diff --git a/algebra/cofe.v b/algebra/cofe.v index d2f120f503320f34ef785c311d0dece2f44bb2c0..da126ca99a9fa35ba1b94cb84d083f44072c4a42 100644 --- a/algebra/cofe.v +++ b/algebra/cofe.v @@ -198,11 +198,9 @@ Section fixpoint. Lemma fixpoint_unique (x : A) : x ≡ f x → x ≡ fixpoint f. Proof. - rewrite !equiv_dist=> Hx n. - rewrite fixpoint_eq /fixpoint_def (conv_compl n (fixpoint_chain f)) //=. - induction n as [|n IH]; simpl in *. - - rewrite Hx; eauto using contractive_0. - - rewrite Hx. apply (contractive_S _), IH. + rewrite !equiv_dist=> Hx n. induction n as [|n IH]; simpl in *. + - rewrite Hx fixpoint_unfold; eauto using contractive_0. + - rewrite Hx fixpoint_unfold. apply (contractive_S _), IH. Qed. Lemma fixpoint_ne (g : A → A) `{!Contractive g} n :