576
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
577
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup ((map_to_list m).*1).
578
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
579 580 581 582 583
Lemma elem_of_map_of_list_1_help {A} (l : list (K * A)) i x :
  (i,x)  l  ( y, (i,y)  l  y = x)  map_of_list l !! i = Some x.
Proof.
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
  setoid_rewrite elem_of_cons.
584
  intros [?|?] Hdup; simplify_eq; [by rewrite lookup_insert|].
585
  destruct (decide (i = j)) as [->|].
586 587
  - rewrite lookup_insert; f_equal; eauto.
  - rewrite lookup_insert_ne by done; eauto.
588
Qed.
589
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
590
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
591
Proof.
592 593
  intros ? Hx; apply elem_of_map_of_list_1_help; eauto using NoDup_fmap_fst.
  intros y; revert Hx. rewrite !elem_of_list_lookup; intros [i' Hi'] [j' Hj'].
594
  cut (i' = j'); [naive_solver|]. apply NoDup_lookup with (l.*1) i;
595
    by rewrite ?list_lookup_fmap, ?Hi', ?Hj'.
596 597
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
598
  map_of_list l !! i = Some x  (i,x)  l.
599
Proof.
600 601 602
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
603 604
Qed.
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
605
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
606
Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
607
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
608
  i  l.*1  map_of_list l !! i = None.
609
Proof.
610 611
  rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
  exists (i,x); simpl; auto using elem_of_map_of_list_2.
612 613
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
614
  map_of_list l !! i = None  i  l.*1.
615
Proof.
616
  induction l as [|[j y] l IH]; csimpl; [rewrite elem_of_nil; tauto|].
617
  rewrite elem_of_cons. destruct (decide (i = j)); simplify_eq.
618 619
  - by rewrite lookup_insert.
  - by rewrite lookup_insert_ne; intuition.
620 621
Qed.
Lemma not_elem_of_map_of_list {A} (l : list (K * A)) i :
622
  i  l.*1  map_of_list l !! i = None.
623
Proof. red; auto using not_elem_of_map_of_list_1,not_elem_of_map_of_list_2. Qed.
624
Lemma map_of_list_proper {A} (l1 l2 : list (K * A)) :
625
  NoDup (l1.*1)  l1  l2  map_of_list l1 = map_of_list l2.
626 627 628 629 630
Proof.
  intros ? Hperm. apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-!elem_of_map_of_list; rewrite <-?Hperm.
Qed.
Lemma map_of_list_inj {A} (l1 l2 : list (K * A)) :
631
  NoDup (l1.*1)  NoDup (l2.*1)  map_of_list l1 = map_of_list l2  l1  l2.
632
Proof.
633
  intros ?? Hl1l2. apply NoDup_Permutation; auto using (NoDup_fmap_1 fst).
634 635
  intros [i x]. by rewrite !elem_of_map_of_list, Hl1l2.
Qed.
636
Lemma map_of_to_list {A} (m : M A) : map_of_list (map_to_list m) = m.
637 638 639
Proof.
  apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-elem_of_map_of_list, elem_of_map_to_list
640
    by auto using NoDup_fst_map_to_list.
641 642
Qed.
Lemma map_to_of_list {A} (l : list (K * A)) :
643
  NoDup (l.*1)  map_to_list (map_of_list l)  l.
644
Proof. auto using map_of_list_inj, NoDup_fst_map_to_list, map_of_to_list. Qed.
645
Lemma map_to_list_inj {A} (m1 m2 : M A) :
646
  map_to_list m1  map_to_list m2  m1 = m2.
647
Proof.
648
  intros. rewrite <-(map_of_to_list m1), <-(map_of_to_list m2).
649
  auto using map_of_list_proper, NoDup_fst_map_to_list.
650
Qed.
651 652 653 654 655 656
Lemma map_to_of_list_flip {A} (m1 : M A) l2 :
  map_to_list m1  l2  m1 = map_of_list l2.
Proof.
  intros. rewrite <-(map_of_to_list m1).
  auto using map_of_list_proper, NoDup_fst_map_to_list.
Qed.
657
Lemma map_to_list_empty {A} : map_to_list  = @nil (K * A).
658 659 660 661 662
Proof.
  apply elem_of_nil_inv. intros [i x].
  rewrite elem_of_map_to_list. apply lookup_empty_Some.
Qed.
Lemma map_to_list_insert {A} (m : M A) i x :
663
  m !! i = None  map_to_list (<[i:=x]>m)  (i,x) :: map_to_list m.
664
Proof.
665
  intros. apply map_of_list_inj; csimpl.
666 667
  - apply NoDup_fst_map_to_list.
  - constructor; auto using NoDup_fst_map_to_list.
668
    rewrite elem_of_list_fmap. intros [[??] [? Hlookup]]; subst; simpl in *.
669
    rewrite elem_of_map_to_list in Hlookup. congruence.