diff --git a/algebra/ofe.v b/algebra/ofe.v index 7b08c03cc6be5dc18fa7ca1abfaace672fcf857b..8812dc5ff362859859a399eb9bf6fa27f0ec67a6 100644 --- a/algebra/ofe.v +++ b/algebra/ofe.v @@ -770,13 +770,6 @@ Section later. Proof. intros [|n] x y Hxy; [done|]; apply Hxy; lia. Qed. Global Instance Later_inj n : Inj (dist n) (dist (S n)) (@Next A). Proof. by intros x y. Qed. - - Lemma later_car_compose_ne {B : ofeT} (f : A → B) : - (Contractive f) → ∀ n, Proper (dist n ==> dist n) (f ∘ later_car). - Proof. - move=> Hcont n [x] [y] /= Hxy. apply Hcont. intros m Hmn. - destruct n; first by (exfalso; omega). eapply dist_le', Hxy. omega. - Qed. End later. Arguments laterC : clear implicits. diff --git a/base_logic/derived.v b/base_logic/derived.v index 81d2539970b170daa7918ca97b8a84609fb7cc07..7361ad14752e70666af09eaad19906a3e2a13897 100644 --- a/base_logic/derived.v +++ b/base_logic/derived.v @@ -290,10 +290,8 @@ Proof. apply (internal_eq_rewrite a b (λ b, b ≡ a)%I); auto. solve_proper. Qe Lemma internal_eq_rewrite_contractive {A : ofeT} a b (Ψ : A → uPred M) P {HΨ : Contractive Ψ} : (P ⊢ ▷ (a ≡ b)) → (P ⊢ Ψ a) → P ⊢ Ψ b. Proof. - rewrite -later_equivI. intros Heq. - change ((P ⊢ (Ψ ∘ later_car) (Next a)) → P ⊢ (Ψ ∘ later_car) (Next b)). - apply internal_eq_rewrite; last done. - exact: later_car_compose_ne. + move: HΨ=> /contractiveI HΨ Heq ?. + apply (internal_eq_rewrite (Ψ a) (Ψ b) id _)=>//=. by rewrite -HΨ. Qed. Lemma pure_impl_forall φ P : (⌜φ⌠→ P) ⊣⊢ (∀ _ : φ, P). diff --git a/base_logic/primitive.v b/base_logic/primitive.v index 033d562e57a48ed670f9544dcfa678d34d3e4581..510424fe41e31b189ea69c2a09677a9608bb0a43 100644 --- a/base_logic/primitive.v +++ b/base_logic/primitive.v @@ -581,6 +581,16 @@ Lemma option_validI {A : cmraT} (mx : option A) : ✓ mx ⊣⊢ match mx with Some x => ✓ x | None => True end. Proof. unseal. by destruct mx. Qed. +(* Contractive functions *) +Lemma contractiveI {A B : ofeT} (f : A → B) : + Contractive f ↔ (∀ x y, ▷ (x ≡ y) ⊢ f x ≡ f y). +Proof. + split; unseal; intros Hf. + - intros x y; split=> -[|n] z _ /=; eauto using contractive_0, contractive_S. + - intros [|i] x y Hxy; apply (uPred_in_entails _ _ (Hf x y) _ ∅); + simpl; eauto using ucmra_unit_validN. +Qed. + (* Functions *) Lemma cofe_funC_equivI {A B} (f g : A -c> B) : f ≡ g ⊣⊢ ∀ x, f x ≡ g x. Proof. by unseal. Qed.