diff --git a/theories/algebra/cmra.v b/theories/algebra/cmra.v index cd15455b1f5146f32958b521111b58b64f36e363..24d4ed43605c386bb5a2b69d6e0476c6fa984cc4 100644 --- a/theories/algebra/cmra.v +++ b/theories/algebra/cmra.v @@ -130,10 +130,12 @@ Infix "â‹…?" := opM (at level 50, left associativity) : C_scope. (** * Persistent elements *) Class Persistent {A : cmraT} (x : A) := persistent : pcore x ≡ Some x. Arguments persistent {_} _ {_}. +Hint Mode Persistent + ! : typeclass_instances. (** * Exclusive elements (i.e., elements that cannot have a frame). *) Class Exclusive {A : cmraT} (x : A) := exclusive0_l y : ✓{0} (x â‹… y) → False. Arguments exclusive0_l {_} _ {_} _ _. +Hint Mode Exclusive + ! : typeclass_instances. (** * CMRAs whose core is total *) (** The function [core] may return a dummy when used on CMRAs without total @@ -545,7 +547,7 @@ Section ucmra. Global Instance cmra_unit_total : CMRATotal A. Proof. intros x. destruct (cmra_pcore_mono' ∅ x ∅) as (cx&->&?); - eauto using ucmra_unit_least, (persistent ∅). + eauto using ucmra_unit_least, (persistent (∅:A)). Qed. End ucmra. Hint Immediate cmra_unit_total. diff --git a/theories/algebra/ofe.v b/theories/algebra/ofe.v index 2a4694ad4290faf4de41d5137ee43cc0ffdbdf0d..5285f7ef2ac259d2ad2c943476000a078fd3651e 100644 --- a/theories/algebra/ofe.v +++ b/theories/algebra/ofe.v @@ -72,8 +72,10 @@ Hint Extern 1 (_ ≡{_}≡ _) => apply equiv_dist; assumption. (** Discrete OFEs and Timeless elements *) (* TODO: On paper, We called these "discrete elements". I think that makes more sense. *) -Class Timeless `{Equiv A, Dist A} (x : A) := timeless y : x ≡{0}≡ y → x ≡ y. -Arguments timeless {_ _ _} _ {_} _ _. +Class Timeless {A : ofeT} (x : A) := timeless y : x ≡{0}≡ y → x ≡ y. +Arguments timeless {_} _ {_} _ _. +Hint Mode Timeless + ! : typeclass_instances. + Class Discrete (A : ofeT) := discrete_timeless (x : A) :> Timeless x. (** OFEs with a completion *) @@ -1029,12 +1031,13 @@ Section sigma. Global Instance sig_timeless (x : sig P) : Timeless (proj1_sig x) → Timeless x. - Proof. intros ? y. destruct x, y. unfold dist, sig_dist, equiv, sig_equiv. apply (timeless _). Qed. - Global Instance sig_discrete_cofe : Discrete A → Discrete sigC. Proof. - intros ? [??] [??]. rewrite /dist /equiv /ofe_dist /ofe_equiv /=. - rewrite /sig_dist /sig_equiv /=. apply discrete_timeless. - Qed. + intros ? [b ?]; destruct x as [a ?]. + rewrite /dist /ofe_dist /= /sig_dist /equiv /ofe_equiv /= /sig_equiv /=. + apply (timeless _). + Qed. + Global Instance sig_discrete_cofe : Discrete A → Discrete sigC. + Proof. intros ??. apply _. Qed. End sigma. Arguments sigC {_} _. diff --git a/theories/algebra/vector.v b/theories/algebra/vector.v index e0094eed172d4fa9e9d74e35a0273d6943d5b57b..1ee6ef12d4adb8989b9fff01017e7cad58f8c654 100644 --- a/theories/algebra/vector.v +++ b/theories/algebra/vector.v @@ -12,10 +12,10 @@ Section ofe. Definition vec_ofe_mixin m : OfeMixin (vec A m). Proof. split. - - intros x y. apply (equiv_dist (A:=listC A)). + - intros v w. apply (equiv_dist (A:=listC A)). - unfold dist, vec_dist. split. by intros ?. by intros ??. by intros ?????; etrans. - - intros. by apply (dist_S (A:=listC A)). + - intros n v w. by apply (dist_S (A:=listC A)). Qed. Canonical Structure vecC m : ofeT := OfeT (vec A m) (vec_ofe_mixin m). @@ -48,22 +48,21 @@ Section proper. Proper (dist n ==> eq ==> dist n) (@Vector.nth A m). Proof. intros v. induction v as [|x m v IH]; intros v'; inv_vec v'. - - intros _ x. inversion x. - - intros x' v' EQ i ? <-. inversion_clear EQ. inv_fin i; first done. - intros i. by apply IH. + - intros _ x. inv_fin x. + - intros x' v' EQ i ? <-. inversion_clear EQ. inv_fin i=> // i. by apply IH. Qed. Global Instance vlookup_proper m : Proper (equiv ==> eq ==> equiv) (@Vector.nth A m). Proof. - intros ??????. apply equiv_dist=>?. subst. f_equiv. by apply equiv_dist. + intros v v' ? x x' ->. apply equiv_dist=> n. f_equiv. by apply equiv_dist. Qed. Global Instance vec_to_list_ne n m : Proper (dist n ==> dist n) (@vec_to_list A m). - Proof. intros ?? H. apply H. Qed. + Proof. by intros v v'. Qed. Global Instance vec_to_list_proper m : Proper (equiv ==> equiv) (@vec_to_list A m). - Proof. intros ?? H. apply H. Qed. + Proof. by intros v v'. Qed. End proper. Section cofe. @@ -95,7 +94,7 @@ Instance vec_map_ne {A B : ofeT} m f n : Proper (dist n ==> dist n) f → Proper (dist n ==> dist n) (@vec_map A B m f). Proof. - intros ??? H. eapply list_fmap_ne in H; last done. + intros ? v v' H. eapply list_fmap_ne in H; last done. by rewrite -!vec_to_list_map in H. Qed. Definition vecC_map {A B : ofeT} m (f : A -n> B) : vecC A m -n> vecC B m := diff --git a/theories/base_logic/big_op.v b/theories/base_logic/big_op.v index 8644cfaba005bdfb16cdf35c071fe1deee7ece01..64075f8b7f5145187dc5263e8a25197a0c415835 100644 --- a/theories/base_logic/big_op.v +++ b/theories/base_logic/big_op.v @@ -115,10 +115,12 @@ Notation "'[∗' 'mset' ] x ∈ X , P" := (big_opMS (M:=uPredUR _) X (λ x, P)) Class PersistentL {M} (Ps : list (uPred M)) := persistentL : Forall PersistentP Ps. Arguments persistentL {_} _ {_}. +Hint Mode PersistentL + ! : typeclass_instances. Class TimelessL {M} (Ps : list (uPred M)) := timelessL : Forall TimelessP Ps. Arguments timelessL {_} _ {_}. +Hint Mode TimelessP + ! : typeclass_instances. (** * Properties *) Section big_op. diff --git a/theories/base_logic/derived.v b/theories/base_logic/derived.v index 679db07daf2433af296e6fd92e04d7485510425a..c812280a89ef8419a483d55caa9ebdcc45d729e4 100644 --- a/theories/base_logic/derived.v +++ b/theories/base_logic/derived.v @@ -31,10 +31,12 @@ Typeclasses Opaque uPred_except_0. Class TimelessP {M} (P : uPred M) := timelessP : â–· P ⊢ â—‡ P. Arguments timelessP {_} _ {_}. +Hint Mode TimelessP + ! : typeclass_instances. Class PersistentP {M} (P : uPred M) := persistentP : P ⊢ â–¡ P. Hint Mode PersistentP - ! : typeclass_instances. Arguments persistentP {_} _ {_}. +Hint Mode PersistentP + ! : typeclass_instances. Module uPred. Section derived. @@ -808,9 +810,43 @@ Global Instance from_option_timeless {A} P (Ψ : A → uPred M) (mx : option A) (∀ x, TimelessP (Ψ x)) → TimelessP P → TimelessP (from_option Ψ P mx). Proof. destruct mx; apply _. Qed. +(* Derived lemmas for persistence *) +Lemma always_always P `{!PersistentP P} : â–¡ P ⊣⊢ P. +Proof. apply (anti_symm (⊢)); auto using always_elim. Qed. +Lemma always_if_always p P `{!PersistentP P} : â–¡?p P ⊣⊢ P. +Proof. destruct p; simpl; auto using always_always. Qed. +Lemma always_intro P Q `{!PersistentP P} : (P ⊢ Q) → P ⊢ â–¡ Q. +Proof. rewrite -(always_always P); apply always_intro'. Qed. +Lemma always_and_sep_l P Q `{!PersistentP P} : P ∧ Q ⊣⊢ P ∗ Q. +Proof. by rewrite -(always_always P) always_and_sep_l'. Qed. +Lemma always_and_sep_r P Q `{!PersistentP Q} : P ∧ Q ⊣⊢ P ∗ Q. +Proof. by rewrite -(always_always Q) always_and_sep_r'. Qed. +Lemma always_sep_dup P `{!PersistentP P} : P ⊣⊢ P ∗ P. +Proof. by rewrite -(always_always P) -always_sep_dup'. Qed. +Lemma always_entails_l P Q `{!PersistentP Q} : (P ⊢ Q) → P ⊢ Q ∗ P. +Proof. by rewrite -(always_always Q); apply always_entails_l'. Qed. +Lemma always_entails_r P Q `{!PersistentP Q} : (P ⊢ Q) → P ⊢ P ∗ Q. +Proof. by rewrite -(always_always Q); apply always_entails_r'. Qed. +Lemma always_impl_wand P `{!PersistentP P} Q : (P → Q) ⊣⊢ (P -∗ Q). +Proof. + apply (anti_symm _); auto using impl_wand. + apply impl_intro_l. by rewrite always_and_sep_l wand_elim_r. +Qed. + (* Persistence *) Global Instance pure_persistent φ : PersistentP (⌜φ⌠: uPred M)%I. Proof. by rewrite /PersistentP always_pure. Qed. +Global Instance pure_impl_persistent φ Q : + PersistentP Q → PersistentP (⌜φ⌠→ Q)%I. +Proof. + rewrite /PersistentP pure_impl_forall always_forall. auto using forall_mono. +Qed. +Global Instance pure_wand_persistent φ Q : + PersistentP Q → PersistentP (⌜φ⌠-∗ Q)%I. +Proof. + rewrite /PersistentP -always_impl_wand pure_impl_forall always_forall. + auto using forall_mono. +Qed. Global Instance always_persistent P : PersistentP (â–¡ P). Proof. by intros; apply always_intro'. Qed. Global Instance and_persistent P Q : @@ -843,23 +879,5 @@ Proof. intros. by rewrite /PersistentP always_ownM. Qed. Global Instance from_option_persistent {A} P (Ψ : A → uPred M) (mx : option A) : (∀ x, PersistentP (Ψ x)) → PersistentP P → PersistentP (from_option Ψ P mx). Proof. destruct mx; apply _. Qed. - -(* Derived lemmas for persistence *) -Lemma always_always P `{!PersistentP P} : â–¡ P ⊣⊢ P. -Proof. apply (anti_symm (⊢)); auto using always_elim. Qed. -Lemma always_if_always p P `{!PersistentP P} : â–¡?p P ⊣⊢ P. -Proof. destruct p; simpl; auto using always_always. Qed. -Lemma always_intro P Q `{!PersistentP P} : (P ⊢ Q) → P ⊢ â–¡ Q. -Proof. rewrite -(always_always P); apply always_intro'. Qed. -Lemma always_and_sep_l P Q `{!PersistentP P} : P ∧ Q ⊣⊢ P ∗ Q. -Proof. by rewrite -(always_always P) always_and_sep_l'. Qed. -Lemma always_and_sep_r P Q `{!PersistentP Q} : P ∧ Q ⊣⊢ P ∗ Q. -Proof. by rewrite -(always_always Q) always_and_sep_r'. Qed. -Lemma always_sep_dup P `{!PersistentP P} : P ⊣⊢ P ∗ P. -Proof. by rewrite -(always_always P) -always_sep_dup'. Qed. -Lemma always_entails_l P Q `{!PersistentP Q} : (P ⊢ Q) → P ⊢ Q ∗ P. -Proof. by rewrite -(always_always Q); apply always_entails_l'. Qed. -Lemma always_entails_r P Q `{!PersistentP Q} : (P ⊢ Q) → P ⊢ P ∗ Q. -Proof. by rewrite -(always_always Q); apply always_entails_r'. Qed. End derived. End uPred. diff --git a/theories/base_logic/lib/core.v b/theories/base_logic/lib/core.v index 6630d803a2bc315e3fd795277883eda227559417..d070516b97f2ffe3f4a9a10e880d250b21fffbc6 100644 --- a/theories/base_logic/lib/core.v +++ b/theories/base_logic/lib/core.v @@ -8,7 +8,7 @@ Import uPred. in the shallow embedding. *) Definition coreP {M : ucmraT} (P : uPred M) : uPred M := - (∀ `(!PersistentP Q, P ⊢ Q), Q)%I. + (∀ `(!PersistentP Q), ⌜P ⊢ Q⌠→ Q)%I. Instance: Params (@coreP) 1. Typeclasses Opaque coreP. @@ -25,7 +25,7 @@ Section core. Global Instance coreP_mono : Proper ((⊢) ==> (⊢)) (@coreP M). Proof. rewrite /coreP. iIntros (P P' ?) "H"; iIntros (Q ??). - unshelve iApply ("H" $! Q). by etrans. + iApply ("H" $! Q with "[%]"). by etrans. Qed. Global Instance coreP_proper : Proper ((⊣⊢) ==> (⊣⊢)) (@coreP M). diff --git a/theories/base_logic/lib/fancy_updates.v b/theories/base_logic/lib/fancy_updates.v index 91fe5efe52e871ac0852fad45daed0f803dfc238..13f572fe08f503855b7f2a08c4b87728b53d8169 100644 --- a/theories/base_logic/lib/fancy_updates.v +++ b/theories/base_logic/lib/fancy_updates.v @@ -155,8 +155,10 @@ Section proofmode_classes. Proof. rewrite /FromAssumption=>->. apply bupd_fupd. Qed. Global Instance into_wand_fupd E1 E2 R P Q : - IntoWand R P Q → IntoWand R (|={E1,E2}=> P) (|={E1,E2}=> Q) | 100. - Proof. rewrite /IntoWand=>->. apply wand_intro_l. by rewrite fupd_wand_r. Qed. + IntoWand R P Q → IntoWand' R (|={E1,E2}=> P) (|={E1,E2}=> Q) | 100. + Proof. + rewrite /IntoWand' /IntoWand=>->. apply wand_intro_l. by rewrite fupd_wand_r. + Qed. Global Instance from_sep_fupd E P Q1 Q2 : FromSep P Q1 Q2 → FromSep (|={E}=> P) (|={E}=> Q1) (|={E}=> Q2). @@ -179,8 +181,8 @@ Section proofmode_classes. Global Instance is_except_0_fupd E1 E2 P : IsExcept0 (|={E1,E2}=> P). Proof. by rewrite /IsExcept0 except_0_fupd. Qed. - Global Instance into_modal_fupd E P : IntoModal P (|={E}=> P). - Proof. rewrite /IntoModal. apply fupd_intro. Qed. + Global Instance from_modal_fupd E P : FromModal (|={E}=> P) P. + Proof. rewrite /FromModal. apply fupd_intro. Qed. (* Put a lower priority compared to [elim_modal_fupd_fupd], so that it is not taken when the first parameter is not specified (in diff --git a/theories/base_logic/lib/sts.v b/theories/base_logic/lib/sts.v index ddedc7272a86ae7efd68e4ab18a0330bf7e23db7..ebfebfc343503af8c78625ac844b9f73c6b066d5 100644 --- a/theories/base_logic/lib/sts.v +++ b/theories/base_logic/lib/sts.v @@ -101,13 +101,13 @@ Section sts. Proof. iIntros "[Hinv Hγf]". rewrite /sts_ownS /sts_inv /sts_own. iDestruct "Hinv" as (s) "[>Hγ Hφ]". - iCombine "Hγ" "Hγf" as "Hγ"; iDestruct (own_valid with "Hγ") as %Hvalid. + iDestruct (own_valid_2 with "Hγ Hγf") as %Hvalid. assert (s ∈ S) by eauto using sts_auth_frag_valid_inv. assert (✓ sts_frag S T) as [??] by eauto using cmra_valid_op_r. - rewrite sts_op_auth_frag //. iModIntro; iExists s; iSplit; [done|]; iFrame "Hφ". iIntros (s' T') "[% Hφ]". - iMod (own_update with "Hγ") as "Hγ"; first eauto using sts_update_auth. + iMod (own_update_2 with "Hγ Hγf") as "Hγ". + { rewrite sts_op_auth_frag; [|done..]. by apply sts_update_auth. } iRevert "Hγ"; rewrite -sts_op_auth_frag_up; iIntros "[Hγ $]". iModIntro. iNext. iExists s'; by iFrame. Qed. diff --git a/theories/prelude/vector.v b/theories/prelude/vector.v index ca76406ed8201973f582fde7df28aa0c3357d89c..4cf8de8a55bf707885736d2451dfcbc89763ca7c 100644 --- a/theories/prelude/vector.v +++ b/theories/prelude/vector.v @@ -187,7 +187,8 @@ Proof. Defined. Ltac inv_vec v := - match type of v with + let T := type of v in + match eval hnf in T with | vec _ 0 => revert dependent v; match goal with |- ∀ v, @?P v => apply (vec_0_inv P) end | vec _ (S ?n) => diff --git a/theories/proofmode/class_instances.v b/theories/proofmode/class_instances.v index b7477648a18b7d3ad8f7c8974db8a0a98a09a73c..54bab13e11fdd94aec4ad389bbf58d244137916c 100644 --- a/theories/proofmode/class_instances.v +++ b/theories/proofmode/class_instances.v @@ -219,15 +219,22 @@ Proof. apply and_elim_r', impl_wand. Qed. Global Instance into_wand_always R P Q : IntoWand R P Q → IntoWand (â–¡ R) P Q. Proof. rewrite /IntoWand=> ->. apply always_elim. Qed. + Global Instance into_wand_later (R1 R2 P Q : uPred M) : - IntoLaterN 1 R1 R2 → IntoWand R2 P Q → IntoWand R1 (â–· P) (â–· Q) | 99. -Proof. rewrite /IntoLaterN /IntoWand=> -> ->. by rewrite -later_wand. Qed. + IntoLaterN 1 R1 R2 → IntoWand R2 P Q → IntoWand' R1 (â–· P) (â–· Q) | 99. +Proof. + rewrite /IntoLaterN /IntoWand' /IntoWand=> -> ->. by rewrite -later_wand. +Qed. Global Instance into_wand_laterN n (R1 R2 P Q : uPred M) : - IntoLaterN n R1 R2 → IntoWand R2 P Q → IntoWand R1 (â–·^n P) (â–·^n Q) | 100. -Proof. rewrite /IntoLaterN /IntoWand=> -> ->. by rewrite -laterN_wand. Qed. + IntoLaterN n R1 R2 → IntoWand R2 P Q → IntoWand' R1 (â–·^n P) (â–·^n Q) | 100. +Proof. + rewrite /IntoLaterN /IntoWand' /IntoWand=> -> ->. by rewrite -laterN_wand. +Qed. Global Instance into_wand_bupd R P Q : - IntoWand R P Q → IntoWand R (|==> P) (|==> Q) | 98. -Proof. rewrite /IntoWand=>->. apply wand_intro_l. by rewrite bupd_wand_r. Qed. + IntoWand R P Q → IntoWand' R (|==> P) (|==> Q) | 98. +Proof. + rewrite /IntoWand' /IntoWand=> ->. apply wand_intro_l. by rewrite bupd_wand_r. +Qed. (* FromAnd *) Global Instance from_and_and P1 P2 : FromAnd (P1 ∧ P2) P1 P2. @@ -564,12 +571,12 @@ Global Instance into_exist_laterN {A} n P (Φ : A → uPred M) : IntoExist P Φ → Inhabited A → IntoExist (â–·^n P) (λ a, â–·^n (Φ a))%I. Proof. rewrite /IntoExist=> HP ?. by rewrite HP laterN_exist. Qed. -(* IntoModal *) -Global Instance into_modal_later P : IntoModal P (â–· P). +(* FromModal *) +Global Instance from_modal_later P : FromModal (â–· P) P. Proof. apply later_intro. Qed. -Global Instance into_modal_bupd P : IntoModal P (|==> P). +Global Instance from_modal_bupd P : FromModal (|==> P) P. Proof. apply bupd_intro. Qed. -Global Instance into_modal_except_0 P : IntoModal P (â—‡ P). +Global Instance from_modal_except_0 P : FromModal (â—‡ P) P. Proof. apply except_0_intro. Qed. (* ElimModal *) diff --git a/theories/proofmode/classes.v b/theories/proofmode/classes.v index 8e66e89919bc52ffa72f6f0f0153bc4b900ff38a..0175bcfa3098b6178a77264a6c5469f5b147abbe 100644 --- a/theories/proofmode/classes.v +++ b/theories/proofmode/classes.v @@ -2,77 +2,102 @@ From iris.base_logic Require Export base_logic. Set Default Proof Using "Type". Import uPred. -Section classes. -Context {M : ucmraT}. -Implicit Types P Q : uPred M. - -Class FromAssumption (p : bool) (P Q : uPred M) := from_assumption : â–¡?p P ⊢ Q. -Global Arguments from_assumption _ _ _ {_}. - -Class IntoPure (P : uPred M) (φ : Prop) := into_pure : P ⊢ ⌜φâŒ. -Global Arguments into_pure : clear implicits. - -Class FromPure (P : uPred M) (φ : Prop) := from_pure : ⌜φ⌠⊢ P. -Global Arguments from_pure : clear implicits. - -Class IntoPersistentP (P Q : uPred M) := into_persistentP : P ⊢ â–¡ Q. -Global Arguments into_persistentP : clear implicits. - -Class IntoLaterN (n : nat) (P Q : uPred M) := into_laterN : P ⊢ â–·^n Q. -Global Arguments into_laterN _ _ _ {_}. - -Class FromLaterN (n : nat) (P Q : uPred M) := from_laterN : â–·^n Q ⊢ P. -Global Arguments from_laterN _ _ _ {_}. - -Class IntoWand (R P Q : uPred M) := into_wand : R ⊢ P -∗ Q. -Global Arguments into_wand : clear implicits. - -Class FromAnd (P Q1 Q2 : uPred M) := from_and : Q1 ∧ Q2 ⊢ P. -Global Arguments from_and : clear implicits. - -Class FromSep (P Q1 Q2 : uPred M) := from_sep : Q1 ∗ Q2 ⊢ P. -Global Arguments from_sep : clear implicits. - -Class IntoAnd (p : bool) (P Q1 Q2 : uPred M) := +Class FromAssumption {M} (p : bool) (P Q : uPred M) := + from_assumption : â–¡?p P ⊢ Q. +Arguments from_assumption {_} _ _ _ {_}. +Hint Mode FromAssumption + + ! - : typeclass_instances. + +Class IntoPure {M} (P : uPred M) (φ : Prop) := into_pure : P ⊢ ⌜φâŒ. +Arguments into_pure {_} _ _ {_}. +Hint Mode IntoPure + ! - : typeclass_instances. + +Class FromPure {M} (P : uPred M) (φ : Prop) := from_pure : ⌜φ⌠⊢ P. +Arguments from_pure {_} _ _ {_}. +Hint Mode FromPure + ! - : typeclass_instances. + +Class IntoPersistentP {M} (P Q : uPred M) := into_persistentP : P ⊢ â–¡ Q. +Arguments into_persistentP {_} _ _ {_}. +Hint Mode IntoPersistentP + ! - : typeclass_instances. + +Class IntoLaterN {M} (n : nat) (P Q : uPred M) := into_laterN : P ⊢ â–·^n Q. +Arguments into_laterN {_} _ _ _ {_}. +Hint Mode IntoLaterN + - ! - : typeclass_instances. + +Class FromLaterN {M} (n : nat) (P Q : uPred M) := from_laterN : â–·^n Q ⊢ P. +Arguments from_laterN {_} _ _ _ {_}. +Hint Mode FromLaterN + - ! - : typeclass_instances. + +Class IntoWand {M} (R P Q : uPred M) := into_wand : R ⊢ P -∗ Q. +Arguments into_wand {_} _ _ _ {_}. +Hint Mode IntoWand + ! - - : typeclass_instances. + +Class IntoWand' {M} (R P Q : uPred M) := into_wand' :> IntoWand R P Q. +Arguments into_wand' {_} _ _ _ {_}. +Hint Mode IntoWand' + ! ! - : typeclass_instances. +Hint Mode IntoWand' + ! - ! : typeclass_instances. + +Class FromAnd {M} (P Q1 Q2 : uPred M) := from_and : Q1 ∧ Q2 ⊢ P. +Arguments from_and {_} _ _ _ {_}. +Hint Mode FromAnd + ! - - : typeclass_instances. + +Class FromSep {M} (P Q1 Q2 : uPred M) := from_sep : Q1 ∗ Q2 ⊢ P. +Arguments from_sep {_} _ _ _ {_}. +Hint Mode FromSep + ! - - : typeclass_instances. +Hint Mode FromSep + - ! ! : typeclass_instances. (* For iCombine *) + +Class IntoAnd {M} (p : bool) (P Q1 Q2 : uPred M) := into_and : P ⊢ if p then Q1 ∧ Q2 else Q1 ∗ Q2. -Global Arguments into_and : clear implicits. - -Lemma mk_into_and_sep p P Q1 Q2 : (P ⊢ Q1 ∗ Q2) → IntoAnd p P Q1 Q2. +Arguments into_and {_} _ _ _ _ {_}. +Hint Mode IntoAnd + + ! - - : typeclass_instances. +Lemma mk_into_and_sep {M} p (P Q1 Q2 : uPred M) : + (P ⊢ Q1 ∗ Q2) → IntoAnd p P Q1 Q2. Proof. rewrite /IntoAnd=>->. destruct p; auto using sep_and. Qed. Class FromOp {A : cmraT} (a b1 b2 : A) := from_op : b1 â‹… b2 ≡ a. -Global Arguments from_op {_} _ _ _ {_}. +Arguments from_op {_} _ _ _ {_}. +Hint Mode FromOp + ! - - : typeclass_instances. +Hint Mode FromOp + - ! ! : typeclass_instances. (* For iCombine *) Class IntoOp {A : cmraT} (a b1 b2 : A) := into_op : a ≡ b1 â‹… b2. -Global Arguments into_op {_} _ _ _ {_}. +Arguments into_op {_} _ _ _ {_}. +(* No [Hint Mode] since we want to turn [?x] into [?x1 â‹… ?x2], for example +when having [H : own ?x]. *) -Class Frame (R P Q : uPred M) := frame : R ∗ Q ⊢ P. -Global Arguments frame : clear implicits. +Class Frame {M} (R P Q : uPred M) := frame : R ∗ Q ⊢ P. +Arguments frame {_} _ _ _ {_}. +Hint Mode Frame + ! ! - : typeclass_instances. -Class FromOr (P Q1 Q2 : uPred M) := from_or : Q1 ∨ Q2 ⊢ P. -Global Arguments from_or : clear implicits. +Class FromOr {M} (P Q1 Q2 : uPred M) := from_or : Q1 ∨ Q2 ⊢ P. +Arguments from_or {_} _ _ _ {_}. +Hint Mode FromOr + ! - - : typeclass_instances. -Class IntoOr P Q1 Q2 := into_or : P ⊢ Q1 ∨ Q2. -Global Arguments into_or : clear implicits. +Class IntoOr {M} (P Q1 Q2 : uPred M) := into_or : P ⊢ Q1 ∨ Q2. +Arguments into_or {_} _ _ _ {_}. +Hint Mode IntoOr + ! - - : typeclass_instances. -Class FromExist {A} (P : uPred M) (Φ : A → uPred M) := +Class FromExist {M A} (P : uPred M) (Φ : A → uPred M) := from_exist : (∃ x, Φ x) ⊢ P. -Global Arguments from_exist {_} _ _ {_}. +Arguments from_exist {_ _} _ _ {_}. +Hint Mode FromExist + - ! - : typeclass_instances. -Class IntoExist {A} (P : uPred M) (Φ : A → uPred M) := +Class IntoExist {M A} (P : uPred M) (Φ : A → uPred M) := into_exist : P ⊢ ∃ x, Φ x. -Global Arguments into_exist {_} _ _ {_}. +Arguments into_exist {_ _} _ _ {_}. +Hint Mode IntoExist + - ! - : typeclass_instances. -Class IntoModal (P Q : uPred M) := into_modal : P ⊢ Q. -Global Arguments into_modal : clear implicits. +Class FromModal {M} (P Q : uPred M) := from_modal : Q ⊢ P. +Arguments from_modal {_} _ _ {_}. +Hint Mode FromModal + ! - : typeclass_instances. -Class ElimModal (P P' : uPred M) (Q Q' : uPred M) := +Class ElimModal {M} (P P' : uPred M) (Q Q' : uPred M) := elim_modal : P ∗ (P' -∗ Q') ⊢ Q. -Global Arguments elim_modal _ _ _ _ {_}. +Arguments elim_modal {_} _ _ _ _ {_}. +Hint Mode ElimModal + ! - ! - : typeclass_instances. +Hint Mode ElimModal + - ! - ! : typeclass_instances. -Lemma elim_modal_dummy P Q : ElimModal P P Q Q. +Lemma elim_modal_dummy {M} (P Q : uPred M) : ElimModal P P Q Q. Proof. by rewrite /ElimModal wand_elim_r. Qed. -Class IsExcept0 (Q : uPred M) := is_except_0 : â—‡ Q ⊢ Q. -Global Arguments is_except_0 : clear implicits. -End classes. +Class IsExcept0 {M} (Q : uPred M) := is_except_0 : â—‡ Q ⊢ Q. +Arguments is_except_0 {_} _ {_}. +Hint Mode IsExcept0 + ! : typeclass_instances. diff --git a/theories/proofmode/coq_tactics.v b/theories/proofmode/coq_tactics.v index 394c5d7c3d8d1b461b2831f7760a3f2a033168e3..b78dad5245e046f47c6eaebb83a4f4b7d02316b6 100644 --- a/theories/proofmode/coq_tactics.v +++ b/theories/proofmode/coq_tactics.v @@ -832,8 +832,8 @@ Proof. Qed. (** * Modalities *) -Lemma tac_modal_intro Δ P Q : IntoModal Q P → (Δ ⊢ Q) → Δ ⊢ P. -Proof. rewrite /IntoModal. by intros <- ->. Qed. +Lemma tac_modal_intro Δ P Q : FromModal P Q → (Δ ⊢ Q) → Δ ⊢ P. +Proof. rewrite /FromModal. by intros <- ->. Qed. Lemma tac_modal_elim Δ Δ' i p P' P Q Q' : envs_lookup i Δ = Some (p, P) → @@ -845,3 +845,5 @@ Proof. rewrite right_id HΔ always_if_elim. by apply elim_modal. Qed. End tactics. + +Hint Mode ForallSpecialize + - - ! - : typeclass_instances. diff --git a/theories/proofmode/tactics.v b/theories/proofmode/tactics.v index a2ddcee2a2dbc4fc6a4ab3428d689d94f3e0e65e..af482f59e08f483248faeec14181824246130d6a 100644 --- a/theories/proofmode/tactics.v +++ b/theories/proofmode/tactics.v @@ -426,13 +426,14 @@ Tactic Notation "iApply" open_constr(lem) := | ITrm ?t ?xs ?pat => constr:(ITrm t xs ("*" +:+ pat)) | _ => constr:(ITrm lem hnil "*") end in - iPoseProofCore lem as false true (fun H => first - [iExact H - |eapply tac_apply with _ H _ _ _; + let rec go H := first + [eapply tac_apply with _ H _ _ _; [env_cbv; reflexivity - |let P := match goal with |- IntoWand ?P _ _ => P end in - apply _ || fail 1 "iApply: cannot apply" P - |lazy beta (* reduce betas created by instantiation *)]]). + |apply _ + |lazy beta (* reduce betas created by instantiation *)] + |iSpecializePat H "[-]"; last go H] in + iPoseProofCore lem as false true (fun H => + first [iExact H|go H|iTypeOf H (fun Q => fail 1 "iApply: cannot apply" Q)]). (** * Revert *) Local Tactic Notation "iForallRevert" ident(x) := @@ -642,7 +643,7 @@ Tactic Notation "iNext":= iNext _. Tactic Notation "iModIntro" := iStartProof; eapply tac_modal_intro; - [let P := match goal with |- IntoModal _ ?P => P end in + [let P := match goal with |- FromModal ?P _ => P end in apply _ || fail "iModIntro:" P "not a modality"|]. Tactic Notation "iModCore" constr(H) := diff --git a/theories/tests/proofmode.v b/theories/tests/proofmode.v index 147edd8e6b6572b91d061697bfe4dd9de6bac8e3..f8302508d70aec9fefcb30f7045fc9e7e0ecd195 100644 --- a/theories/tests/proofmode.v +++ b/theories/tests/proofmode.v @@ -116,3 +116,7 @@ Proof. iAssert True%I with "[HP]" as %_. { Fail iClear "HQ". by iClear "HP". } done. Qed. + +Lemma demo_11 (M : ucmraT) (P Q R : uPred M) : + (P -∗ Q -∗ True -∗ True -∗ R) -∗ P -∗ Q -∗ R. +Proof. iIntros "H HP HQ". by iApply ("H" with "[HP]"). Qed.