diff --git a/theories/algebra/csum.v b/theories/algebra/csum.v index 05bdbd34029621f632f2ffd9b2583101fbe3e188..84181b21c8b117e52771104d7a6ff12c6c978f0d 100644 --- a/theories/algebra/csum.v +++ b/theories/algebra/csum.v @@ -30,12 +30,12 @@ Implicit Types b : B. (* Cofe *) Inductive csum_equiv : Equiv (csum A B) := | Cinl_equiv a a' : a ≡ a' → Cinl a ≡ Cinl a' - | Cinlr_equiv b b' : b ≡ b' → Cinr b ≡ Cinr b' + | Cinr_equiv b b' : b ≡ b' → Cinr b ≡ Cinr b' | CsumBot_equiv : CsumBot ≡ CsumBot. Existing Instance csum_equiv. Inductive csum_dist : Dist (csum A B) := | Cinl_dist n a a' : a ≡{n}≡ a' → Cinl a ≡{n}≡ Cinl a' - | Cinlr_dist n b b' : b ≡{n}≡ b' → Cinr b ≡{n}≡ Cinr b' + | Cinr_dist n b b' : b ≡{n}≡ b' → Cinr b ≡{n}≡ Cinr b' | CsumBot_dist n : CsumBot ≡{n}≡ CsumBot. Existing Instance csum_dist.