From iris.algebra Require Export gmap gset coPset. From iris.proofmode Require Import invariants tactics. Import uPred. Definition thread_id := gname. Class thread_localG Σ := tl_inG :> inG Σ (prodR coPset_disjR (gset_disjR positive)). Definition tlN : namespace := nroot .@ "tl". Section defs. Context `{irisG Λ Σ, thread_localG Σ}. Definition tl_tokens (tid : thread_id) (E : coPset) : iProp Σ := own tid (CoPset E, ∅). Definition tl_inv (tid : thread_id) (N : namespace) (P : iProp Σ) : iProp Σ := (∃ i, ■ (i ∈ nclose N) ∧ inv tlN (P ★ own tid (∅, GSet {[i]}) ∨ tl_tokens tid {[i]}))%I. End defs. Instance: Params (@tl_tokens) 2. Instance: Params (@tl_inv) 4. Section proofs. Context `{irisG Λ Σ, thread_localG Σ}. Lemma tid_alloc : True =r=> ∃ tid, tl_tokens tid ⊤. Proof. by apply own_alloc. Qed. Lemma tl_tokens_disj tid E1 E2 : tl_tokens tid E1 ★ tl_tokens tid E2 ⊢ ■ (E1 ⊥ E2). Proof. rewrite /tl_tokens -own_op own_valid -coPset_disj_valid_op discrete_valid. by iIntros ([? _]). Qed. Lemma tl_tokens_union tid E1 E2 : E1 ⊥ E2 → tl_tokens tid (E1 ∪ E2) ⊣⊢ tl_tokens tid E1 ★ tl_tokens tid E2. Proof. intros ?. by rewrite /tl_tokens -own_op pair_op left_id coPset_disj_union. Qed. Lemma tl_inv_alloc tid E N P : ▷ P ={E}=> tl_inv tid N P. Proof. iIntros "HP". iVs (own_empty (A:=prodUR coPset_disjUR (gset_disjUR positive)) tid) as "Hempty". iVs (own_updateP with "Hempty") as ([m1 m2]) "[Hm Hown]". { apply prod_updateP'. apply cmra_updateP_id, (reflexivity (R:=eq)). apply (gset_alloc_empty_updateP_strong' (λ i, i ∈ nclose N)). intros Ef. exists (coPpick (nclose N ∖ coPset.of_gset Ef)). rewrite -coPset.elem_of_of_gset comm -elem_of_difference. apply coPpick_elem_of=> Hfin. eapply nclose_infinite, (difference_finite_inv _ _), Hfin. apply of_gset_finite. } simpl. iDestruct "Hm" as %(<- & i & -> & ?). iVs (inv_alloc tlN with "[-]"). 2:iVsIntro; iExists i; eauto. iNext. iLeft. by iFrame. Qed. Lemma tl_inv_open tid tlE E N P : nclose tlN ⊆ tlE → nclose N ⊆ E → tl_inv tid N P ⊢ tl_tokens tid E ={tlE}=★ ▷ P ★ tl_tokens tid (E ∖ N) ★ (▷ P ★ tl_tokens tid (E ∖ N) ={tlE}=★ tl_tokens tid E). Proof. iIntros (??) "#Htlinv Htoks". iDestruct "Htlinv" as (i) "[% #Hinv]". rewrite {1 4}(union_difference_L (nclose N) E) //. rewrite {1 5}(union_difference_L {[i]} (nclose N)) ?tl_tokens_union; try set_solver. iDestruct "Htoks" as "[[Htoki $] $]". iInv tlN as "[[$ >Hdis]|>Htoki2]" "Hclose". - iVs ("Hclose" with "[Htoki]") as "_"; first auto. iIntros "!==>[HP $]". iInv tlN as "[[_ >Hdis2]|>Hitok]" "Hclose". + iCombine "Hdis" "Hdis2" as "Hdis". iDestruct (own_valid with "Hdis") as %[_ Hval]. revert Hval. rewrite gset_disj_valid_op. set_solver. + iFrame. iApply "Hclose". iNext. iLeft. by iFrame. - iDestruct (tl_tokens_disj tid {[i]} {[i]} with "[-]") as %?. by iFrame. set_solver. Qed. End proofs.