diff --git a/_CoqProject b/_CoqProject
index 094baa0edbe3ba252343993b7fadc8b1e41f05ae..a3165e834e7238bfecef76b8948e63bb42f31765 100644
--- a/_CoqProject
+++ b/_CoqProject
@@ -67,8 +67,9 @@ program_logic/tests.v
 program_logic/auth.v
 program_logic/ghost_ownership.v
 heap_lang/heap_lang.v
-heap_lang/heap_lang_tactics.v
+heap_lang/tactics.v
 heap_lang/lifting.v
 heap_lang/derived.v
 heap_lang/notation.v
 heap_lang/tests.v
+heap_lang/substitution.v
diff --git a/algebra/agree.v b/algebra/agree.v
index 3e51ad085d6fa3987853548924bbf4463c2bf558..e85de4ec8ac13b74c6554ae772723fca99e0a8e2 100644
--- a/algebra/agree.v
+++ b/algebra/agree.v
@@ -59,9 +59,9 @@ Program Instance agree_op : Op (agree A) := λ x y,
 Next Obligation. naive_solver eauto using agree_valid_S, dist_S. Qed.
 Instance agree_unit : Unit (agree A) := id.
 Instance agree_minus : Minus (agree A) := λ x y, x.
-Instance: Commutative (≡) (@op (agree A) _).
+Instance: Comm (≡) (@op (agree A) _).
 Proof. intros x y; split; [naive_solver|by intros n (?&?&Hxy); apply Hxy]. Qed.
-Definition agree_idempotent (x : agree A) : x ⋅ x ≡ x.
+Definition agree_idemp (x : agree A) : x ⋅ x ≡ x.
 Proof. split; naive_solver. Qed.
 Instance: ∀ n : nat, Proper (dist n ==> impl) (@validN (agree A) _ n).
 Proof.
@@ -79,18 +79,18 @@ Proof.
       eauto using agree_valid_le.
 Qed.
 Instance: Proper (dist n ==> dist n ==> dist n) (@op (agree A) _).
-Proof. by intros n x1 x2 Hx y1 y2 Hy; rewrite Hy !(commutative _ _ y2) Hx. Qed.
+Proof. by intros n x1 x2 Hx y1 y2 Hy; rewrite Hy !(comm _ _ y2) Hx. Qed.
 Instance: Proper ((≡) ==> (≡) ==> (≡)) op := ne_proper_2 _.
-Instance: Associative (≡) (@op (agree A) _).
+Instance: Assoc (≡) (@op (agree A) _).
 Proof.
   intros x y z; split; simpl; intuition;
     repeat match goal with H : agree_is_valid _ _ |- _ => clear H end;
-    by cofe_subst; rewrite !agree_idempotent.
+    by cofe_subst; rewrite !agree_idemp.
 Qed.
 Lemma agree_includedN (x y : agree A) n : x ≼{n} y ↔ y ≡{n}≡ x ⋅ y.
 Proof.
   split; [|by intros ?; exists y].
-  by intros [z Hz]; rewrite Hz (associative _) agree_idempotent.
+  by intros [z Hz]; rewrite Hz assoc agree_idemp.
 Qed.
 Definition agree_cmra_mixin : CMRAMixin (agree A).
 Proof.
@@ -99,7 +99,7 @@ Proof.
   * intros n x [? Hx]; split; [by apply agree_valid_S|intros n' ?].
     rewrite (Hx n'); last auto.
     symmetry; apply dist_le with n; try apply Hx; auto.
-  * intros x; apply agree_idempotent.
+  * intros x; apply agree_idemp.
   * by intros x y n [(?&?&?) ?].
   * by intros x y n; rewrite agree_includedN.
 Qed.
@@ -108,13 +108,13 @@ Proof. intros Hxy; apply Hxy. Qed.
 Lemma agree_valid_includedN (x y : agree A) n : ✓{n} y → x ≼{n} y → x ≡{n}≡ y.
 Proof.
   move=> Hval [z Hy]; move: Hval; rewrite Hy.
-  by move=> /agree_op_inv->; rewrite agree_idempotent.
+  by move=> /agree_op_inv->; rewrite agree_idemp.
 Qed.
 Definition agree_cmra_extend_mixin : CMRAExtendMixin (agree A).
 Proof.
   intros n x y1 y2 Hval Hx; exists (x,x); simpl; split.
-  * by rewrite agree_idempotent.
-  * by move: Hval; rewrite Hx; move=> /agree_op_inv->; rewrite agree_idempotent.
+  * by rewrite agree_idemp.
+  * by move: Hval; rewrite Hx; move=> /agree_op_inv->; rewrite agree_idemp.
 Qed.
 Canonical Structure agreeRA : cmraT :=
   CMRAT agree_cofe_mixin agree_cmra_mixin agree_cmra_extend_mixin.
@@ -125,7 +125,7 @@ Solve Obligations with done.
 Global Instance to_agree_ne n : Proper (dist n ==> dist n) to_agree.
 Proof. intros x1 x2 Hx; split; naive_solver eauto using @dist_le. Qed.
 Global Instance to_agree_proper : Proper ((≡) ==> (≡)) to_agree := ne_proper _.
-Global Instance to_agree_inj n : Injective (dist n) (dist n) (to_agree).
+Global Instance to_agree_inj n : Inj (dist n) (dist n) (to_agree).
 Proof. by intros x y [_ Hxy]; apply Hxy. Qed.
 Lemma to_agree_car n (x : agree A) : ✓{n} x → to_agree (x n) ≡{n}≡ x.
 Proof. intros [??]; split; naive_solver eauto using agree_valid_le. Qed.
diff --git a/algebra/auth.v b/algebra/auth.v
index 924b06c6bf5f7643c23660aa9159e9d92026ac3e..c640860684da91ce9dad33dc9a54e6591d192546 100644
--- a/algebra/auth.v
+++ b/algebra/auth.v
@@ -50,8 +50,8 @@ Proof.
     apply (conv_compl (chain_map own c) n).
 Qed.
 Canonical Structure authC := CofeT auth_cofe_mixin.
-Instance Auth_timeless (ea : excl A) (b : A) :
-  Timeless ea → Timeless b → Timeless (Auth ea b).
+Global Instance auth_timeless (x : auth A) :
+  Timeless (authoritative x) → Timeless (own x) → Timeless x.
 Proof. by intros ?? [??] [??]; split; simpl in *; apply (timeless _). Qed.
 Global Instance auth_leibniz : LeibnizEquiv A → LeibnizEquiv (auth A).
 Proof. by intros ? [??] [??] [??]; f_equal'; apply leibniz_equiv. Qed.
@@ -106,10 +106,10 @@ Proof.
   * by intros n x1 x2 [Hx Hx'] y1 y2 [Hy Hy'];
       split; simpl; rewrite ?Hy ?Hy' ?Hx ?Hx'.
   * intros n [[] ?] ?; naive_solver eauto using cmra_includedN_S, cmra_validN_S.
-  * by split; simpl; rewrite associative.
-  * by split; simpl; rewrite commutative.
+  * by split; simpl; rewrite assoc.
+  * by split; simpl; rewrite comm.
   * by split; simpl; rewrite ?cmra_unit_l.
-  * by split; simpl; rewrite ?cmra_unit_idempotent.
+  * by split; simpl; rewrite ?cmra_unit_idemp.
   * intros n ??; rewrite! auth_includedN; intros [??].
     by split; simpl; apply cmra_unit_preservingN.
   * assert (∀ n (a b1 b2 : A), b1 ⋅ b2 ≼{n} a → b1 ≼{n} a).
@@ -140,7 +140,7 @@ Proof.
   split; simpl.
   * by apply (@cmra_empty_valid A _).
   * by intros x; constructor; rewrite /= left_id.
-  * apply Auth_timeless; apply _.
+  * apply _.
 Qed.
 Lemma auth_frag_op a b : ◯ (a ⋅ b) ≡ ◯ a ⋅ ◯ b.
 Proof. done. Qed.
@@ -153,8 +153,8 @@ Lemma auth_update a a' b b' :
 Proof.
   move=> Hab [[?| |] bf1] n // =>-[[bf2 Ha] ?]; do 2 red; simpl in *.
   destruct (Hab n (bf1 â‹… bf2)) as [Ha' ?]; auto.
-  { by rewrite Ha left_id associative. }
-  split; [by rewrite Ha' left_id associative; apply cmra_includedN_l|done].
+  { by rewrite Ha left_id assoc. }
+  split; [by rewrite Ha' left_id assoc; apply cmra_includedN_l|done].
 Qed.
 
 Lemma auth_local_update L `{!LocalUpdate Lv L} a a' :
@@ -170,7 +170,7 @@ Lemma auth_update_op_l a a' b :
 Proof. by intros; apply (auth_local_update _). Qed.
 Lemma auth_update_op_r a a' b :
   ✓ (a ⋅ b) → ● a ⋅ ◯ a' ~~> ● (a ⋅ b) ⋅ ◯ (a' ⋅ b).
-Proof. rewrite -!(commutative _ b); apply auth_update_op_l. Qed.
+Proof. rewrite -!(comm _ b); apply auth_update_op_l. Qed.
 
 (* This does not seem to follow from auth_local_update.
    The trouble is that given ✓ (L a ⋅ a'), Lv a
diff --git a/algebra/cmra.v b/algebra/cmra.v
index 94672a03c83fab7fe7ee8c52b0207d3fa20225ba..94a13c0c1bd2dc2a509c8a7cf7dd5a6347ecbde4 100644
--- a/algebra/cmra.v
+++ b/algebra/cmra.v
@@ -43,10 +43,10 @@ Record CMRAMixin A `{Dist A, Equiv A, Unit A, Op A, ValidN A, Minus A} := {
   (* valid *)
   mixin_cmra_validN_S n x : ✓{S n} x → ✓{n} x;
   (* monoid *)
-  mixin_cmra_associative : Associative (≡) (⋅);
-  mixin_cmra_commutative : Commutative (≡) (⋅);
+  mixin_cmra_assoc : Assoc (≡) (⋅);
+  mixin_cmra_comm : Comm (≡) (⋅);
   mixin_cmra_unit_l x : unit x ⋅ x ≡ x;
-  mixin_cmra_unit_idempotent x : unit (unit x) ≡ unit x;
+  mixin_cmra_unit_idemp x : unit (unit x) ≡ unit x;
   mixin_cmra_unit_preservingN n x y : x ≼{n} y → unit x ≼{n} unit y;
   mixin_cmra_validN_op_l n x y : ✓{n} (x ⋅ y) → ✓{n} x;
   mixin_cmra_op_minus n x y : x ≼{n} y → x ⋅ y ⩪ x ≡{n}≡ y
@@ -101,14 +101,14 @@ Section cmra_mixin.
   Proof. apply (mixin_cmra_minus_ne _ (cmra_mixin A)). Qed.
   Lemma cmra_validN_S n x : ✓{S n} x → ✓{n} x.
   Proof. apply (mixin_cmra_validN_S _ (cmra_mixin A)). Qed.
-  Global Instance cmra_associative : Associative (≡) (@op A _).
-  Proof. apply (mixin_cmra_associative _ (cmra_mixin A)). Qed.
-  Global Instance cmra_commutative : Commutative (≡) (@op A _).
-  Proof. apply (mixin_cmra_commutative _ (cmra_mixin A)). Qed.
+  Global Instance cmra_assoc : Assoc (≡) (@op A _).
+  Proof. apply (mixin_cmra_assoc _ (cmra_mixin A)). Qed.
+  Global Instance cmra_comm : Comm (≡) (@op A _).
+  Proof. apply (mixin_cmra_comm _ (cmra_mixin A)). Qed.
   Lemma cmra_unit_l x : unit x ⋅ x ≡ x.
   Proof. apply (mixin_cmra_unit_l _ (cmra_mixin A)). Qed.
-  Lemma cmra_unit_idempotent x : unit (unit x) ≡ unit x.
-  Proof. apply (mixin_cmra_unit_idempotent _ (cmra_mixin A)). Qed.
+  Lemma cmra_unit_idemp x : unit (unit x) ≡ unit x.
+  Proof. apply (mixin_cmra_unit_idemp _ (cmra_mixin A)). Qed.
   Lemma cmra_unit_preservingN n x y : x ≼{n} y → unit x ≼{n} unit y.
   Proof. apply (mixin_cmra_unit_preservingN _ (cmra_mixin A)). Qed.
   Lemma cmra_validN_op_l n x y : ✓{n} (x ⋅ y) → ✓{n} x.
@@ -166,7 +166,7 @@ Proof. apply (ne_proper _). Qed.
 Global Instance cmra_op_ne' n : Proper (dist n ==> dist n ==> dist n) (@op A _).
 Proof.
   intros x1 x2 Hx y1 y2 Hy.
-  by rewrite Hy (commutative _ x1) Hx (commutative _ y2).
+  by rewrite Hy (comm _ x1) Hx (comm _ y2).
 Qed.
 Global Instance ra_op_proper' : Proper ((≡) ==> (≡) ==> (≡)) (@op A _).
 Proof. apply (ne_proper_2 _). Qed.
@@ -217,15 +217,15 @@ Proof. induction 2; eauto using cmra_validN_S. Qed.
 Lemma cmra_valid_op_l x y : ✓ (x ⋅ y) → ✓ x.
 Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_l. Qed.
 Lemma cmra_validN_op_r x y n : ✓{n} (x ⋅ y) → ✓{n} y.
-Proof. rewrite (commutative _ x); apply cmra_validN_op_l. Qed.
+Proof. rewrite (comm _ x); apply cmra_validN_op_l. Qed.
 Lemma cmra_valid_op_r x y : ✓ (x ⋅ y) → ✓ y.
 Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_r. Qed.
 
 (** ** Units *)
 Lemma cmra_unit_r x : x ⋅ unit x ≡ x.
-Proof. by rewrite (commutative _ x) cmra_unit_l. Qed.
+Proof. by rewrite (comm _ x) cmra_unit_l. Qed.
 Lemma cmra_unit_unit x : unit x ⋅ unit x ≡ unit x.
-Proof. by rewrite -{2}(cmra_unit_idempotent x) cmra_unit_r. Qed.
+Proof. by rewrite -{2}(cmra_unit_idemp x) cmra_unit_r. Qed.
 Lemma cmra_unit_validN x n : ✓{n} x → ✓{n} unit x.
 Proof. rewrite -{1}(cmra_unit_l x); apply cmra_validN_op_l. Qed.
 Lemma cmra_unit_valid x : ✓ x → ✓ unit x.
@@ -243,7 +243,7 @@ Proof.
   split.
   * by intros x; exists (unit x); rewrite cmra_unit_r.
   * intros x y z [z1 Hy] [z2 Hz]; exists (z1 â‹… z2).
-    by rewrite (associative _) -Hy -Hz.
+    by rewrite assoc -Hy -Hz.
 Qed.
 Global Instance cmra_included_preorder: PreOrder (@included A _ _).
 Proof.
@@ -265,22 +265,22 @@ Proof. by exists y. Qed.
 Lemma cmra_included_l x y : x ≼ x ⋅ y.
 Proof. by exists y. Qed.
 Lemma cmra_includedN_r n x y : y ≼{n} x ⋅ y.
-Proof. rewrite (commutative op); apply cmra_includedN_l. Qed.
+Proof. rewrite (comm op); apply cmra_includedN_l. Qed.
 Lemma cmra_included_r x y : y ≼ x ⋅ y.
-Proof. rewrite (commutative op); apply cmra_included_l. Qed.
+Proof. rewrite (comm op); apply cmra_included_l. Qed.
 
 Lemma cmra_unit_preserving x y : x ≼ y → unit x ≼ unit y.
 Proof. rewrite !cmra_included_includedN; eauto using cmra_unit_preservingN. Qed.
 Lemma cmra_included_unit x : unit x ≼ x.
 Proof. by exists x; rewrite cmra_unit_l. Qed.
 Lemma cmra_preservingN_l n x y z : x ≼{n} y → z ⋅ x ≼{n} z ⋅ y.
-Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (associative op). Qed.
+Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (assoc op). Qed.
 Lemma cmra_preserving_l x y z : x ≼ y → z ⋅ x ≼ z ⋅ y.
-Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (associative op). Qed.
+Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (assoc op). Qed.
 Lemma cmra_preservingN_r n x y z : x ≼{n} y → x ⋅ z ≼{n} y ⋅ z.
-Proof. by intros; rewrite -!(commutative _ z); apply cmra_preservingN_l. Qed.
+Proof. by intros; rewrite -!(comm _ z); apply cmra_preservingN_l. Qed.
 Lemma cmra_preserving_r x y z : x ≼ y → x ⋅ z ≼ y ⋅ z.
-Proof. by intros; rewrite -!(commutative _ z); apply cmra_preserving_l. Qed.
+Proof. by intros; rewrite -!(comm _ z); apply cmra_preserving_l. Qed.
 
 Lemma cmra_included_dist_l x1 x2 x1' n :
   x1 ≼ x2 → x1' ≡{n}≡ x1 → ∃ x2', x1' ≼ x2' ∧ x2' ≡{n}≡ x2.
@@ -321,7 +321,7 @@ Section identity.
   Lemma cmra_empty_least x : ∅ ≼ x.
   Proof. by exists x; rewrite left_id. Qed.
   Global Instance cmra_empty_right_id : RightId (≡) ∅ (⋅).
-  Proof. by intros x; rewrite (commutative op) left_id. Qed.
+  Proof. by intros x; rewrite (comm op) left_id. Qed.
   Lemma cmra_unit_empty : unit ∅ ≡ ∅.
   Proof. by rewrite -{2}(cmra_unit_l ∅) right_id. Qed.
 End identity.
@@ -336,7 +336,7 @@ Lemma local_update L `{!LocalUpdate Lv L} x y :
 Proof. by rewrite equiv_dist=>?? n; apply (local_updateN L). Qed.
 
 Global Instance local_update_op x : LocalUpdate (λ _, True) (op x).
-Proof. split. apply _. by intros n y1 y2 _ _; rewrite associative. Qed.
+Proof. split. apply _. by intros n y1 y2 _ _; rewrite assoc. Qed.
 
 (** ** Updates *)
 Global Instance cmra_update_preorder : PreOrder (@cmra_update A).
@@ -366,10 +366,10 @@ Lemma cmra_updateP_op (P1 P2 Q : A → Prop) x1 x2 :
   x1 ~~>: P1 → x2 ~~>: P2 → (∀ y1 y2, P1 y1 → P2 y2 → Q (y1 ⋅ y2)) → x1 ⋅ x2 ~~>: Q.
 Proof.
   intros Hx1 Hx2 Hy z n ?.
-  destruct (Hx1 (x2 â‹… z) n) as (y1&?&?); first by rewrite associative.
+  destruct (Hx1 (x2 â‹… z) n) as (y1&?&?); first by rewrite assoc.
   destruct (Hx2 (y1 â‹… z) n) as (y2&?&?);
-    first by rewrite associative (commutative _ x2) -associative.
-  exists (y1 â‹… y2); split; last rewrite (commutative _ y1) -associative; auto.
+    first by rewrite assoc (comm _ x2) -assoc.
+  exists (y1 â‹… y2); split; last rewrite (comm _ y1) -assoc; auto.
 Qed.
 Lemma cmra_updateP_op' (P1 P2 : A → Prop) x1 x2 :
   x1 ~~>: P1 → x2 ~~>: P2 → x1 ⋅ x2 ~~>: λ y, ∃ y1 y2, y = y1 ⋅ y2 ∧ P1 y1 ∧ P2 y2.
@@ -448,10 +448,10 @@ Class RA A `{Equiv A, Unit A, Op A, Valid A, Minus A} := {
   ra_validN_ne :> Proper ((≡) ==> impl) valid;
   ra_minus_ne :> Proper ((≡) ==> (≡) ==> (≡)) minus;
   (* monoid *)
-  ra_associative :> Associative (≡) (⋅);
-  ra_commutative :> Commutative (≡) (⋅);
+  ra_assoc :> Assoc (≡) (⋅);
+  ra_comm :> Comm (≡) (⋅);
   ra_unit_l x : unit x ⋅ x ≡ x;
-  ra_unit_idempotent x : unit (unit x) ≡ unit x;
+  ra_unit_idemp x : unit (unit x) ≡ unit x;
   ra_unit_preserving x y : x ≼ y → unit x ≼ unit y;
   ra_valid_op_l x y : ✓ (x ⋅ y) → ✓ x;
   ra_op_minus x y : x ≼ y → x ⋅ y ⩪ x ≡ y
@@ -524,10 +524,10 @@ Section prod.
     * by intros n x1 x2 [Hx1 Hx2] y1 y2 [Hy1 Hy2];
         split; rewrite /= ?Hx1 ?Hx2 ?Hy1 ?Hy2.
     * by intros n x [??]; split; apply cmra_validN_S.
-    * split; simpl; apply (associative _).
-    * split; simpl; apply (commutative _).
-    * split; simpl; apply cmra_unit_l.
-    * split; simpl; apply cmra_unit_idempotent.
+    * by split; rewrite /= assoc.
+    * by split; rewrite /= comm.
+    * by split; rewrite /= cmra_unit_l.
+    * by split; rewrite /= cmra_unit_idemp.
     * intros n x y; rewrite !prod_includedN.
       by intros [??]; split; apply cmra_unit_preservingN.
     * intros n x y [??]; split; simpl in *; eauto using cmra_validN_op_l.
diff --git a/algebra/cmra_big_op.v b/algebra/cmra_big_op.v
index a6f9ee8af2499b853a36e816a0b1c742909b9f1d..58dfbeaabfc16827abc02f2533e2714ae72c6a84 100644
--- a/algebra/cmra_big_op.v
+++ b/algebra/cmra_big_op.v
@@ -22,21 +22,21 @@ Global Instance big_op_permutation : Proper ((≡ₚ) ==> (≡)) big_op.
 Proof.
   induction 1 as [|x xs1 xs2 ? IH|x y xs|xs1 xs2 xs3]; simpl; auto.
   * by rewrite IH.
-  * by rewrite !(associative _) (commutative _ x).
+  * by rewrite !assoc (comm _ x).
   * by transitivity (big_op xs2).
 Qed.
 Global Instance big_op_proper : Proper ((≡) ==> (≡)) big_op.
 Proof. by induction 1; simpl; repeat apply (_ : Proper (_ ==> _ ==> _) op). Qed.
 Lemma big_op_app xs ys : big_op (xs ++ ys) ≡ big_op xs ⋅ big_op ys.
 Proof.
-  induction xs as [|x xs IH]; simpl; first by rewrite ?(left_id _ _).
-  by rewrite IH (associative _).
+  induction xs as [|x xs IH]; simpl; first by rewrite ?left_id.
+  by rewrite IH assoc.
 Qed.
 Lemma big_op_contains xs ys : xs `contains` ys → big_op xs ≼ big_op ys.
 Proof.
   induction 1 as [|x xs ys|x y xs|x xs ys|xs ys zs]; rewrite //=.
   * by apply cmra_preserving_l.
-  * by rewrite !associative (commutative _ y).
+  * by rewrite !assoc (comm _ y).
   * by transitivity (big_op ys); last apply cmra_included_r.
   * by transitivity (big_op ys).
 Qed.
@@ -58,7 +58,7 @@ Qed.
 Lemma big_opM_singleton i x : big_opM ({[i ↦ x]} : M A) ≡ x.
 Proof.
   rewrite -insert_empty big_opM_insert /=; last auto using lookup_empty.
-  by rewrite big_opM_empty (right_id _ _).
+  by rewrite big_opM_empty right_id.
 Qed.
 Global Instance big_opM_proper : Proper ((≡) ==> (≡)) (big_opM : M A → _).
 Proof.
diff --git a/algebra/cmra_tactics.v b/algebra/cmra_tactics.v
index 27b6efb85ab1b3457d0966bc38bbbb8413302a0a..a9eb5bb43efd2e6867fca1fc2572254ebebbf319 100644
--- a/algebra/cmra_tactics.v
+++ b/algebra/cmra_tactics.v
@@ -25,7 +25,7 @@ Module ra_reflection. Section ra_reflection.
     eval Σ e ≡ big_op ((λ n, from_option ∅ (Σ !! n)) <$> flatten e).
   Proof.
     by induction e as [| |e1 IH1 e2 IH2];
-      rewrite /= ?(right_id _ _) ?fmap_app ?big_op_app ?IH1 ?IH2.
+      rewrite /= ?right_id ?fmap_app ?big_op_app ?IH1 ?IH2.
   Qed.
   Lemma flatten_correct Σ e1 e2 :
     flatten e1 `contains` flatten e2 → eval Σ e1 ≼ eval Σ e2.
diff --git a/algebra/cofe.v b/algebra/cofe.v
index ae0a93f7cb43bd2d121ccfe32b70af1036c269e3..1b77fde092ace5d3e14994817349dd2e0564b2c1 100644
--- a/algebra/cofe.v
+++ b/algebra/cofe.v
@@ -106,9 +106,12 @@ Section cofe.
      unfold Proper, respectful; setoid_rewrite equiv_dist.
      by intros x1 x2 Hx y1 y2 Hy n; rewrite (Hx n) (Hy n).
   Qed.
-  Lemma contractive_S {B : cofeT} {f : A → B} `{!Contractive f} n x y :
+  Lemma contractive_S {B : cofeT} (f : A → B) `{!Contractive f} n x y :
     x ≡{n}≡ y → f x ≡{S n}≡ f y.
   Proof. eauto using contractive, dist_le with omega. Qed.
+  Lemma contractive_0 {B : cofeT} (f : A → B) `{!Contractive f} x y :
+    f x ≡{0}≡ f y.
+  Proof. eauto using contractive with omega. Qed.
   Global Instance contractive_ne {B : cofeT} (f : A → B) `{!Contractive f} n :
     Proper (dist n ==> dist n) f | 100.
   Proof. by intros x y ?; apply dist_S, contractive_S. Qed.
@@ -136,8 +139,8 @@ Program Definition fixpoint_chain {A : cofeT} `{Inhabited A} (f : A → A)
   `{!Contractive f} : chain A := {| chain_car i := Nat.iter (S i) f inhabitant |}.
 Next Obligation.
   intros A ? f ? n. induction n as [|n IH]; intros [|i] ?; simpl; try omega.
-  * apply contractive; auto with omega.
-  * apply contractive_S, IH; auto with omega.
+  * apply (contractive_0 f).
+  * apply (contractive_S f), IH; auto with omega.
 Qed.
 Program Definition fixpoint {A : cofeT} `{Inhabited A} (f : A → A)
   `{!Contractive f} : A := compl (fixpoint_chain f).
@@ -147,7 +150,7 @@ Section fixpoint.
   Lemma fixpoint_unfold : fixpoint f ≡ f (fixpoint f).
   Proof.
     apply equiv_dist=>n; rewrite /fixpoint (conv_compl (fixpoint_chain f) n) //.
-    induction n as [|n IH]; simpl; eauto using contractive, dist_le with omega.
+    induction n as [|n IH]; simpl; eauto using contractive_0, contractive_S.
   Qed.
   Lemma fixpoint_ne (g : A → A) `{!Contractive g} n :
     (∀ z, f z ≡{n}≡ g z) → fixpoint f ≡{n}≡ fixpoint g.
@@ -337,7 +340,7 @@ Section later.
   Canonical Structure laterC : cofeT := CofeT later_cofe_mixin.
   Global Instance Next_contractive : Contractive (@Next A).
   Proof. intros [|n] x y Hxy; [done|]; apply Hxy; lia. Qed.
-  Global Instance Later_inj n : Injective (dist n) (dist (S n)) (@Next A).
+  Global Instance Later_inj n : Inj (dist n) (dist (S n)) (@Next A).
   Proof. by intros x y. Qed.
 End later.
 
diff --git a/algebra/cofe_solver.v b/algebra/cofe_solver.v
index 1a56cc65e1ef7d2ba43e21fe4d8bab221dc17bbf..b9f8dbf5bfc81bb467783576391945edefea7dc4 100644
--- a/algebra/cofe_solver.v
+++ b/algebra/cofe_solver.v
@@ -23,19 +23,6 @@ Context (map_comp : ∀ {A1 A2 A3 B1 B2 B3 : cofeT}
   map (f ◎ g, g' ◎ f') x ≡ map (g,g') (map (f,f') x)).
 Context (map_contractive : ∀ {A1 A2 B1 B2}, Contractive (@map A1 A2 B1 B2)).
 
-Lemma map_ext {A1 A2 B1 B2 : cofeT}
-  (f : A2 -n> A1) (f' : A2 -n> A1) (g : B1 -n> B2) (g' : B1 -n> B2) x x' :
-  (∀ x, f x ≡ f' x) → (∀ y, g y ≡ g' y) → x ≡ x' →
-  map (f,g) x ≡ map (f',g') x'.
-Proof. by rewrite -!cofe_mor_ext; intros -> -> ->. Qed.
-Lemma map_ne {A1 A2 B1 B2 : cofeT}
-  (f : A2 -n> A1) (f' : A2 -n> A1) (g : B1 -n> B2) (g' : B1 -n> B2) n x :
-  (∀ x, f x ≡{n}≡ f' x) → (∀ y, g y ≡{n}≡ g' y) →
-  map (f,g) x ≡{n}≡ map (f',g') x.
-Proof.
-  intros. by apply map_contractive=> i ?; apply dist_le with n; last lia.
-Qed.
-
 Fixpoint A (k : nat) : cofeT :=
   match k with 0 => unitC | S k => F (A k) (A k) end.
 Fixpoint f (k : nat) : A k -n> A (S k) :=
@@ -51,16 +38,13 @@ Arguments g : simpl never.
 Lemma gf {k} (x : A k) : g k (f k x) ≡ x.
 Proof.
   induction k as [|k IH]; simpl in *; [by destruct x|].
-  rewrite -map_comp -{2}(map_id _ _ x); by apply map_ext.
+  rewrite -map_comp -{2}(map_id _ _ x). by apply (contractive_proper map).
 Qed.
 Lemma fg {k} (x : A (S (S k))) : f (S k) (g (S k) x) ≡{k}≡ x.
 Proof.
   induction k as [|k IH]; simpl.
-  * rewrite f_S g_S -{2}(map_id _ _ x) -map_comp.
-    apply map_contractive=> i ?; omega.
-  * rewrite f_S g_S -{2}(map_id _ _ x) -map_comp.
-    apply map_contractive=> i ?; apply dist_le with k; [|omega].
-    split=> x' /=; apply IH.
+  * rewrite f_S g_S -{2}(map_id _ _ x) -map_comp. apply (contractive_0 map).
+  * rewrite f_S g_S -{2}(map_id _ _ x) -map_comp. by apply (contractive_S map).
 Qed.
 
 Record tower := {
@@ -197,10 +181,10 @@ Next Obligation.
   assert (∃ k, i = k + n) as [k ?] by (exists (i - n); lia); subst; clear Hi.
   induction k as [|k IH]; simpl.
   { rewrite -f_tower f_S -map_comp.
-    apply map_ne=> Y /=. by rewrite g_tower. by rewrite embed_f. }
+    by apply (contractive_ne map); split=> Y /=; rewrite ?g_tower ?embed_f. }
   rewrite -IH -(dist_le _ _ _ _ (f_tower (k + n) _)); last lia.
   rewrite f_S -map_comp.
-  apply map_ne=> Y /=. by rewrite g_tower. by rewrite embed_f.
+  by apply (contractive_ne map); split=> Y /=; rewrite ?g_tower ?embed_f.
 Qed.
 Definition unfold (X : T) : F T T := compl (unfold_chain X).
 Instance unfold_ne : Proper (dist n ==> dist n) unfold.
@@ -214,7 +198,7 @@ Program Definition fold (X : F T T) : T :=
 Next Obligation.
   intros X k. apply (_ : Proper ((≡) ==> (≡)) (g k)).
   rewrite g_S -map_comp.
-  apply map_ext; [apply embed_f|intros Y; apply g_tower|done].
+  apply (contractive_proper map); split=> Y; [apply embed_f|apply g_tower].
 Qed.
 Instance fold_ne : Proper (dist n ==> dist n) fold.
 Proof. by intros n X Y HXY k; rewrite /fold /= HXY. Qed.
@@ -229,7 +213,7 @@ Proof.
     { rewrite /unfold (conv_compl (unfold_chain X) n).
       rewrite -(chain_cauchy (unfold_chain X) n (S (n + k))) /=; last lia.
       rewrite -(dist_le _ _ _ _ (f_tower (n + k) _)); last lia.
-      rewrite f_S -!map_comp; apply map_ne; fold A=> Y.
+      rewrite f_S -!map_comp; apply (contractive_ne map); split=> Y.
       + rewrite /embed' /= /embed_coerce.
         destruct (le_lt_dec _ _); simpl; [exfalso; lia|].
         by rewrite (ff_ff _ (eq_refl (S n + (0 + k)))) /= gf.
@@ -246,7 +230,8 @@ Proof.
     apply (_ : Proper (_ ==> _) (gg _)); by destruct H.
   * intros X; rewrite equiv_dist=> n /=.
     rewrite /unfold /= (conv_compl (unfold_chain (fold X)) n) /=.
-    rewrite g_S -!map_comp -{2}(map_id _ _ X); apply map_ne=> Y /=.
+    rewrite g_S -!map_comp -{2}(map_id _ _ X).
+    apply (contractive_ne map); split => Y /=.
     + apply dist_le with n; last omega.
       rewrite f_tower. apply dist_S. by rewrite embed_tower.
     + etransitivity; [apply embed_ne, equiv_dist, g_tower|apply embed_tower].
diff --git a/algebra/dra.v b/algebra/dra.v
index 093fc8f6809b9ac6d9e102b5d07f4a421a1823ad..625978f6329c9f9e0b5e7eb03214b798516d614a 100644
--- a/algebra/dra.v
+++ b/algebra/dra.v
@@ -46,14 +46,14 @@ Class DRA A `{Equiv A, Valid A, Unit A, Disjoint A, Op A, Minus A} := {
   dra_unit_valid x : ✓ x → ✓ unit x;
   dra_minus_valid x y : ✓ x → ✓ y → x ≼ y → ✓ (y ⩪ x);
   (* monoid *)
-  dra_associative :> Associative (≡) (⋅);
+  dra_assoc :> Assoc (≡) (⋅);
   dra_disjoint_ll x y z : ✓ x → ✓ y → ✓ z → x ⊥ y → x ⋅ y ⊥ z → x ⊥ z;
   dra_disjoint_move_l x y z : ✓ x → ✓ y → ✓ z → x ⊥ y → x ⋅ y ⊥ z → x ⊥ y ⋅ z;
   dra_symmetric :> Symmetric (@disjoint A _);
-  dra_commutative x y : ✓ x → ✓ y → x ⊥ y → x ⋅ y ≡ y ⋅ x;
+  dra_comm x y : ✓ x → ✓ y → x ⊥ y → x ⋅ y ≡ y ⋅ x;
   dra_unit_disjoint_l x : ✓ x → unit x ⊥ x;
   dra_unit_l x : ✓ x → unit x ⋅ x ≡ x;
-  dra_unit_idempotent x : ✓ x → unit (unit x) ≡ unit x;
+  dra_unit_idemp x : ✓ x → unit (unit x) ≡ unit x;
   dra_unit_preserving x y : ✓ x → ✓ y → x ≼ y → unit x ≼ unit y;
   dra_disjoint_minus x y : ✓ x → ✓ y → x ≼ y → x ⊥ y ⩪ x;
   dra_op_minus x y : ✓ x → ✓ y → x ≼ y → x ⋅ y ⩪ x ≡ y
@@ -73,12 +73,12 @@ Qed.
 Lemma dra_disjoint_rl x y z : ✓ x → ✓ y → ✓ z → y ⊥ z → x ⊥ y ⋅ z → x ⊥ y.
 Proof. intros ???. rewrite !(symmetry_iff _ x). by apply dra_disjoint_ll. Qed.
 Lemma dra_disjoint_lr x y z : ✓ x → ✓ y → ✓ z → x ⊥ y → x ⋅ y ⊥ z → y ⊥ z.
-Proof. intros ????. rewrite dra_commutative //. by apply dra_disjoint_ll. Qed.
+Proof. intros ????. rewrite dra_comm //. by apply dra_disjoint_ll. Qed.
 Lemma dra_disjoint_move_r x y z :
   ✓ x → ✓ y → ✓ z → y ⊥ z → x ⊥ y ⋅ z → x ⋅ y ⊥ z.
 Proof.
-  intros; symmetry; rewrite dra_commutative; eauto using dra_disjoint_rl.
-  apply dra_disjoint_move_l; auto; by rewrite dra_commutative.
+  intros; symmetry; rewrite dra_comm; eauto using dra_disjoint_rl.
+  apply dra_disjoint_move_l; auto; by rewrite dra_comm.
 Qed.
 Hint Immediate dra_disjoint_move_l dra_disjoint_move_r.
 Hint Unfold dra_included.
@@ -114,11 +114,11 @@ Proof.
     + exists z. by rewrite Hx ?Hy; tauto.
   * intros [x px ?] [y py ?] [z pz ?]; split; simpl;
       [intuition eauto 2 using dra_disjoint_lr, dra_disjoint_rl
-      |intros; apply (associative _)].
-  * intros [x px ?] [y py ?]; split; naive_solver eauto using dra_commutative.
+      |by intros; rewrite assoc].
+  * intros [x px ?] [y py ?]; split; naive_solver eauto using dra_comm.
   * intros [x px ?]; split;
       naive_solver eauto using dra_unit_l, dra_unit_disjoint_l.
-  * intros [x px ?]; split; naive_solver eauto using dra_unit_idempotent.
+  * intros [x px ?]; split; naive_solver eauto using dra_unit_idemp.
   * intros x y Hxy; exists (unit y ⩪ unit x).
     destruct x as [x px ?], y as [y py ?], Hxy as [[z pz ?] [??]]; simpl in *.
     assert (py → unit x ≼ unit y)
diff --git a/algebra/excl.v b/algebra/excl.v
index db3d83f2fe7956c27334243a5cba4573cd962c14..cf50b1f71d1157a80e92c13fa4d262002a7beb94 100644
--- a/algebra/excl.v
+++ b/algebra/excl.v
@@ -31,9 +31,9 @@ Global Instance Excl_ne : Proper (dist n ==> dist n) (@Excl A).
 Proof. by constructor. Qed.
 Global Instance Excl_proper : Proper ((≡) ==> (≡)) (@Excl A).
 Proof. by constructor. Qed.
-Global Instance Excl_inj : Injective (≡) (≡) (@Excl A).
+Global Instance Excl_inj : Inj (≡) (≡) (@Excl A).
 Proof. by inversion_clear 1. Qed.
-Global Instance Excl_dist_inj n : Injective (dist n) (dist n) (@Excl A).
+Global Instance Excl_dist_inj n : Inj (dist n) (dist n) (@Excl A).
 Proof. by inversion_clear 1. Qed.
 Program Definition excl_chain
     (c : chain (excl A)) (x : A) (H : maybe Excl (c 1) = Some x) : chain A :=
diff --git a/algebra/fin_maps.v b/algebra/fin_maps.v
index 121be983e4a3d9eec2bee6c1fa1cc4adaeda0f6b..f6410f94eee7c01443ba6de2aed2ac0bec53ce79 100644
--- a/algebra/fin_maps.v
+++ b/algebra/fin_maps.v
@@ -121,10 +121,10 @@ Proof.
   * by intros n m1 m2 Hm ? i; rewrite -(Hm i).
   * by intros n m1 m1' Hm1 m2 m2' Hm2 i; rewrite !lookup_minus (Hm1 i) (Hm2 i).
   * intros n m Hm i; apply cmra_validN_S, Hm.
-  * by intros m1 m2 m3 i; rewrite !lookup_op associative.
-  * by intros m1 m2 i; rewrite !lookup_op commutative.
+  * by intros m1 m2 m3 i; rewrite !lookup_op assoc.
+  * by intros m1 m2 i; rewrite !lookup_op comm.
   * by intros m i; rewrite lookup_op !lookup_unit cmra_unit_l.
-  * by intros m i; rewrite !lookup_unit cmra_unit_idempotent.
+  * by intros m i; rewrite !lookup_unit cmra_unit_idemp.
   * intros n x y; rewrite !map_includedN_spec; intros Hm i.
     by rewrite !lookup_unit; apply cmra_unit_preservingN.
   * intros n m1 m2 Hm i; apply cmra_validN_op_l with (m2 !! i).
diff --git a/algebra/iprod.v b/algebra/iprod.v
index 89d1919e39b5a5189e48645661a146f67fcf0b69..ff77fd0aabfb4a6f8a24b8f41947927ac6670c11 100644
--- a/algebra/iprod.v
+++ b/algebra/iprod.v
@@ -141,10 +141,10 @@ Section iprod_cmra.
     * by intros n f1 f2 Hf ? x; rewrite -(Hf x).
     * by intros n f f' Hf g g' Hg i; rewrite iprod_lookup_minus (Hf i) (Hg i).
     * intros n f Hf x; apply cmra_validN_S, Hf.
-    * by intros f1 f2 f3 x; rewrite iprod_lookup_op associative.
-    * by intros f1 f2 x; rewrite iprod_lookup_op commutative.
+    * by intros f1 f2 f3 x; rewrite iprod_lookup_op assoc.
+    * by intros f1 f2 x; rewrite iprod_lookup_op comm.
     * by intros f x; rewrite iprod_lookup_op iprod_lookup_unit cmra_unit_l.
-    * by intros f x; rewrite iprod_lookup_unit cmra_unit_idempotent.
+    * by intros f x; rewrite iprod_lookup_unit cmra_unit_idemp.
     * intros n f1 f2; rewrite !iprod_includedN_spec=> Hf x.
       by rewrite iprod_lookup_unit; apply cmra_unit_preservingN, Hf.
     * intros n f1 f2 Hf x; apply cmra_validN_op_l with (f2 x), Hf.
diff --git a/algebra/option.v b/algebra/option.v
index cb0eec68e2389b3826e1e3ed855a9957b9b9317e..11c3228fd98d9132de3d6aa0ecc08157318c186b 100644
--- a/algebra/option.v
+++ b/algebra/option.v
@@ -45,7 +45,7 @@ Global Instance Some_ne : Proper (dist n ==> dist n) (@Some A).
 Proof. by constructor. Qed.
 Global Instance is_Some_ne n : Proper (dist n ==> iff) (@is_Some A).
 Proof. inversion_clear 1; split; eauto. Qed.
-Global Instance Some_dist_inj : Injective (dist n) (dist n) (@Some A).
+Global Instance Some_dist_inj : Inj (dist n) (dist n) (@Some A).
 Proof. by inversion_clear 1. Qed.
 Global Instance None_timeless : Timeless (@None A).
 Proof. inversion_clear 1; constructor. Qed.
@@ -92,10 +92,10 @@ Proof.
   * by destruct 1; rewrite /validN /option_validN //=; cofe_subst.
   * by destruct 1; inversion_clear 1; constructor; cofe_subst.
   * intros n [x|]; unfold validN, option_validN; eauto using cmra_validN_S.
-  * intros [x|] [y|] [z|]; constructor; rewrite ?associative; auto.
-  * intros [x|] [y|]; constructor; rewrite 1?commutative; auto.
+  * intros [x|] [y|] [z|]; constructor; rewrite ?assoc; auto.
+  * intros [x|] [y|]; constructor; rewrite 1?comm; auto.
   * by intros [x|]; constructor; rewrite cmra_unit_l.
-  * by intros [x|]; constructor; rewrite cmra_unit_idempotent.
+  * by intros [x|]; constructor; rewrite cmra_unit_idemp.
   * intros n mx my; rewrite !option_includedN;intros [->|(x&y&->&->&?)]; auto.
     right; exists (unit x), (unit y); eauto using cmra_unit_preservingN.
   * intros n [x|] [y|]; rewrite /validN /option_validN /=;
diff --git a/algebra/sts.v b/algebra/sts.v
index 4e699e1d3f92c0e68946ccce691a3b1a6b141973..af06fd1ee7be6a4f0720ed35986109ddb21f23af 100644
--- a/algebra/sts.v
+++ b/algebra/sts.v
@@ -151,7 +151,7 @@ Proof.
   * intros ???? (z&Hy&?&Hxz); destruct Hxz; inversion Hy;clear Hy; setoid_subst;
       rewrite ?disjoint_union_difference; auto using closed_up with sts.
     eapply closed_up_set; eauto 2 using closed_disjoint with sts.
-  * intros [] [] []; constructor; rewrite ?(associative _); auto with sts.
+  * intros [] [] []; constructor; rewrite ?assoc; auto with sts.
   * destruct 4; inversion_clear 1; constructor; auto with sts.
   * destruct 4; inversion_clear 1; constructor; auto with sts.
   * destruct 1; constructor; auto with sts.
diff --git a/algebra/upred.v b/algebra/upred.v
index e54f52b130a85b5413f5bea523bbb2c72fd0963c..3aa4b20bf4e3277c4253343c488aeb52e56a146f 100644
--- a/algebra/upred.v
+++ b/algebra/upred.v
@@ -140,7 +140,7 @@ Next Obligation.
   intros M P Q x y n1 n2 (x1&x2&Hx&?&?) Hxy ??.
   assert (∃ x2', y ≡{n2}≡ x1 ⋅ x2' ∧ x2 ≼ x2') as (x2'&Hy&?).
   { destruct Hxy as [z Hy]; exists (x2 â‹… z); split; eauto using cmra_included_l.
-    apply dist_le with n1; auto. by rewrite (associative op) -Hx Hy. }
+    apply dist_le with n1; auto. by rewrite (assoc op) -Hx Hy. }
   clear Hxy; cofe_subst y; exists x1, x2'; split_ands; [done| |].
   * apply uPred_weaken with x1 n1; eauto using cmra_validN_op_l.
   * apply uPred_weaken with x2 n1; eauto using cmra_validN_op_r.
@@ -179,7 +179,7 @@ Program Definition uPred_ownM {M : cmraT} (a : M) : uPred M :=
 Next Obligation. by intros M a x1 x2 n [a' ?] Hx; exists a'; rewrite -Hx. Qed.
 Next Obligation.
   intros M a x1 x n1 n2 [a' Hx1] [x2 Hx] ??.
-  exists (a' â‹… x2). by rewrite (associative op) -(dist_le _ _ _ _ Hx1) // Hx.
+  exists (a' â‹… x2). by rewrite (assoc op) -(dist_le _ _ _ _ Hx1) // Hx.
 Qed.
 Program Definition uPred_valid {M A : cmraT} (a : A) : uPred M :=
   {| uPred_holds n x := ✓{n} a |}.
@@ -191,7 +191,8 @@ Arguments uPred_holds {_} _%I _ _.
 Arguments uPred_entails _ _%I _%I.
 Notation "P ⊑ Q" := (uPred_entails P%I Q%I) (at level 70) : C_scope.
 Notation "(⊑)" := uPred_entails (only parsing) : C_scope.
-Notation "■ φ" := (uPred_const φ%C%type) (at level 20) : uPred_scope.
+Notation "■ φ" := (uPred_const φ%C%type)
+  (at level 20, right associativity) : uPred_scope.
 Notation "x = y" := (uPred_const (x%C%type = y%C%type)) : uPred_scope.
 Notation "'False'" := (uPred_const False) : uPred_scope.
 Notation "'True'" := (uPred_const True) : uPred_scope.
@@ -208,8 +209,10 @@ Notation "∀ x .. y , P" :=
   (uPred_forall (λ x, .. (uPred_forall (λ y, P)) ..)%I) : uPred_scope.
 Notation "∃ x .. y , P" :=
   (uPred_exist (λ x, .. (uPred_exist (λ y, P)) ..)%I) : uPred_scope.
-Notation "â–· P" := (uPred_later P) (at level 20) : uPred_scope.
-Notation "â–¡ P" := (uPred_always P) (at level 20) : uPred_scope.
+Notation "â–· P" := (uPred_later P)
+  (at level 20, right associativity) : uPred_scope.
+Notation "â–¡ P" := (uPred_always P)
+  (at level 20, right associativity) : uPred_scope.
 Infix "≡" := uPred_eq : uPred_scope.
 Notation "✓ x" := (uPred_valid x) (at level 20) : uPred_scope.
 
@@ -245,11 +248,11 @@ Arguments uPred_holds {_} !_ _ _ /.
 
 Global Instance: PreOrder (@uPred_entails M).
 Proof. split. by intros P x i. by intros P Q Q' HP HQ x i ??; apply HQ, HP. Qed.
-Global Instance: AntiSymmetric (≡) (@uPred_entails M).
+Global Instance: AntiSymm (≡) (@uPred_entails M).
 Proof. intros P Q HPQ HQP; split; auto. Qed.
 Lemma equiv_spec P Q : P ≡ Q ↔ P ⊑ Q ∧ Q ⊑ P.
 Proof.
-  split; [|by intros [??]; apply (anti_symmetric (⊑))].
+  split; [|by intros [??]; apply (anti_symm (⊑))].
   intros HPQ; split; intros x i; apply HPQ.
 Qed.
 Global Instance entails_proper :
@@ -434,7 +437,7 @@ Proof. intros; apply const_elim with φ; eauto. Qed.
 Lemma const_elim_r φ Q R : (φ → Q ⊑ R) → (Q ∧ ■ φ) ⊑ R.
 Proof. intros; apply const_elim with φ; eauto. Qed.
 Lemma const_equiv (φ : Prop) : φ → (■ φ : uPred M)%I ≡ True%I.
-Proof. intros; apply (anti_symmetric _); auto using const_intro. Qed.
+Proof. intros; apply (anti_symm _); auto using const_intro. Qed.
 Lemma equiv_eq {A : cofeT} P (a b : A) : a ≡ b → P ⊑ (a ≡ b).
 Proof. intros ->; apply eq_refl. Qed.
 Lemma eq_sym {A : cofeT} (a b : A) : (a ≡ b) ⊑ (b ≡ a).
@@ -484,57 +487,57 @@ Global Instance exist_mono' A :
   Proper (pointwise_relation _ (⊑) ==> (⊑)) (@uPred_exist M A).
 Proof. intros P1 P2; apply exist_mono. Qed.
 
-Global Instance and_idem : Idempotent (≡) (@uPred_and M).
-Proof. intros P; apply (anti_symmetric (⊑)); auto. Qed.
-Global Instance or_idem : Idempotent (≡) (@uPred_or M).
-Proof. intros P; apply (anti_symmetric (⊑)); auto. Qed.
-Global Instance and_comm : Commutative (≡) (@uPred_and M).
-Proof. intros P Q; apply (anti_symmetric (⊑)); auto. Qed.
+Global Instance and_idem : IdemP (≡) (@uPred_and M).
+Proof. intros P; apply (anti_symm (⊑)); auto. Qed.
+Global Instance or_idem : IdemP (≡) (@uPred_or M).
+Proof. intros P; apply (anti_symm (⊑)); auto. Qed.
+Global Instance and_comm : Comm (≡) (@uPred_and M).
+Proof. intros P Q; apply (anti_symm (⊑)); auto. Qed.
 Global Instance True_and : LeftId (≡) True%I (@uPred_and M).
-Proof. intros P; apply (anti_symmetric (⊑)); auto. Qed.
+Proof. intros P; apply (anti_symm (⊑)); auto. Qed.
 Global Instance and_True : RightId (≡) True%I (@uPred_and M).
-Proof. intros P; apply (anti_symmetric (⊑)); auto. Qed.
+Proof. intros P; apply (anti_symm (⊑)); auto. Qed.
 Global Instance False_and : LeftAbsorb (≡) False%I (@uPred_and M).
-Proof. intros P; apply (anti_symmetric (⊑)); auto. Qed.
+Proof. intros P; apply (anti_symm (⊑)); auto. Qed.
 Global Instance and_False : RightAbsorb (≡) False%I (@uPred_and M).
-Proof. intros P; apply (anti_symmetric (⊑)); auto. Qed.
+Proof. intros P; apply (anti_symm (⊑)); auto. Qed.
 Global Instance True_or : LeftAbsorb (≡) True%I (@uPred_or M).
-Proof. intros P; apply (anti_symmetric (⊑)); auto. Qed.
+Proof. intros P; apply (anti_symm (⊑)); auto. Qed.
 Global Instance or_True : RightAbsorb (≡) True%I (@uPred_or M).
-Proof. intros P; apply (anti_symmetric (⊑)); auto. Qed.
+Proof. intros P; apply (anti_symm (⊑)); auto. Qed.
 Global Instance False_or : LeftId (≡) False%I (@uPred_or M).
-Proof. intros P; apply (anti_symmetric (⊑)); auto. Qed.
+Proof. intros P; apply (anti_symm (⊑)); auto. Qed.
 Global Instance or_False : RightId (≡) False%I (@uPred_or M).
-Proof. intros P; apply (anti_symmetric (⊑)); auto. Qed.
-Global Instance and_assoc : Associative (≡) (@uPred_and M).
-Proof. intros P Q R; apply (anti_symmetric (⊑)); auto. Qed.
-Global Instance or_comm : Commutative (≡) (@uPred_or M).
-Proof. intros P Q; apply (anti_symmetric (⊑)); auto. Qed.
-Global Instance or_assoc : Associative (≡) (@uPred_or M).
-Proof. intros P Q R; apply (anti_symmetric (⊑)); auto. Qed.
+Proof. intros P; apply (anti_symm (⊑)); auto. Qed.
+Global Instance and_assoc : Assoc (≡) (@uPred_and M).
+Proof. intros P Q R; apply (anti_symm (⊑)); auto. Qed.
+Global Instance or_comm : Comm (≡) (@uPred_or M).
+Proof. intros P Q; apply (anti_symm (⊑)); auto. Qed.
+Global Instance or_assoc : Assoc (≡) (@uPred_or M).
+Proof. intros P Q R; apply (anti_symm (⊑)); auto. Qed.
 Global Instance True_impl : LeftId (≡) True%I (@uPred_impl M).
 Proof.
-  intros P; apply (anti_symmetric (⊑)).
+  intros P; apply (anti_symm (⊑)).
   * by rewrite -(left_id True%I uPred_and (_ → _)%I) impl_elim_r.
   * by apply impl_intro_l; rewrite left_id.
 Qed.
 Lemma or_and_l P Q R : (P ∨ Q ∧ R)%I ≡ ((P ∨ Q) ∧ (P ∨ R))%I.
 Proof.
-  apply (anti_symmetric (⊑)); first auto.
+  apply (anti_symm (⊑)); first auto.
   do 2 (apply impl_elim_l', or_elim; apply impl_intro_l); auto.
 Qed.
 Lemma or_and_r P Q R : (P ∧ Q ∨ R)%I ≡ ((P ∨ R) ∧ (Q ∨ R))%I.
-Proof. by rewrite -!(commutative _ R) or_and_l. Qed.
+Proof. by rewrite -!(comm _ R) or_and_l. Qed.
 Lemma and_or_l P Q R : (P ∧ (Q ∨ R))%I ≡ (P ∧ Q ∨ P ∧ R)%I.
 Proof.
-  apply (anti_symmetric (⊑)); last auto.
+  apply (anti_symm (⊑)); last auto.
   apply impl_elim_r', or_elim; apply impl_intro_l; auto.
 Qed.
 Lemma and_or_r P Q R : ((P ∨ Q) ∧ R)%I ≡ (P ∧ R ∨ Q ∧ R)%I.
-Proof. by rewrite -!(commutative _ R) and_or_l. Qed.
+Proof. by rewrite -!(comm _ R) and_or_l. Qed.
 Lemma and_exist_l {A} P (Q : A → uPred M) : (P ∧ ∃ a, Q a)%I ≡ (∃ a, P ∧ Q a)%I.
 Proof.
-  apply (anti_symmetric (⊑)).
+  apply (anti_symm (⊑)).
   - apply impl_elim_r'. apply exist_elim=>a. apply impl_intro_l.
     by rewrite -(exist_intro a).
   - apply exist_elim=>a. apply and_intro; first by rewrite and_elim_l.
@@ -542,8 +545,8 @@ Proof.
 Qed.
 Lemma and_exist_r {A} P (Q : A → uPred M) : ((∃ a, Q a) ∧ P)%I ≡ (∃ a, Q a ∧ P)%I.
 Proof.
-  rewrite -(commutative _ P) and_exist_l.
-  apply exist_proper=>a. by rewrite commutative.
+  rewrite -(comm _ P) and_exist_l.
+  apply exist_proper=>a. by rewrite comm.
 Qed.
 
 (* BI connectives *)
@@ -558,19 +561,19 @@ Proof.
   * intros (x1&x2&?&_&?); cofe_subst; eauto using uPred_weaken, cmra_included_r.
   * by intros ?; exists (unit x), x; rewrite cmra_unit_l.
 Qed. 
-Global Instance sep_commutative : Commutative (≡) (@uPred_sep M).
+Global Instance sep_comm : Comm (≡) (@uPred_sep M).
 Proof.
   by intros P Q x n ?; split;
-    intros (x1&x2&?&?&?); exists x2, x1; rewrite (commutative op).
+    intros (x1&x2&?&?&?); exists x2, x1; rewrite (comm op).
 Qed.
-Global Instance sep_associative : Associative (≡) (@uPred_sep M).
+Global Instance sep_assoc : Assoc (≡) (@uPred_sep M).
 Proof.
   intros P Q R x n ?; split.
   * intros (x1&x2&Hx&?&y1&y2&Hy&?&?); exists (x1 â‹… y1), y2; split_ands; auto.
-    + by rewrite -(associative op) -Hy -Hx.
+    + by rewrite -(assoc op) -Hy -Hx.
     + by exists x1, y1.
   * intros (x1&x2&Hx&(y1&y2&Hy&?&?)&?); exists y1, (y2 â‹… x2); split_ands; auto.
-    + by rewrite (associative op) -Hy -Hx.
+    + by rewrite (assoc op) -Hy -Hx.
     + by exists y2, x2.
 Qed.
 Lemma wand_intro_r P Q R : (P ★ Q) ⊑ R → P ⊑ (Q -★ R).
@@ -595,11 +598,11 @@ Global Instance wand_mono' : Proper (flip (⊑) ==> (⊑) ==> (⊑)) (@uPred_wan
 Proof. by intros P P' HP Q Q' HQ; apply wand_mono. Qed.
 
 Global Instance sep_True : RightId (≡) True%I (@uPred_sep M).
-Proof. by intros P; rewrite (commutative _) (left_id _ _). Qed.
+Proof. by intros P; rewrite comm left_id. Qed.
 Lemma sep_elim_l P Q : (P ★ Q) ⊑ P.
-Proof. by rewrite (True_intro Q) (right_id _ _). Qed.
+Proof. by rewrite (True_intro Q) right_id. Qed.
 Lemma sep_elim_r P Q : (P ★ Q) ⊑ Q.
-Proof. by rewrite (commutative (★))%I; apply sep_elim_l. Qed.
+Proof. by rewrite (comm (★))%I; apply sep_elim_l. Qed.
 Lemma sep_elim_l' P Q R : P ⊑ R → (P ★ Q) ⊑ R.
 Proof. intros ->; apply sep_elim_l. Qed.
 Lemma sep_elim_r' P Q R : Q ⊑ R → (P ★ Q) ⊑ R.
@@ -610,9 +613,9 @@ Proof. by intros; rewrite -(left_id True%I uPred_sep R); apply sep_mono. Qed.
 Lemma sep_intro_True_r P Q R : R ⊑ P → True ⊑ Q → R ⊑ (P ★ Q).
 Proof. by intros; rewrite -(right_id True%I uPred_sep R); apply sep_mono. Qed.
 Lemma wand_intro_l P Q R : (Q ★ P) ⊑ R → P ⊑ (Q -★ R).
-Proof. rewrite (commutative _); apply wand_intro_r. Qed.
+Proof. rewrite comm; apply wand_intro_r. Qed.
 Lemma wand_elim_r P Q : (P ★ (P -★ Q)) ⊑ Q.
-Proof. rewrite (commutative _ P); apply wand_elim_l. Qed.
+Proof. rewrite (comm _ P); apply wand_elim_l. Qed.
 Lemma wand_elim_l' P Q R : P ⊑ (Q -★ R) → (P ★ Q) ⊑ R.
 Proof. intros ->; apply wand_elim_l. Qed.
 Lemma wand_elim_r' P Q R : Q ⊑ (P -★ R) → (P ★ Q) ⊑ R.
@@ -627,9 +630,9 @@ Lemma const_elim_sep_r φ Q R : (φ → Q ⊑ R) → (Q ★ ■ φ) ⊑ R.
 Proof. intros; apply const_elim with φ; eauto. Qed.
 
 Global Instance sep_False : LeftAbsorb (≡) False%I (@uPred_sep M).
-Proof. intros P; apply (anti_symmetric _); auto. Qed.
+Proof. intros P; apply (anti_symm _); auto. Qed.
 Global Instance False_sep : RightAbsorb (≡) False%I (@uPred_sep M).
-Proof. intros P; apply (anti_symmetric _); auto. Qed.
+Proof. intros P; apply (anti_symm _); auto. Qed.
 
 Lemma sep_and_l P Q R : (P ★ (Q ∧ R)) ⊑ ((P ★ Q) ∧ (P ★ R)).
 Proof. auto. Qed.
@@ -637,22 +640,22 @@ Lemma sep_and_r P Q R : ((P ∧ Q) ★ R) ⊑ ((P ★ R) ∧ (Q ★ R)).
 Proof. auto. Qed.
 Lemma sep_or_l P Q R : (P ★ (Q ∨ R))%I ≡ ((P ★ Q) ∨ (P ★ R))%I.
 Proof.
-  apply (anti_symmetric (⊑)); last by eauto 8.
+  apply (anti_symm (⊑)); last by eauto 8.
   apply wand_elim_r', or_elim; apply wand_intro_l.
   - by apply or_intro_l.
   - by apply or_intro_r.
 Qed.
 Lemma sep_or_r P Q R : ((P ∨ Q) ★ R)%I ≡ ((P ★ R) ∨ (Q ★ R))%I.
-Proof. by rewrite -!(commutative _ R) sep_or_l. Qed.
+Proof. by rewrite -!(comm _ R) sep_or_l. Qed.
 Lemma sep_exist_l {A} P (Q : A → uPred M) : (P ★ ∃ a, Q a)%I ≡ (∃ a, P ★ Q a)%I.
 Proof.
-  intros; apply (anti_symmetric (⊑)).
+  intros; apply (anti_symm (⊑)).
   - apply wand_elim_r', exist_elim=>a. apply wand_intro_l.
     by rewrite -(exist_intro a).
   - apply exist_elim=> a; apply sep_mono; auto using exist_intro.
 Qed.
 Lemma sep_exist_r {A} (P: A → uPred M) Q: ((∃ a, P a) ★ Q)%I ≡ (∃ a, P a ★ Q)%I.
-Proof. setoid_rewrite (commutative _ _ Q); apply sep_exist_l. Qed.
+Proof. setoid_rewrite (comm _ _ Q); apply sep_exist_l. Qed.
 Lemma sep_forall_l {A} P (Q : A → uPred M) : (P ★ ∀ a, Q a) ⊑ (∀ a, P ★ Q a).
 Proof. by apply forall_intro=> a; rewrite forall_elim. Qed.
 Lemma sep_forall_r {A} (P : A → uPred M) Q : ((∀ a, P a) ★ Q) ⊑ (∀ a, P a ★ Q).
@@ -724,7 +727,7 @@ Qed.
 Lemma always_intro P Q : □ P ⊑ Q → □ P ⊑ □ Q.
 Proof.
   intros HPQ x n ??; apply HPQ; simpl in *; auto using cmra_unit_validN.
-  by rewrite cmra_unit_idempotent.
+  by rewrite cmra_unit_idemp.
 Qed.
 Lemma always_and P Q : (□ (P ∧ Q))%I ≡ (□ P ∧ □ Q)%I.
 Proof. done. Qed.
@@ -741,7 +744,7 @@ Qed.
 Lemma always_and_sep_l_1 P Q : (□ P ∧ Q) ⊑ (□ P ★ Q).
 Proof.
   intros x n ? [??]; exists (unit x), x; simpl in *.
-  by rewrite cmra_unit_l cmra_unit_idempotent.
+  by rewrite cmra_unit_l cmra_unit_idemp.
 Qed.
 Lemma always_later P : (□ ▷ P)%I ≡ (▷ □ P)%I.
 Proof. done. Qed.
@@ -759,26 +762,26 @@ Proof.
 Qed.
 Lemma always_eq {A:cofeT} (a b : A) : (□ (a ≡ b))%I ≡ (a ≡ b : uPred M)%I.
 Proof.
-  apply (anti_symmetric (⊑)); auto using always_elim.
+  apply (anti_symm (⊑)); auto using always_elim.
   apply (eq_rewrite a b (λ b, □ (a ≡ b))%I); auto.
   { intros n; solve_proper. }
   rewrite -(eq_refl _ True) always_const; auto.
 Qed.
 Lemma always_and_sep P Q : (□ (P ∧ Q))%I ≡ (□ (P ★ Q))%I.
-Proof. apply (anti_symmetric (⊑)); auto using always_and_sep_1. Qed.
+Proof. apply (anti_symm (⊑)); auto using always_and_sep_1. Qed.
 Lemma always_and_sep_l P Q : (□ P ∧ Q)%I ≡ (□ P ★ Q)%I.
-Proof. apply (anti_symmetric (⊑)); auto using always_and_sep_l_1. Qed.
+Proof. apply (anti_symm (⊑)); auto using always_and_sep_l_1. Qed.
 Lemma always_and_sep_r P Q : (P ∧ □ Q)%I ≡ (P ★ □ Q)%I.
-Proof. by rewrite !(commutative _ P) always_and_sep_l. Qed.
+Proof. by rewrite !(comm _ P) always_and_sep_l. Qed.
 Lemma always_sep P Q : (□ (P ★ Q))%I ≡ (□ P ★ □ Q)%I.
 Proof. by rewrite -always_and_sep -always_and_sep_l always_and. Qed.
 Lemma always_wand P Q : □ (P -★ Q) ⊑ (□ P -★ □ Q).
 Proof. by apply wand_intro_r; rewrite -always_sep wand_elim_l. Qed.
 Lemma always_sep_dup P : (□ P)%I ≡ (□ P ★ □ P)%I.
-Proof. by rewrite -always_sep -always_and_sep (idempotent _). Qed.
+Proof. by rewrite -always_sep -always_and_sep (idemp _). Qed.
 Lemma always_wand_impl P Q : (□ (P -★ Q))%I ≡ (□ (P → Q))%I.
 Proof.
-  apply (anti_symmetric (⊑)); [|by rewrite -impl_wand].
+  apply (anti_symm (⊑)); [|by rewrite -impl_wand].
   apply always_intro, impl_intro_r.
   by rewrite always_and_sep_l always_elim wand_elim_l.
 Qed.
@@ -792,16 +795,16 @@ Lemma ownM_op (a1 a2 : M) :
   uPred_ownM (a1 ⋅ a2) ≡ (uPred_ownM a1 ★ uPred_ownM a2)%I.
 Proof.
   intros x n ?; split.
-  * intros [z ?]; exists a1, (a2 â‹… z); split; [by rewrite (associative op)|].
+  * intros [z ?]; exists a1, (a2 â‹… z); split; [by rewrite (assoc op)|].
     split. by exists (unit a1); rewrite cmra_unit_r. by exists z.
   * intros (y1&y2&Hx&[z1 Hy1]&[z2 Hy2]); exists (z1 â‹… z2).
-    by rewrite (associative op _ z1) -(commutative op z1) (associative op z1)
-      -(associative op _ a2) (commutative op z1) -Hy1 -Hy2.
+    by rewrite (assoc op _ z1) -(comm op z1) (assoc op z1)
+      -(assoc op _ a2) (comm op z1) -Hy1 -Hy2.
 Qed.
 Lemma always_ownM_unit (a : M) : (□ uPred_ownM (unit a))%I ≡ uPred_ownM (unit a).
 Proof.
   intros x n; split; [by apply always_elim|intros [a' Hx]]; simpl.
-  rewrite -(cmra_unit_idempotent a) Hx.
+  rewrite -(cmra_unit_idemp a) Hx.
   apply cmra_unit_preservingN, cmra_includedN_l.
 Qed.
 Lemma always_ownM (a : M) : unit a ≡ a → (□ uPred_ownM a)%I ≡ uPred_ownM a.
@@ -809,7 +812,7 @@ Proof. by intros <-; rewrite always_ownM_unit. Qed.
 Lemma ownM_something : True ⊑ ∃ a, uPred_ownM a.
 Proof. intros x n ??. by exists x; simpl. Qed.
 Lemma ownM_empty `{Empty M, !CMRAIdentity M} : True ⊑ uPred_ownM ∅.
-Proof. intros x n ??; by  exists x; rewrite (left_id _ _). Qed.
+Proof. intros x n ??; by  exists x; rewrite left_id. Qed.
 Lemma ownM_valid (a : M) : uPred_ownM a ⊑ ✓ a.
 Proof. intros x n Hv [a' ?]; cofe_subst; eauto using cmra_validN_op_l. Qed.
 Lemma valid_intro {A : cmraT} (a : A) : ✓ a → True ⊑ ✓ a.
@@ -835,20 +838,20 @@ Global Instance big_and_perm : Proper ((≡ₚ) ==> (≡)) (@uPred_big_and M).
 Proof.
   induction 1 as [|P Ps Qs ? IH|P Q Ps|]; simpl; auto.
   * by rewrite IH.
-  * by rewrite !associative (commutative _ P).
+  * by rewrite !assoc (comm _ P).
   * etransitivity; eauto.
 Qed.
 Global Instance big_sep_perm : Proper ((≡ₚ) ==> (≡)) (@uPred_big_sep M).
 Proof.
   induction 1 as [|P Ps Qs ? IH|P Q Ps|]; simpl; auto.
   * by rewrite IH.
-  * by rewrite !associative (commutative _ P).
+  * by rewrite !assoc (comm _ P).
   * etransitivity; eauto.
 Qed.
 Lemma big_and_app Ps Qs : (Π∧ (Ps ++ Qs))%I ≡ (Π∧ Ps ∧ Π∧ Qs)%I.
-Proof. by induction Ps as [|?? IH]; rewrite /= ?left_id -?associative ?IH. Qed.
+Proof. by induction Ps as [|?? IH]; rewrite /= ?left_id -?assoc ?IH. Qed.
 Lemma big_sep_app Ps Qs : (Π★ (Ps ++ Qs))%I ≡ (Π★ Ps ★ Π★ Qs)%I.
-Proof. by induction Ps as [|?? IH]; rewrite /= ?left_id -?associative ?IH. Qed.
+Proof. by induction Ps as [|?? IH]; rewrite /= ?left_id -?assoc ?IH. Qed.
 Lemma big_sep_and Ps : (Π★ Ps) ⊑ (Π∧ Ps).
 Proof. by induction Ps as [|P Ps IH]; simpl; auto. Qed.
 Lemma big_and_elem_of Ps P : P ∈ Ps → (Π∧ Ps) ⊑ P.
@@ -883,7 +886,7 @@ Proof.
   intros; rewrite /TimelessP later_sep (timelessP P) (timelessP Q).
   apply wand_elim_l', or_elim; apply wand_intro_r; auto.
   apply wand_elim_r', or_elim; apply wand_intro_r; auto.
-  rewrite ?(commutative _ Q); auto.
+  rewrite ?(comm _ Q); auto.
 Qed.
 Global Instance wand_timeless P Q : TimelessP Q → TimelessP (P -★ Q).
 Proof.
@@ -963,7 +966,7 @@ Proof. unfold ASL=> ?; revert ys; induction xs=> -[|??]; constructor; auto. Qed.
 
 (* Derived lemmas for always stable *)
 Lemma always_always P `{!AlwaysStable P} : (□ P)%I ≡ P.
-Proof. apply (anti_symmetric (⊑)); auto using always_elim. Qed.
+Proof. apply (anti_symm (⊑)); auto using always_elim. Qed.
 Lemma always_intro' P Q `{!AlwaysStable P} : P ⊑ Q → P ⊑ □ Q.
 Proof. rewrite -(always_always P); apply always_intro. Qed.
 Lemma always_and_sep_l' P Q `{!AlwaysStable P} : (P ∧ Q)%I ≡ (P ★ Q)%I.
diff --git a/heap_lang/derived.v b/heap_lang/derived.v
index eadeb450a3babc1c96474636520c8c4d80ddff93..a8fd8ea2ea70476435d7874b6e0809544da8572d 100644
--- a/heap_lang/derived.v
+++ b/heap_lang/derived.v
@@ -16,20 +16,17 @@ Implicit Types Q : val → iProp heap_lang Σ.
 
 (** Proof rules for the sugar *)
 Lemma wp_lam E x ef e v Q :
-  to_val e = Some v → ▷ wp E (gsubst ef x e) Q ⊑ wp E (App (Lam x ef) e) Q.
-Proof.
-  intros <-%of_to_val; rewrite -wp_rec ?to_of_val //.
-  by rewrite (gsubst_correct _ _ (RecV _ _ _)) subst_empty.
-Qed.
+  to_val e = Some v → ▷ wp E (subst ef x v) Q ⊑ wp E (App (Lam x ef) e) Q.
+Proof. intros. by rewrite -wp_rec ?subst_empty. Qed.
 
 Lemma wp_let E x e1 e2 v Q :
-  to_val e1 = Some v → ▷ wp E (gsubst e2 x e1) Q ⊑ wp E (Let x e1 e2) Q.
+  to_val e1 = Some v → ▷ wp E (subst e2 x v) Q ⊑ wp E (Let x e1 e2) Q.
 Proof. apply wp_lam. Qed.
 
 Lemma wp_seq E e1 e2 Q : wp E e1 (λ _, ▷ wp E e2 Q) ⊑ wp E (Seq e1 e2) Q.
 Proof.
   rewrite -(wp_bind [LetCtx "" e2]). apply wp_mono=>v.
-  by rewrite -wp_let //= ?gsubst_correct ?subst_empty ?to_of_val.
+  by rewrite -wp_let //= ?to_of_val ?subst_empty.
 Qed.
 
 Lemma wp_le E (n1 n2 : Z) P Q :
@@ -58,5 +55,4 @@ Proof.
   intros. rewrite -wp_bin_op //; [].
   destruct (bool_decide_reflect (n1 = n2)); by eauto with omega.
 Qed.
-
 End derived.
diff --git a/heap_lang/heap_lang.v b/heap_lang/heap_lang.v
index 1b428cda2216edeabd8eedf6dcc726f3d90c38c8..eba60945618504d05b209b10771eb43c9f16d7db 100644
--- a/heap_lang/heap_lang.v
+++ b/heap_lang/heap_lang.v
@@ -242,13 +242,13 @@ Proof.
   revert v; induction e; intros; simplify_option_equality; auto with f_equal.
 Qed.
 
-Instance: Injective (=) (=) of_val.
-Proof. by intros ?? Hv; apply (injective Some); rewrite -!to_of_val Hv. Qed.
+Instance: Inj (=) (=) of_val.
+Proof. by intros ?? Hv; apply (inj Some); rewrite -!to_of_val Hv. Qed.
 
-Instance fill_item_inj Ki : Injective (=) (=) (fill_item Ki).
+Instance fill_item_inj Ki : Inj (=) (=) (fill_item Ki).
 Proof. destruct Ki; intros ???; simplify_equality'; auto with f_equal. Qed.
 
-Instance ectx_fill_inj K : Injective (=) (=) (fill K).
+Instance ectx_fill_inj K : Inj (=) (=) (fill K).
 Proof. red; induction K as [|Ki K IH]; naive_solver. Qed.
 
 Lemma fill_app K1 K2 e : fill (K1 ++ K2) e = fill K1 (fill K2 e).
@@ -348,7 +348,7 @@ Proof.
   * intros e1 σ1 e2 σ2 ? Hnval [K'' e1'' e2'' Heq1 -> Hstep].
     destruct (heap_lang.step_by_val
       K K'' e1 e1'' σ1 e2'' σ2 ef) as [K' ->]; eauto.
-    rewrite heap_lang.fill_app in Heq1; apply (injective _) in Heq1.
+    rewrite heap_lang.fill_app in Heq1; apply (inj _) in Heq1.
     exists (heap_lang.fill K' e2''); rewrite heap_lang.fill_app; split; auto.
     econstructor; eauto.
 Qed.
diff --git a/heap_lang/lifting.v b/heap_lang/lifting.v
index 8c078f9b9c2b31f719208b29ceb2f3a74e2cfc6d..4c643b9a74f8d26d1444ce7f1e3f4e255da538d9 100644
--- a/heap_lang/lifting.v
+++ b/heap_lang/lifting.v
@@ -1,60 +1,11 @@
-Require Import prelude.gmap program_logic.lifting program_logic.ownership.
-Require Export program_logic.weakestpre heap_lang.heap_lang_tactics.
+Require Export program_logic.weakestpre heap_lang.heap_lang.
+Require Import program_logic.lifting.
+Require Import program_logic.ownership. (* for ownP *)
+Require Import heap_lang.tactics.
 Export heap_lang. (* Prefer heap_lang names over language names. *)
 Import uPred.
 Local Hint Extern 0 (language.reducible _ _) => do_step ltac:(eauto 2).
 
-(** The substitution operation [gsubst e x ev] behaves just as [subst] but
-in case [e] does not contain the free variable [x] it will return [e] in a
-way that is syntactically equal (i.e. without any Coq-level delta reduction
-performed) *)
-Definition gsubst_lift {A B C} (f : A → B → C)
-    (x : A) (y : B) (mx : option A) (my : option B) : option C :=
-  match mx, my with
-  | Some x, Some y => Some (f x y)
-  | Some x, None => Some (f x y)
-  | None, Some y => Some (f x y)
-  | None, None => None
-  end.
-Fixpoint gsubst_go (e : expr) (x : string) (ev : expr) : option expr :=
-  match e with
-  | Var y => if decide (x = y ∧ x ≠ "") then Some ev else None
-  | Rec f y e =>
-     if decide (x ≠ f ∧ x ≠ y) then Rec f y <$> gsubst_go e x ev else None
-  | App e1 e2 => gsubst_lift App e1 e2 (gsubst_go e1 x ev) (gsubst_go e2 x ev)
-  | Lit l => None
-  | UnOp op e => UnOp op <$> gsubst_go e x ev
-  | BinOp op e1 e2 =>
-     gsubst_lift (BinOp op) e1 e2 (gsubst_go e1 x ev) (gsubst_go e2 x ev)
-  | If e0 e1 e2 =>
-     gsubst_lift id (If e0 e1) e2
-       (gsubst_lift If e0 e1 (gsubst_go e0 x ev) (gsubst_go e1 x ev))
-       (gsubst_go e2 x ev)
-  | Pair e1 e2 => gsubst_lift Pair e1 e2 (gsubst_go e1 x ev) (gsubst_go e2 x ev)
-  | Fst e => Fst <$> gsubst_go e x ev
-  | Snd e => Snd <$> gsubst_go e x ev
-  | InjL e => InjL <$> gsubst_go e x ev
-  | InjR e => InjR <$> gsubst_go e x ev
-  | Case e0 x1 e1 x2 e2 =>
-     gsubst_lift id (Case e0 x1 e1 x2) e2
-       (gsubst_lift (λ e0' e1', Case e0' x1 e1' x2) e0 e1
-         (gsubst_go e0 x ev)
-         (if decide (x ≠ x1) then gsubst_go e1 x ev else None))
-       (if decide (x ≠ x2) then gsubst_go e2 x ev else None)
-  | Fork e => Fork <$> gsubst_go e x ev
-  | Loc l => None
-  | Alloc e => Alloc <$> gsubst_go e x ev
-  | Load e => Load <$> gsubst_go e x ev
-  | Store e1 e2 => gsubst_lift Store e1 e2 (gsubst_go e1 x ev) (gsubst_go e2 x ev)
-  | Cas e0 e1 e2 =>
-     gsubst_lift id (Cas e0 e1) e2
-       (gsubst_lift Cas e0 e1 (gsubst_go e0 x ev) (gsubst_go e1 x ev))
-       (gsubst_go e2 x ev)
-  end.
-Definition gsubst (e : expr) (x : string) (ev : expr) : expr :=
-  from_option e (gsubst_go e x ev).
-Arguments gsubst !_ _ _/.
-
 Section lifting.
 Context {Σ : iFunctor}.
 Implicit Types P : iProp heap_lang Σ.
@@ -62,20 +13,6 @@ Implicit Types Q : val → iProp heap_lang Σ.
 Implicit Types K : ectx.
 Implicit Types ef : option expr.
 
-Lemma gsubst_None e x v : gsubst_go e x (of_val v) = None → e = subst e x v.
-Proof.
-  induction e; simpl; unfold gsubst_lift; intros;
-    repeat (simplify_option_equality || case_match); f_equal; auto.
-Qed.
-Lemma gsubst_correct e x v : gsubst e x (of_val v) = subst e x v.
-Proof.
-  unfold gsubst; destruct (gsubst_go e x (of_val v)) as [e'|] eqn:He; simpl;
-    last by apply gsubst_None.
-  revert e' He; induction e; simpl; unfold gsubst_lift; intros;
-    repeat (simplify_option_equality || case_match);
-    f_equal; auto using gsubst_None.
-Qed.
-
 (** Bind. *)
 Lemma wp_bind {E e} K Q :
   wp E e (λ v, wp E (fill K (of_val v)) Q) ⊑ wp E (fill K e) Q.
@@ -99,7 +36,7 @@ Proof.
   apply sep_mono, later_mono; first done.
   apply forall_intro=>e2; apply forall_intro=>σ2; apply forall_intro=>ef.
   apply wand_intro_l.
-  rewrite always_and_sep_l' -associative -always_and_sep_l'.
+  rewrite always_and_sep_l' -assoc -always_and_sep_l'.
   apply const_elim_l=>-[l [-> [-> [-> ?]]]].
   by rewrite (forall_elim l) right_id const_equiv // left_id wand_elim_r.
 Qed.
@@ -149,18 +86,12 @@ Qed.
 
 Lemma wp_rec E f x e1 e2 v Q :
   to_val e2 = Some v →
-  ▷ wp E (gsubst (gsubst e1 f (Rec f x e1)) x e2) Q ⊑ wp E (App (Rec f x e1) e2) Q.
+  ▷ wp E (subst (subst e1 f (RecV f x e1)) x v) Q ⊑ wp E (App (Rec f x e1) e2) Q.
 Proof.
-  intros <-%of_to_val; rewrite gsubst_correct (gsubst_correct _ _ (RecV _ _ _)).
-  rewrite -(wp_lift_pure_det_step (App _ _)
+  intros. rewrite -(wp_lift_pure_det_step (App _ _)
     (subst (subst e1 f (RecV f x e1)) x v) None) ?right_id //=;
     intros; inv_step; eauto.
 Qed.
-Lemma wp_rec' E e1 f x erec e2 v Q :
-  e1 = Rec f x erec →
-  to_val e2 = Some v →
-  ▷ wp E (gsubst (gsubst erec f e1) x e2) Q ⊑ wp E (App e1 e2) Q.
-Proof. intros ->; apply wp_rec. Qed.
 
 Lemma wp_un_op E op l l' Q :
   un_op_eval op l = Some l' →
@@ -208,20 +139,18 @@ Qed.
 
 Lemma wp_case_inl E e0 v0 x1 e1 x2 e2 Q :
   to_val e0 = Some v0 →
-  ▷ wp E (gsubst e1 x1 e0) Q ⊑ wp E (Case (InjL e0) x1 e1 x2 e2) Q.
+  ▷ wp E (subst e1 x1 v0) Q ⊑ wp E (Case (InjL e0) x1 e1 x2 e2) Q.
 Proof.
-  intros <-%of_to_val; rewrite gsubst_correct.
-  rewrite -(wp_lift_pure_det_step (Case _ _ _ _ _) (subst e1 x1 v0) None)
-    ?right_id //; intros; inv_step; eauto.
+  intros. rewrite -(wp_lift_pure_det_step (Case _ _ _ _ _)
+    (subst e1 x1 v0) None) ?right_id //; intros; inv_step; eauto.
 Qed.
 
 Lemma wp_case_inr E e0 v0 x1 e1 x2 e2 Q :
   to_val e0 = Some v0 →
-  ▷ wp E (gsubst e2 x2 e0) Q ⊑ wp E (Case (InjR e0) x1 e1 x2 e2) Q.
+  ▷ wp E (subst e2 x2 v0) Q ⊑ wp E (Case (InjR e0) x1 e1 x2 e2) Q.
 Proof.
-  intros <-%of_to_val; rewrite gsubst_correct.
-  rewrite -(wp_lift_pure_det_step (Case _ _ _ _ _) (subst e2 x2 v0) None)
-    ?right_id //; intros; inv_step; eauto.
+  intros. rewrite -(wp_lift_pure_det_step (Case _ _ _ _ _)
+    (subst e2 x2 v0) None) ?right_id //; intros; inv_step; eauto.
 Qed.
 
 End lifting.
diff --git a/heap_lang/notation.v b/heap_lang/notation.v
index e95e8907e9e7782ba531346a5937d957477b0fd8..fb7efc5da7459b83ee18e8513c2827bf67c22be5 100644
--- a/heap_lang/notation.v
+++ b/heap_lang/notation.v
@@ -2,6 +2,8 @@ Require Export heap_lang.derived.
 
 Delimit Scope lang_scope with L.
 Bind Scope lang_scope with expr val.
+
+(* What about Arguments for hoare triples?. *)
 Arguments wp {_ _} _ _%L _.
 
 Coercion LitInt : Z >-> base_lit.
@@ -16,13 +18,16 @@ Coercion of_val : val >-> expr.
     first. *)
 (* We have overlapping notation for values and expressions, with the expressions
    coming first. This way, parsing as a value will be preferred. If an expression
-   was needed, the coercion of_val will be called. *)
-(* What about Arguments for hoare triples?. *)
-Notation "' l" := (Lit l) (at level 8, format "' l") : lang_scope.
-Notation "' l" := (LitV l) (at level 8, format "' l") : lang_scope.
-Notation "! e" := (Load e%L) (at level 10, format "! e") : lang_scope.
-Notation "'ref' e" := (Alloc e%L) (at level 30) : lang_scope.
-Notation "- e" := (UnOp MinusUnOp e%L) (at level 35, right associativity) : lang_scope.
+   was needed, the coercion of_val will be called. The notations for literals
+   are not put in any scope so as to avoid lots of annoying %L scopes while
+   pretty printing. *)
+Notation "' l" := (Lit l%Z) (at level 8, format "' l").
+Notation "' l" := (LitV l%Z) (at level 8, format "' l").
+Notation "! e" := (Load e%L) (at level 10, right associativity) : lang_scope.
+Notation "'ref' e" := (Alloc e%L)
+  (at level 30, right associativity) : lang_scope.
+Notation "- e" := (UnOp MinusUnOp e%L)
+  (at level 35, right associativity) : lang_scope.
 Notation "e1 + e2" := (BinOp PlusOp e1%L e2%L)
   (at level 50, left associativity) : lang_scope.
 Notation "e1 - e2" := (BinOp MinusOp e1%L e2%L)
@@ -50,5 +55,14 @@ Notation "λ: x , e" := (LamV x e%L)
   (at level 102, x at level 1, e at level 200) : lang_scope.
 Notation "'let:' x := e1 'in' e2" := (Lam x e2%L e1%L)
   (at level 102, x at level 1, e1, e2 at level 200) : lang_scope.
-Notation "e1 ; e2" := (Lam "" e2%L e1%L)
+Notation "e1 ;; e2" := (Lam "" e2%L e1%L)
   (at level 100, e2 at level 200) : lang_scope.
+
+Notation "'rec:' f x y := e" := (Rec f x (Lam y e%L))
+  (at level 102, f, x, y at level 1, e at level 200) : lang_scope.
+Notation "'rec:' f x y := e" := (RecV f x (Lam y e%L))
+  (at level 102, f, x, y at level 1, e at level 200) : lang_scope.
+Notation "'rec:' f x y z := e" := (Rec f x (Lam y (Lam z e%L)))
+  (at level 102, f, x, y, z at level 1, e at level 200) : lang_scope.
+Notation "'rec:' f x y z := e" := (RecV f x (Lam y (Lam z e%L)))
+  (at level 102, f, x, y, z at level 1, e at level 200) : lang_scope.
\ No newline at end of file
diff --git a/heap_lang/substitution.v b/heap_lang/substitution.v
new file mode 100644
index 0000000000000000000000000000000000000000..2d8ce873fe4474324554d2af7722e7984afeafdf
--- /dev/null
+++ b/heap_lang/substitution.v
@@ -0,0 +1,147 @@
+Require Export heap_lang.derived.
+
+(** We define an alternative notion of substitution [gsubst e x ev] that
+preserves the expression [e] syntactically in case the variable [x] does not
+occur freely in [e]. By syntactically, we mean that [e] is preserved without
+unfolding any Coq definitions. For example:
+
+<<
+  Definition id : val := λ: "x", "x".
+  Eval simpl in subst (id "y") "y" '10.   (* (Lam "x" "x") '10 *)
+  Eval simpl in gsubst (id "y") "y" '10.  (* id '10 *)
+>>
+
+For [gsubst e x ev] to work, [e] should not contain any opaque parts.
+
+The function [gsubst e x ev] differs in yet another way from [subst e x v].
+The function [gsubst] substitutes an expression [ev] whereas [subst]
+substitutes a value [v]. This way we avoid unnecessary conversion back and
+forth between values and expressions, which could also cause Coq definitions
+to be unfolded. For example, consider the rule [wp_rec'] from below:
+
+<<
+  Definition foo : val := rec: "f" "x" := ... .
+
+  Lemma wp_rec' E e1 f x erec e2 v Q :
+    e1 = Rec f x erec →
+    to_val e2 = Some v →
+    ▷ wp E (gsubst (gsubst erec f e1) x e2) Q ⊑ wp E (App e1 e2) Q.
+>>
+
+We ensure that [e1] is substituted instead of [RecV f x erec]. So, for example
+when taking [e1 := foo] we ensure that [foo] is substituted without being
+unfolded. *)
+
+(** * Implementation *)
+(** The core of [gsubst e x ev] is the partial function [gsubst_go e x ev] that
+returns [None] in case [x] does not occur freely in [e] and [Some e'] in case
+[x] occurs in [e]. The function [gsubst e x ev] is then simply defined as
+[from_option e (gsubst_go e x ev)]. *)
+Definition gsubst_lift {A B C} (f : A → B → C)
+    (x : A) (y : B) (mx : option A) (my : option B) : option C :=
+  match mx, my with
+  | Some x, Some y => Some (f x y)
+  | Some x, None => Some (f x y)
+  | None, Some y => Some (f x y)
+  | None, None => None
+  end.
+Fixpoint gsubst_go (e : expr) (x : string) (ev : expr) : option expr :=
+  match e with
+  | Var y => if decide (x = y ∧ x ≠ "") then Some ev else None
+  | Rec f y e =>
+     if decide (x ≠ f ∧ x ≠ y) then Rec f y <$> gsubst_go e x ev else None
+  | App e1 e2 => gsubst_lift App e1 e2 (gsubst_go e1 x ev) (gsubst_go e2 x ev)
+  | Lit l => None
+  | UnOp op e => UnOp op <$> gsubst_go e x ev
+  | BinOp op e1 e2 =>
+     gsubst_lift (BinOp op) e1 e2 (gsubst_go e1 x ev) (gsubst_go e2 x ev)
+  | If e0 e1 e2 =>
+     gsubst_lift id (If e0 e1) e2
+       (gsubst_lift If e0 e1 (gsubst_go e0 x ev) (gsubst_go e1 x ev))
+       (gsubst_go e2 x ev)
+  | Pair e1 e2 => gsubst_lift Pair e1 e2 (gsubst_go e1 x ev) (gsubst_go e2 x ev)
+  | Fst e => Fst <$> gsubst_go e x ev
+  | Snd e => Snd <$> gsubst_go e x ev
+  | InjL e => InjL <$> gsubst_go e x ev
+  | InjR e => InjR <$> gsubst_go e x ev
+  | Case e0 x1 e1 x2 e2 =>
+     gsubst_lift id (Case e0 x1 e1 x2) e2
+       (gsubst_lift (λ e0' e1', Case e0' x1 e1' x2) e0 e1
+         (gsubst_go e0 x ev)
+         (if decide (x ≠ x1) then gsubst_go e1 x ev else None))
+       (if decide (x ≠ x2) then gsubst_go e2 x ev else None)
+  | Fork e => Fork <$> gsubst_go e x ev
+  | Loc l => None
+  | Alloc e => Alloc <$> gsubst_go e x ev
+  | Load e => Load <$> gsubst_go e x ev
+  | Store e1 e2 => gsubst_lift Store e1 e2 (gsubst_go e1 x ev) (gsubst_go e2 x ev)
+  | Cas e0 e1 e2 =>
+     gsubst_lift id (Cas e0 e1) e2
+       (gsubst_lift Cas e0 e1 (gsubst_go e0 x ev) (gsubst_go e1 x ev))
+       (gsubst_go e2 x ev)
+  end.
+Definition gsubst (e : expr) (x : string) (ev : expr) : expr :=
+  from_option e (gsubst_go e x ev).
+
+(** * Simpl  *)
+(** Ensure that [simpl] unfolds [gsubst e x ev] when applied to a concrete term
+[e] and use [simpl nomatch] to ensure that it does not reduce in case [e]
+contains any opaque parts that block reduction. *)
+Arguments gsubst !_ _ _/ : simpl nomatch.
+
+(** We define heap_lang functions as values (see [id] above). In order to
+ensure too eager conversion to expressions, we block [simpl]. *)
+Arguments of_val : simpl never.
+
+(** * Correctness *)
+(** We prove that [gsubst] behaves like [subst] when substituting values. *)
+Lemma gsubst_None e x v : gsubst_go e x (of_val v) = None → e = subst e x v.
+Proof.
+  induction e; simpl; unfold gsubst_lift; intros;
+    repeat (simplify_option_equality || case_match); f_equal; auto.
+Qed.
+Lemma gsubst_correct e x v : gsubst e x (of_val v) = subst e x v.
+Proof.
+  unfold gsubst; destruct (gsubst_go e x (of_val v)) as [e'|] eqn:He; simpl;
+    last by apply gsubst_None.
+  revert e' He; induction e; simpl; unfold gsubst_lift; intros;
+    repeat (simplify_option_equality || case_match);
+    f_equal; auto using gsubst_None.
+Qed.
+
+(** * Weakest precondition rules *)
+Section wp.
+Context {Σ : iFunctor}.
+Implicit Types P : iProp heap_lang Σ.
+Implicit Types Q : val → iProp heap_lang Σ.
+Hint Resolve to_of_val.
+
+Lemma wp_rec' E e1 f x erec e2 v Q :
+  e1 = Rec f x erec →
+  to_val e2 = Some v →
+  ▷ wp E (gsubst (gsubst erec f e1) x e2) Q ⊑ wp E (App e1 e2) Q.
+Proof.
+  intros -> <-%of_to_val.
+  rewrite (gsubst_correct _ _ (RecV _ _ _)) gsubst_correct.
+  by apply wp_rec.
+Qed.
+
+Lemma wp_lam' E x ef e v Q :
+  to_val e = Some v → ▷ wp E (gsubst ef x e) Q ⊑ wp E (App (Lam x ef) e) Q.
+Proof. intros <-%of_to_val; rewrite gsubst_correct. by apply wp_lam. Qed.
+
+Lemma wp_let' E x e1 e2 v Q :
+  to_val e1 = Some v → ▷ wp E (gsubst e2 x e1) Q ⊑ wp E (Let x e1 e2) Q.
+Proof. apply wp_lam'. Qed.
+
+Lemma wp_case_inl' E e0 v0 x1 e1 x2 e2 Q :
+  to_val e0 = Some v0 →
+  ▷ wp E (gsubst e1 x1 e0) Q ⊑ wp E (Case (InjL e0) x1 e1 x2 e2) Q.
+Proof. intros <-%of_to_val; rewrite gsubst_correct. by apply wp_case_inl. Qed.
+
+Lemma wp_case_inr' E e0 v0 x1 e1 x2 e2 Q :
+  to_val e0 = Some v0 →
+  ▷ wp E (gsubst e2 x2 e0) Q ⊑ wp E (Case (InjR e0) x1 e1 x2 e2) Q.
+Proof. intros <-%of_to_val; rewrite gsubst_correct. by apply wp_case_inr. Qed.
+End wp.
+
diff --git a/heap_lang/heap_lang_tactics.v b/heap_lang/tactics.v
similarity index 100%
rename from heap_lang/heap_lang_tactics.v
rename to heap_lang/tactics.v
diff --git a/heap_lang/tests.v b/heap_lang/tests.v
index 01a987d573ed6576a76d52d20f5f398ae2131bce..90e890c90b905db7711544d89de5f62d387884b8 100644
--- a/heap_lang/tests.v
+++ b/heap_lang/tests.v
@@ -1,6 +1,6 @@
 (** This file is essentially a bunch of testcases. *)
 Require Import program_logic.ownership.
-Require Import heap_lang.notation.
+Require Import heap_lang.substitution heap_lang.tactics heap_lang.notation.
 Import uPred.
 
 Module LangTests.
@@ -27,7 +27,7 @@ Module LiftingTests.
   Implicit Types Q : val → iProp heap_lang Σ.
 
   Definition e  : expr :=
-    let: "x" := ref '1 in "x" <- !"x" + '1; !"x".
+    let: "x" := ref '1 in "x" <- !"x" + '1;; !"x".
   Goal ∀ σ E, ownP (Σ:=Σ) σ ⊑ wp E e (λ v, v = ('2)%L).
   Proof.
     move=> σ E. rewrite /e.
@@ -55,68 +55,61 @@ Module LiftingTests.
   Qed.
 
   Definition FindPred : val :=
-    λ: "x", (rec: "pred" "y" :=
+    rec: "pred" "x" "y" :=
       let: "yp" := "y" + '1 in
-      if "yp" < "x" then "pred" "yp" else "y").
+      if "yp" < "x" then "pred" "x" "yp" else "y".
   Definition Pred : val :=
-    λ: "x", if "x" ≤ '0 then -FindPred (-"x" + '2) '0 else FindPred "x" '0.
+    λ: "x",
+      if "x" ≤ '0 then -FindPred (-"x" + '2) '0 else FindPred "x" '0.
 
   Lemma FindPred_spec n1 n2 E Q :
-    (■ (n1 < n2) ∧ Q (LitV (n2 - 1))) ⊑ wp E (FindPred 'n2 'n1)%L Q.
+    (■ (n1 < n2) ∧ Q '(n2 - 1)) ⊑ wp E (FindPred 'n2 'n1)%L Q.
   Proof.
-    (* FIXME there are some annoying scopes shown here: %Z, %L. *)
-    rewrite /FindPred.
-    rewrite -(wp_bindi (AppLCtx _)) -wp_let //=.
-    revert n1. apply löb_all_1=>n1.
-    rewrite (commutative uPred_and (â–  _)%I) associative; apply const_elim_r=>?.
-    rewrite -wp_value' //.
-    rewrite -wp_rec' // =>-/=.
+    revert n1; apply löb_all_1=>n1.
+    rewrite (comm uPred_and (â–  _)%I) assoc; apply const_elim_r=>?.
+    (* first need to do the rec to get a later *)
+    rewrite -(wp_bindi (AppLCtx _)) /=.
+    rewrite -wp_rec' // =>-/=; rewrite -wp_value' //=.
     (* FIXME: ssr rewrite fails with "Error: _pattern_value_ is used in conclusion." *)
     rewrite ->(later_intro (Q _)).
     rewrite -!later_and; apply later_mono.
     (* Go on *)
-    rewrite -(wp_bindi (LetCtx _ _)) -wp_bin_op //= -wp_let //=.
-    rewrite -(wp_bindi (IfCtx _ _)) /= -!later_intro.
+    rewrite -wp_let' //= -later_intro.
+    rewrite -(wp_bindi (LetCtx _ _)) -wp_bin_op //= -wp_let' //= -!later_intro.
+    rewrite -(wp_bindi (IfCtx _ _)) /=.
     apply wp_lt=> ?.
-    - rewrite -wp_if_true.
-      rewrite -later_intro (forall_elim (n1 + 1)) const_equiv; last omega.
-      rewrite left_id impl_elim_l. by rewrite -(wp_bindi (AppLCtx _)).
+    - rewrite -wp_if_true -!later_intro.
+      rewrite (forall_elim (n1 + 1)) const_equiv; last omega.
+      by rewrite left_id impl_elim_l.
     - assert (n1 = n2 - 1) as -> by omega.
-      rewrite -wp_if_false.
-      by rewrite -!later_intro -wp_value' // and_elim_r.
+      rewrite -wp_if_false -!later_intro.
+      by rewrite -wp_value' // and_elim_r.
   Qed.
 
-  (* FIXME : For now apparent reason, I cannot prove this inline. *)
-  Lemma Pred_sub_helper n : n - 1 = - (- n + 2 - 1).
-  Proof. intros. omega. Qed.
-
   Lemma Pred_spec n E Q : ▷ Q (LitV (n - 1)) ⊑ wp E (Pred 'n)%L Q.
   Proof.
-    rewrite -wp_lam //=.
+    rewrite -wp_lam' //=.
     rewrite -(wp_bindi (IfCtx _ _)) /=.
     apply later_mono, wp_le=> Hn.
     - rewrite -wp_if_true.
-      rewrite -(wp_bindi (UnOpCtx _)).
-      (* FIXME use list notation. *)
-      rewrite -(wp_bind ((AppLCtx _)::(AppRCtx FindPred)::nil)).
-      rewrite -(wp_bindi (BinOpLCtx _ _)).
+      rewrite -(wp_bindi (UnOpCtx _)) /=.
+      rewrite -(wp_bind [AppLCtx _; AppRCtx _]) /=.
+      rewrite -(wp_bindi (BinOpLCtx _ _)) /=.
       rewrite -wp_un_op //=.
       rewrite -wp_bin_op //= -!later_intro.
       rewrite -FindPred_spec. apply and_intro; first by (apply const_intro; omega).
       rewrite -wp_un_op //= -later_intro.
-      assert (n - 1 = - (- n + 2 - 1)) as EQ by omega.
-      by rewrite EQ.
-    - rewrite -wp_if_false.
-      rewrite -!later_intro -FindPred_spec.
+      by assert (n - 1 = - (- n + 2 - 1)) as -> by omega.
+    - rewrite -wp_if_false -!later_intro.
+      rewrite -FindPred_spec.
       auto using and_intro, const_intro with omega.
   Qed.
 
   Goal ∀ E,
-    True ⊑ wp (Σ:=Σ) E (let: "x" := Pred '42 in Pred "x")
-                       (λ v, v = ('40)%L).
+    True ⊑ wp (Σ:=Σ) E (let: "x" := Pred '42 in Pred "x") (λ v, v = '40).
   Proof.
     intros E.
-    rewrite -(wp_bindi (LetCtx _ _)) -Pred_spec //= -wp_let //=.
-    rewrite -Pred_spec -!later_intro /=. by apply const_intro.
+    rewrite -(wp_bindi (LetCtx _ _)) -Pred_spec //= -wp_let' //=.
+    by rewrite -Pred_spec -!later_intro /=.
   Qed.
 End LiftingTests.
diff --git a/prelude/base.v b/prelude/base.v
index 82a05497e9f4bec84769bf699127e6d1c4d78c13..3f30a1122c5cd19255ebdd8cf3bb02011c9e0252 100644
--- a/prelude/base.v
+++ b/prelude/base.v
@@ -514,71 +514,71 @@ Arguments insertE _ _ _ _ _ _ !_ _ !_ / : simpl nomatch.
 (** ** Common properties *)
 (** These operational type classes allow us to refer to common mathematical
 properties in a generic way. For example, for injectivity of [(k ++)] it
-allows us to write [injective (k ++)] instead of [app_inv_head k]. *)
-Class Injective {A B} (R : relation A) (S : relation B) (f : A → B) : Prop :=
-  injective: ∀ x y, S (f x) (f y) → R x y.
-Class Injective2 {A B C} (R1 : relation A) (R2 : relation B)
+allows us to write [inj (k ++)] instead of [app_inv_head k]. *)
+Class Inj {A B} (R : relation A) (S : relation B) (f : A → B) : Prop :=
+  inj x y : S (f x) (f y) → R x y.
+Class Inj2 {A B C} (R1 : relation A) (R2 : relation B)
     (S : relation C) (f : A → B → C) : Prop :=
-  injective2: ∀ x1 x2  y1 y2, S (f x1 x2) (f y1 y2) → R1 x1 y1 ∧ R2 x2 y2.
+  inj2 x1 x2 y1 y2 : S (f x1 x2) (f y1 y2) → R1 x1 y1 ∧ R2 x2 y2.
 Class Cancel {A B} (S : relation B) (f : A → B) (g : B → A) : Prop :=
-  cancel: ∀ x, S (f (g x)) x.
-Class Surjective {A B} (R : relation B) (f : A → B) :=
-  surjective : ∀ y, ∃ x, R (f x) y.
-Class Idempotent {A} (R : relation A) (f : A → A → A) : Prop :=
-  idempotent: ∀ x, R (f x x) x.
-Class Commutative {A B} (R : relation A) (f : B → B → A) : Prop :=
-  commutative: ∀ x y, R (f x y) (f y x).
+  cancel : ∀ x, S (f (g x)) x.
+Class Surj {A B} (R : relation B) (f : A → B) :=
+  surj y : ∃ x, R (f x) y.
+Class IdemP {A} (R : relation A) (f : A → A → A) : Prop :=
+  idemp x : R (f x x) x.
+Class Comm {A B} (R : relation A) (f : B → B → A) : Prop :=
+  comm x y : R (f x y) (f y x).
 Class LeftId {A} (R : relation A) (i : A) (f : A → A → A) : Prop :=
-  left_id: ∀ x, R (f i x) x.
+  left_id x : R (f i x) x.
 Class RightId {A} (R : relation A) (i : A) (f : A → A → A) : Prop :=
-  right_id: ∀ x, R (f x i) x.
-Class Associative {A} (R : relation A) (f : A → A → A) : Prop :=
-  associative: ∀ x y z, R (f x (f y z)) (f (f x y) z).
+  right_id x : R (f x i) x.
+Class Assoc {A} (R : relation A) (f : A → A → A) : Prop :=
+  assoc x y z : R (f x (f y z)) (f (f x y) z).
 Class LeftAbsorb {A} (R : relation A) (i : A) (f : A → A → A) : Prop :=
-  left_absorb: ∀ x, R (f i x) i.
+  left_absorb x : R (f i x) i.
 Class RightAbsorb {A} (R : relation A) (i : A) (f : A → A → A) : Prop :=
-  right_absorb: ∀ x, R (f x i) i.
-Class AntiSymmetric {A} (R S : relation A) : Prop :=
-  anti_symmetric: ∀ x y, S x y → S y x → R x y.
+  right_absorb x : R (f x i) i.
+Class AntiSymm {A} (R S : relation A) : Prop :=
+  anti_symm x y : S x y → S y x → R x y.
 Class Total {A} (R : relation A) := total x y : R x y ∨ R y x.
 Class Trichotomy {A} (R : relation A) :=
-  trichotomy : ∀ x y, R x y ∨ x = y ∨ R y x.
+  trichotomy x y : R x y ∨ x = y ∨ R y x.
 Class TrichotomyT {A} (R : relation A) :=
-  trichotomyT : ∀ x y, {R x y} + {x = y} + {R y x}.
+  trichotomyT x y : {R x y} + {x = y} + {R y x}.
 
 Arguments irreflexivity {_} _ {_} _ _.
-Arguments injective {_ _ _ _} _ {_} _ _ _.
-Arguments injective2 {_ _ _ _ _ _} _ {_} _ _ _ _ _.
+Arguments inj {_ _ _ _} _ {_} _ _ _.
+Arguments inj2 {_ _ _ _ _ _} _ {_} _ _ _ _ _.
 Arguments cancel {_ _ _} _ _ {_} _.
-Arguments surjective {_ _ _} _ {_} _.
-Arguments idempotent {_ _} _ {_} _.
-Arguments commutative {_ _ _} _ {_} _ _.
+Arguments surj {_ _ _} _ {_} _.
+Arguments idemp {_ _} _ {_} _.
+Arguments comm {_ _ _} _ {_} _ _.
 Arguments left_id {_ _} _ _ {_} _.
 Arguments right_id {_ _} _ _ {_} _.
-Arguments associative {_ _} _ {_} _ _ _.
+Arguments assoc {_ _} _ {_} _ _ _.
 Arguments left_absorb {_ _} _ _ {_} _.
 Arguments right_absorb {_ _} _ _ {_} _.
-Arguments anti_symmetric {_ _} _ {_} _ _ _ _.
+Arguments anti_symm {_ _} _ {_} _ _ _ _.
 Arguments total {_} _ {_} _ _.
 Arguments trichotomy {_} _ {_} _ _.
 Arguments trichotomyT {_} _ {_} _ _.
 
-Instance id_injective {A} : Injective (=) (=) (@id A).
+Instance id_inj {A} : Inj (=) (=) (@id A).
 Proof. intros ??; auto. Qed.
 
 (** The following lemmas are specific versions of the projections of the above
 type classes for Leibniz equality. These lemmas allow us to enforce Coq not to
 use the setoid rewriting mechanism. *)
-Lemma idempotent_L {A} (f : A → A → A) `{!Idempotent (=) f} x : f x x = x.
+Lemma idemp_L {A} (f : A → A → A) `{!IdemP (=) f} x : f x x = x.
 Proof. auto. Qed.
-Lemma commutative_L {A B} (f : B → B → A) `{!Commutative (=) f} x y :
+Lemma comm_L {A B} (f : B → B → A) `{!Comm (=) f} x y :
   f x y = f y x.
 Proof. auto. Qed.
 Lemma left_id_L {A} (i : A) (f : A → A → A) `{!LeftId (=) i f} x : f i x = x.
 Proof. auto. Qed.
 Lemma right_id_L {A} (i : A) (f : A → A → A) `{!RightId (=) i f} x : f x i = x.
 Proof. auto. Qed.
-Lemma associative_L {A} (f : A → A → A) `{!Associative (=) f} x y z :
+Lemma assoc_L {A} (f : A → A → A) `{!Assoc (=) f} x y z :
   f x (f y z) = f (f x y) z.
 Proof. auto. Qed.
 Lemma left_absorb_L {A} (i : A) (f : A → A → A) `{!LeftAbsorb (=) i f} x :
@@ -593,7 +593,7 @@ Proof. auto. Qed.
 relation [R] instead of [⊆] to support multiple orders on the same type. *)
 Class PartialOrder {A} (R : relation A) : Prop := {
   partial_order_pre :> PreOrder R;
-  partial_order_anti_symmetric :> AntiSymmetric (=) R
+  partial_order_anti_symm :> AntiSymm (=) R
 }.
 Class TotalOrder {A} (R : relation A) : Prop := {
   total_order_partial :> PartialOrder R;
@@ -746,31 +746,17 @@ Proof. intuition. Qed.
 Lemma symmetry_iff `(R : relation A) `{!Symmetric R} x y : R x y ↔ R y x.
 Proof. intuition. Qed.
 
-(** ** Pointwise relations *)
-(** These instances are in Coq trunk since revision 15455, but are not in Coq
-8.4 yet. *)
-Instance pointwise_reflexive {A} `{R : relation B} :
-  Reflexive R → Reflexive (pointwise_relation A R) | 9.
-Proof. firstorder. Qed.
-Instance pointwise_symmetric {A} `{R : relation B} :
-  Symmetric R → Symmetric (pointwise_relation A R) | 9.
-Proof. firstorder. Qed.
-Instance pointwise_transitive {A} `{R : relation B} :
-  Transitive R → Transitive (pointwise_relation A R) | 9.
-Proof. firstorder. Qed.
-
 (** ** Unit *)
 Instance unit_equiv : Equiv unit := λ _ _, True.
 Instance unit_equivalence : Equivalence (@equiv unit _).
 Proof. repeat split. Qed.
 
 (** ** Products *)
-Instance prod_map_injective {A A' B B'} (f : A → A') (g : B → B') :
-  Injective (=) (=) f → Injective (=) (=) g →
-  Injective (=) (=) (prod_map f g).
+Instance prod_map_inj {A A' B B'} (f : A → A') (g : B → B') :
+  Inj (=) (=) f → Inj (=) (=) g → Inj (=) (=) (prod_map f g).
 Proof.
   intros ?? [??] [??] ?; simpl in *; f_equal;
-    [apply (injective f)|apply (injective g)]; congruence.
+    [apply (inj f)|apply (inj g)]; congruence.
 Qed.
 
 Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) :
@@ -815,17 +801,17 @@ Lemma and_wlog_l (P Q : Prop) : (Q → P) → Q → (P ∧ Q).
 Proof. tauto. Qed.
 Lemma and_wlog_r (P Q : Prop) : P → (P → Q) → (P ∧ Q).
 Proof. tauto. Qed.
-Instance: ∀ A B (x : B), Commutative (=) (λ _ _ : A, x).
+Instance: ∀ A B (x : B), Comm (=) (λ _ _ : A, x).
 Proof. red. trivial. Qed.
-Instance: ∀ A (x : A), Associative (=) (λ _ _ : A, x).
+Instance: ∀ A (x : A), Assoc (=) (λ _ _ : A, x).
 Proof. red. trivial. Qed.
-Instance: ∀ A, Associative (=) (λ x _ : A, x).
+Instance: ∀ A, Assoc (=) (λ x _ : A, x).
 Proof. red. trivial. Qed.
-Instance: ∀ A, Associative (=) (λ _ x : A, x).
+Instance: ∀ A, Assoc (=) (λ _ x : A, x).
 Proof. red. trivial. Qed.
-Instance: ∀ A, Idempotent (=) (λ x _ : A, x).
+Instance: ∀ A, IdemP (=) (λ x _ : A, x).
 Proof. red. trivial. Qed.
-Instance: ∀ A, Idempotent (=) (λ _ x : A, x).
+Instance: ∀ A, IdemP (=) (λ _ x : A, x).
 Proof. red. trivial. Qed.
 
 Instance left_id_propholds {A} (R : relation A) i f :
@@ -841,7 +827,7 @@ Instance right_absorb_propholds {A} (R : relation A) i f :
   RightAbsorb R i f → ∀ x, PropHolds (R (f x i) i).
 Proof. red. trivial. Qed.
 Instance idem_propholds {A} (R : relation A) f :
-  Idempotent R f → ∀ x, PropHolds (R (f x x) x).
+  IdemP R f → ∀ x, PropHolds (R (f x x) x).
 Proof. red. trivial. Qed.
 
 Instance: ∀ `{R1 : relation A, R2 : relation B} (x : B),
@@ -849,47 +835,47 @@ Instance: ∀ `{R1 : relation A, R2 : relation B} (x : B),
 Proof. intros A R1 B R2 x ? y1 y2; reflexivity. Qed.
 Instance: @PreOrder A (=).
 Proof. split; repeat intro; congruence. Qed.
-Lemma injective_iff {A B} {R : relation A} {S : relation B} (f : A → B)
-  `{!Injective R S f} `{!Proper (R ==> S) f} x y : S (f x) (f y) ↔ R x y.
+Lemma inj_iff {A B} {R : relation A} {S : relation B} (f : A → B)
+  `{!Inj R S f} `{!Proper (R ==> S) f} x y : S (f x) (f y) ↔ R x y.
 Proof. firstorder. Qed.
-Instance: Injective (=) (=) (@inl A B).
+Instance: Inj (=) (=) (@inl A B).
 Proof. injection 1; auto. Qed.
-Instance: Injective (=) (=) (@inr A B).
+Instance: Inj (=) (=) (@inr A B).
 Proof. injection 1; auto. Qed.
-Instance: Injective2 (=) (=) (=) (@pair A B).
+Instance: Inj2 (=) (=) (=) (@pair A B).
 Proof. injection 1; auto. Qed.
-Instance: ∀ `{Injective2 A B C R1 R2 R3 f} y, Injective R1 R3 (λ x, f x y).
-Proof. repeat intro; edestruct (injective2 f); eauto. Qed.
-Instance: ∀ `{Injective2 A B C R1 R2 R3 f} x, Injective R2 R3 (f x).
-Proof. repeat intro; edestruct (injective2 f); eauto. Qed.
+Instance: ∀ `{Inj2 A B C R1 R2 R3 f} y, Inj R1 R3 (λ x, f x y).
+Proof. repeat intro; edestruct (inj2 f); eauto. Qed.
+Instance: ∀ `{Inj2 A B C R1 R2 R3 f} x, Inj R2 R3 (f x).
+Proof. repeat intro; edestruct (inj2 f); eauto. Qed.
 
-Lemma cancel_injective `{Cancel A B R1 f g}
-  `{!Equivalence R1} `{!Proper (R2 ==> R1) f} : Injective R1 R2 g.
+Lemma cancel_inj `{Cancel A B R1 f g}
+  `{!Equivalence R1} `{!Proper (R2 ==> R1) f} : Inj R1 R2 g.
 Proof.
   intros x y E. rewrite <-(cancel f g x), <-(cancel f g y), E. reflexivity.
 Qed.
-Lemma cancel_surjective `{Cancel A B R1 f g} : Surjective R1 f.
+Lemma cancel_surj `{Cancel A B R1 f g} : Surj R1 f.
 Proof. intros y. exists (g y). auto. Qed.
 
 Lemma impl_transitive (P Q R : Prop) : (P → Q) → (Q → R) → (P → R).
 Proof. tauto. Qed.
-Instance: Commutative (↔) (@eq A).
+Instance: Comm (↔) (@eq A).
 Proof. red; intuition. Qed.
-Instance: Commutative (↔) (λ x y, @eq A y x).
+Instance: Comm (↔) (λ x y, @eq A y x).
 Proof. red; intuition. Qed.
-Instance: Commutative (↔) (↔).
+Instance: Comm (↔) (↔).
 Proof. red; intuition. Qed.
-Instance: Commutative (↔) (∧).
+Instance: Comm (↔) (∧).
 Proof. red; intuition. Qed.
-Instance: Associative (↔) (∧).
+Instance: Assoc (↔) (∧).
 Proof. red; intuition. Qed.
-Instance: Idempotent (↔) (∧).
+Instance: IdemP (↔) (∧).
 Proof. red; intuition. Qed.
-Instance: Commutative (↔) (∨).
+Instance: Comm (↔) (∨).
 Proof. red; intuition. Qed.
-Instance: Associative (↔) (∨).
+Instance: Assoc (↔) (∨).
 Proof. red; intuition. Qed.
-Instance: Idempotent (↔) (∨).
+Instance: IdemP (↔) (∨).
 Proof. red; intuition. Qed.
 Instance: LeftId (↔) True (∧).
 Proof. red; intuition. Qed.
@@ -911,26 +897,26 @@ Instance: LeftId (↔) True impl.
 Proof. unfold impl. red; intuition. Qed.
 Instance: RightAbsorb (↔) True impl.
 Proof. unfold impl. red; intuition. Qed.
-Lemma not_injective `{Injective A B R R' f} x y : ¬R x y → ¬R' (f x) (f y).
+Lemma not_inj `{Inj A B R R' f} x y : ¬R x y → ¬R' (f x) (f y).
 Proof. intuition. Qed.
-Instance injective_compose {A B C} R1 R2 R3 (f : A → B) (g : B → C) :
-  Injective R1 R2 f → Injective R2 R3 g → Injective R1 R3 (g ∘ f).
+Instance inj_compose {A B C} R1 R2 R3 (f : A → B) (g : B → C) :
+  Inj R1 R2 f → Inj R2 R3 g → Inj R1 R3 (g ∘ f).
 Proof. red; intuition. Qed.
-Instance surjective_compose {A B C} R (f : A → B) (g : B → C) :
-  Surjective (=) f → Surjective R g → Surjective R (g ∘ f).
+Instance surj_compose {A B C} R (f : A → B) (g : B → C) :
+  Surj (=) f → Surj R g → Surj R (g ∘ f).
 Proof.
-  intros ?? x. unfold compose. destruct (surjective g x) as [y ?].
-  destruct (surjective f y) as [z ?]. exists z. congruence.
+  intros ?? x. unfold compose. destruct (surj g x) as [y ?].
+  destruct (surj f y) as [z ?]. exists z. congruence.
 Qed.
 
 Section sig_map.
   Context `{P : A → Prop} `{Q : B → Prop} (f : A → B) (Hf : ∀ x, P x → Q (f x)).
   Definition sig_map (x : sig P) : sig Q := f (`x) ↾ Hf _ (proj2_sig x).
-  Global Instance sig_map_injective:
-    (∀ x, ProofIrrel (P x)) → Injective (=) (=) f → Injective (=) (=) sig_map.
+  Global Instance sig_map_inj:
+    (∀ x, ProofIrrel (P x)) → Inj (=) (=) f → Inj (=) (=) sig_map.
   Proof.
     intros ?? [x Hx] [y Hy]. injection 1. intros Hxy.
-    apply (injective f) in Hxy; subst. rewrite (proof_irrel _ Hy). auto.
+    apply (inj f) in Hxy; subst. rewrite (proof_irrel _ Hy). auto.
   Qed.
 End sig_map.
 Arguments sig_map _ _ _ _ _ _ !_ /.
diff --git a/prelude/countable.v b/prelude/countable.v
index ab860ddf677228e3cf49060c021ffab5fa1e61db..1635bac2995c67b00ab1cde29730f0d63e4f2d62 100644
--- a/prelude/countable.v
+++ b/prelude/countable.v
@@ -15,13 +15,13 @@ Definition encode_nat `{Countable A} (x : A) : nat :=
   pred (Pos.to_nat (encode x)).
 Definition decode_nat `{Countable A} (i : nat) : option A :=
   decode (Pos.of_nat (S i)).
-Instance encode_injective `{Countable A} : Injective (=) (=) encode.
+Instance encode_inj `{Countable A} : Inj (=) (=) encode.
 Proof.
-  intros x y Hxy; apply (injective Some).
+  intros x y Hxy; apply (inj Some).
   by rewrite <-(decode_encode x), Hxy, decode_encode.
 Qed.
-Instance encode_nat_injective `{Countable A} : Injective (=) (=) encode_nat.
-Proof. unfold encode_nat; intros x y Hxy; apply (injective encode); lia. Qed.
+Instance encode_nat_inj `{Countable A} : Inj (=) (=) encode_nat.
+Proof. unfold encode_nat; intros x y Hxy; apply (inj encode); lia. Qed.
 Lemma decode_encode_nat `{Countable A} x : decode_nat (encode_nat x) = Some x.
 Proof.
   pose proof (Pos2Nat.is_pos (encode x)).
@@ -70,11 +70,11 @@ Section choice.
   Definition choice (HA : ∃ x, P x) : { x | P x } := _↾choose_correct HA.
 End choice.
 
-Lemma surjective_cancel `{Countable A} `{∀ x y : B, Decision (x = y)}
-  (f : A → B) `{!Surjective (=) f} : { g : B → A & Cancel (=) f g }.
+Lemma surj_cancel `{Countable A} `{∀ x y : B, Decision (x = y)}
+  (f : A → B) `{!Surj (=) f} : { g : B → A & Cancel (=) f g }.
 Proof.
-  exists (λ y, choose (λ x, f x = y) (surjective f y)).
-  intros y. by rewrite (choose_correct (λ x, f x = y) (surjective f y)).
+  exists (λ y, choose (λ x, f x = y) (surj f y)).
+  intros y. by rewrite (choose_correct (λ x, f x = y) (surj f y)).
 Qed.
 
 (** * Instances *)
@@ -197,7 +197,7 @@ Lemma list_encode_app' `{Countable A} (l1 l2 : list A) acc :
 Proof.
   revert acc; induction l1; simpl; auto.
   induction l2 as [|x l IH]; intros acc; simpl; [by rewrite ?(left_id_L _ _)|].
-  by rewrite !(IH (Nat.iter _ _ _)), (associative_L _), x0_iter_x1.
+  by rewrite !(IH (Nat.iter _ _ _)), (assoc_L _), x0_iter_x1.
 Qed.
 Program Instance list_countable `{Countable A} : Countable (list A) :=
   {| encode := list_encode 1; decode := list_decode [] 0 |}.
@@ -211,7 +211,7 @@ Next Obligation.
   { by intros help l; rewrite help, (right_id_L _ _). }
   induction l as [|x l IH] using @rev_ind; intros acc; [done|].
   rewrite list_encode_app'; simpl; rewrite <-x0_iter_x1, decode_iter; simpl.
-  by rewrite decode_encode_nat; simpl; rewrite IH, <-(associative_L _).
+  by rewrite decode_encode_nat; simpl; rewrite IH, <-(assoc_L _).
 Qed.
 Lemma list_encode_app `{Countable A} (l1 l2 : list A) :
   encode (l1 ++ l2)%list = encode l1 ++ encode l2.
diff --git a/prelude/decidable.v b/prelude/decidable.v
index 184372c8bf37317d0d2e82ca40da4ae3a3ed1f6c..817357de205b1063d3b2454c72a9a5b4d2fcb5c6 100644
--- a/prelude/decidable.v
+++ b/prelude/decidable.v
@@ -12,7 +12,7 @@ Proof. firstorder. Qed.
 
 Lemma Is_true_reflect (b : bool) : reflect b b.
 Proof. destruct b. by left. right. intros []. Qed.
-Instance: Injective (=) (↔) Is_true.
+Instance: Inj (=) (↔) Is_true.
 Proof. intros [] []; simpl; intuition. Qed.
 
 (** We introduce [decide_rel] to avoid inefficienct computation due to eager
diff --git a/prelude/error.v b/prelude/error.v
index 0eb6c33f51b4baaf128cacc1fb15a47c210c6fd3..b2eb18522711f044d7ffeed32bc2d86f4860b10b 100644
--- a/prelude/error.v
+++ b/prelude/error.v
@@ -47,7 +47,7 @@ Lemma error_fmap_bind {S E A B C} (f : A → B) (g : B → error S E C) x s :
   ((f <$> x) ≫= g) s = (x ≫= g ∘ f) s.
 Proof. by compute; destruct (x s) as [|[??]]. Qed.
 
-Lemma error_associative {S E A B C} (f : A → error S E B) (g : B → error S E C) x s :
+Lemma error_assoc {S E A B C} (f : A → error S E B) (g : B → error S E C) x s :
   ((x ≫= f) ≫= g) s = (a ← x; f a ≫= g) s.
 Proof. by compute; destruct (x s) as [|[??]]. Qed.
 Lemma error_of_option_bind {S E A B} (f : A → option B) o e :
@@ -114,7 +114,7 @@ Tactic Notation "error_proceed" :=
   | H : (gets _ ≫= _) _ = _ |- _ => rewrite error_left_gets in H
   | H : (modify _ ≫= _) _ = _ |- _ => rewrite error_left_modify in H
   | H : ((_ <$> _) ≫= _) _ = _ |- _ => rewrite error_fmap_bind in H
-  | H : ((_ ≫= _) ≫= _) _ = _ |- _ => rewrite error_associative in H
+  | H : ((_ ≫= _) ≫= _) _ = _ |- _ => rewrite error_assoc in H
   | H : (error_guard _ _ _) _ = _ |- _ =>
      let H' := fresh in apply error_guard_ret in H; destruct H as [H' H]
   | _ => progress simplify_equality'
diff --git a/prelude/fin_collections.v b/prelude/fin_collections.v
index 2f7a573d0ed171de1a6fcfe86a5c92cb5ccf5b1d..7fe2529002d66e54dfd9ef5eb0d1376fc485a107 100644
--- a/prelude/fin_collections.v
+++ b/prelude/fin_collections.v
@@ -108,7 +108,7 @@ Lemma size_union_alt X Y : size (X ∪ Y) = size X + size (Y ∖ X).
 Proof.
   rewrite <-size_union by solve_elem_of.
   setoid_replace (Y ∖ X) with ((Y ∪ X) ∖ X) by solve_elem_of.
-  rewrite <-union_difference, (commutative (∪)); solve_elem_of.
+  rewrite <-union_difference, (comm (∪)); solve_elem_of.
 Qed.
 Lemma subseteq_size X Y : X ⊆ Y → size X ≤ size Y.
 Proof. intros. rewrite (union_difference X Y), size_union_alt by done. lia. Qed.
diff --git a/prelude/fin_maps.v b/prelude/fin_maps.v
index 09c65cdad1dafa8551775965b2daa890b07266d9..9ed4f6986413411e56105cccc07f146e53852ce0 100644
--- a/prelude/fin_maps.v
+++ b/prelude/fin_maps.v
@@ -820,28 +820,28 @@ Proof.
   intros ??. apply map_eq. intros.
   by rewrite !(lookup_merge f), lookup_empty, (right_id_L None f).
 Qed.
-Lemma merge_commutative m1 m2 :
+Lemma merge_comm m1 m2 :
   (∀ i, f (m1 !! i) (m2 !! i) = f (m2 !! i) (m1 !! i)) →
   merge f m1 m2 = merge f m2 m1.
 Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
-Global Instance: Commutative (=) f → Commutative (=) (merge f).
+Global Instance: Comm (=) f → Comm (=) (merge f).
 Proof.
-  intros ???. apply merge_commutative. intros. by apply (commutative f).
+  intros ???. apply merge_comm. intros. by apply (comm f).
 Qed.
-Lemma merge_associative m1 m2 m3 :
+Lemma merge_assoc m1 m2 m3 :
   (∀ i, f (m1 !! i) (f (m2 !! i) (m3 !! i)) =
         f (f (m1 !! i) (m2 !! i)) (m3 !! i)) →
   merge f m1 (merge f m2 m3) = merge f (merge f m1 m2) m3.
 Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
-Global Instance: Associative (=) f → Associative (=) (merge f).
+Global Instance: Assoc (=) f → Assoc (=) (merge f).
 Proof.
-  intros ????. apply merge_associative. intros. by apply (associative_L f).
+  intros ????. apply merge_assoc. intros. by apply (assoc_L f).
 Qed.
-Lemma merge_idempotent m1 :
+Lemma merge_idemp m1 :
   (∀ i, f (m1 !! i) (m1 !! i) = m1 !! i) → merge f m1 m1 = m1.
 Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
-Global Instance: Idempotent (=) f → Idempotent (=) (merge f).
-Proof. intros ??. apply merge_idempotent. intros. by apply (idempotent f). Qed.
+Global Instance: IdemP (=) f → IdemP (=) (merge f).
+Proof. intros ??. apply merge_idemp. intros. by apply (idemp f). Qed.
 End merge.
 
 Section more_merge.
@@ -1033,19 +1033,19 @@ Global Instance: LeftId (@eq (M A)) ∅ (union_with f).
 Proof. unfold union_with, map_union_with. apply _. Qed.
 Global Instance: RightId (@eq (M A)) ∅ (union_with f).
 Proof. unfold union_with, map_union_with. apply _. Qed.
-Lemma union_with_commutative m1 m2 :
+Lemma union_with_comm m1 m2 :
   (∀ i x y, m1 !! i = Some x → m2 !! i = Some y → f x y = f y x) →
   union_with f m1 m2 = union_with f m2 m1.
 Proof.
-  intros. apply (merge_commutative _). intros i.
+  intros. apply (merge_comm _). intros i.
   destruct (m1 !! i) eqn:?, (m2 !! i) eqn:?; simpl; eauto.
 Qed.
-Global Instance: Commutative (=) f → Commutative (@eq (M A)) (union_with f).
-Proof. intros ???. apply union_with_commutative. eauto. Qed.
-Lemma union_with_idempotent m :
+Global Instance: Comm (=) f → Comm (@eq (M A)) (union_with f).
+Proof. intros ???. apply union_with_comm. eauto. Qed.
+Lemma union_with_idemp m :
   (∀ i x, m !! i = Some x → f x x = Some x) → union_with f m m = m.
 Proof.
-  intros. apply (merge_idempotent _). intros i.
+  intros. apply (merge_idemp _). intros i.
   destruct (m !! i) eqn:?; simpl; eauto.
 Qed.
 Lemma alter_union_with (g : A → A) m1 m2 i :
@@ -1100,14 +1100,14 @@ End union_with.
 (** ** Properties of the [union] operation *)
 Global Instance: LeftId (@eq (M A)) ∅ (∪) := _.
 Global Instance: RightId (@eq (M A)) ∅ (∪) := _.
-Global Instance: Associative (@eq (M A)) (∪).
+Global Instance: Assoc (@eq (M A)) (∪).
 Proof.
   intros A m1 m2 m3. unfold union, map_union, union_with, map_union_with.
-  apply (merge_associative _). intros i.
+  apply (merge_assoc _). intros i.
   by destruct (m1 !! i), (m2 !! i), (m3 !! i).
 Qed.
-Global Instance: Idempotent (@eq (M A)) (∪).
-Proof. intros A ?. by apply union_with_idempotent. Qed.
+Global Instance: IdemP (@eq (M A)) (∪).
+Proof. intros A ?. by apply union_with_idemp. Qed.
 Lemma lookup_union_Some_raw {A} (m1 m2 : M A) i x :
   (m1 ∪ m2) !! i = Some x ↔
     m1 !! i = Some x ∨ (m1 !! i = None ∧ m2 !! i = Some x).
@@ -1140,9 +1140,9 @@ Proof. intro. rewrite lookup_union_Some_raw; intuition. Qed.
 Lemma lookup_union_Some_r {A} (m1 m2 : M A) i x :
   m1 ⊥ₘ m2 → m2 !! i = Some x → (m1 ∪ m2) !! i = Some x.
 Proof. intro. rewrite lookup_union_Some; intuition. Qed.
-Lemma map_union_commutative {A} (m1 m2 : M A) : m1 ⊥ₘ m2 → m1 ∪ m2 = m2 ∪ m1.
+Lemma map_union_comm {A} (m1 m2 : M A) : m1 ⊥ₘ m2 → m1 ∪ m2 = m2 ∪ m1.
 Proof.
-  intros Hdisjoint. apply (merge_commutative (union_with (λ x _, Some x))).
+  intros Hdisjoint. apply (merge_comm (union_with (λ x _, Some x))).
   intros i. specialize (Hdisjoint i).
   destruct (m1 !! i), (m2 !! i); compute; naive_solver.
 Qed.
@@ -1160,7 +1160,7 @@ Proof.
 Qed.
 Lemma map_union_subseteq_r {A} (m1 m2 : M A) : m1 ⊥ₘ m2 → m2 ⊆ m1 ∪ m2.
 Proof.
-  intros. rewrite map_union_commutative by done. by apply map_union_subseteq_l.
+  intros. rewrite map_union_comm by done. by apply map_union_subseteq_l.
 Qed.
 Lemma map_union_subseteq_l_alt {A} (m1 m2 m3 : M A) : m1 ⊆ m2 → m1 ⊆ m2 ∪ m3.
 Proof. intros. transitivity m2; auto using map_union_subseteq_l. Qed.
@@ -1175,7 +1175,7 @@ Qed.
 Lemma map_union_preserving_r {A} (m1 m2 m3 : M A) :
   m2 ⊥ₘ m3 → m1 ⊆ m2 → m1 ∪ m3 ⊆ m2 ∪ m3.
 Proof.
-  intros. rewrite !(map_union_commutative _ m3)
+  intros. rewrite !(map_union_comm _ m3)
     by eauto using map_disjoint_weaken_l.
   by apply map_union_preserving_l.
 Qed.
@@ -1189,19 +1189,19 @@ Qed.
 Lemma map_union_reflecting_r {A} (m1 m2 m3 : M A) :
   m1 ⊥ₘ m3 → m2 ⊥ₘ m3 → m1 ∪ m3 ⊆ m2 ∪ m3 → m1 ⊆ m2.
 Proof.
-  intros ??. rewrite !(map_union_commutative _ m3) by done.
+  intros ??. rewrite !(map_union_comm _ m3) by done.
   by apply map_union_reflecting_l.
 Qed.
 Lemma map_union_cancel_l {A} (m1 m2 m3 : M A) :
   m1 ⊥ₘ m3 → m2 ⊥ₘ m3 → m3 ∪ m1 = m3 ∪ m2 → m1 = m2.
 Proof.
-  intros. apply (anti_symmetric (⊆));
+  intros. apply (anti_symm (⊆));
     apply map_union_reflecting_l with m3; auto using (reflexive_eq (R:=(⊆))).
 Qed.
 Lemma map_union_cancel_r {A} (m1 m2 m3 : M A) :
   m1 ⊥ₘ m3 → m2 ⊥ₘ m3 → m1 ∪ m3 = m2 ∪ m3 → m1 = m2.
 Proof.
-  intros. apply (anti_symmetric (⊆));
+  intros. apply (anti_symm (⊆));
     apply map_union_reflecting_r with m3; auto using (reflexive_eq (R:=(⊆))).
 Qed.
 Lemma map_disjoint_union_l {A} (m1 m2 m3 : M A) :
@@ -1231,7 +1231,7 @@ Qed.
 Lemma insert_union_singleton_r {A} (m : M A) i x :
   m !! i = None → <[i:=x]>m = m ∪ {[i ↦ x]}.
 Proof.
-  intro. rewrite insert_union_singleton_l, map_union_commutative; [done |].
+  intro. rewrite insert_union_singleton_l, map_union_comm; [done |].
   by apply map_disjoint_singleton_l.
 Qed.
 Lemma map_disjoint_insert_l {A} (m1 m2 : M A) i x :
@@ -1254,12 +1254,12 @@ Lemma map_disjoint_insert_r_2 {A} (m1 m2 : M A) i x :
 Proof. by rewrite map_disjoint_insert_r. Qed.
 Lemma insert_union_l {A} (m1 m2 : M A) i x :
   <[i:=x]>(m1 ∪ m2) = <[i:=x]>m1 ∪ m2.
-Proof. by rewrite !insert_union_singleton_l, (associative_L (∪)). Qed.
+Proof. by rewrite !insert_union_singleton_l, (assoc_L (∪)). Qed.
 Lemma insert_union_r {A} (m1 m2 : M A) i x :
   m1 !! i = None → <[i:=x]>(m1 ∪ m2) = m1 ∪ <[i:=x]>m2.
 Proof.
-  intro. rewrite !insert_union_singleton_l, !(associative_L (∪)).
-  rewrite (map_union_commutative m1); [done |].
+  intro. rewrite !insert_union_singleton_l, !(assoc_L (∪)).
+  rewrite (map_union_comm m1); [done |].
   by apply map_disjoint_singleton_r.
 Qed.
 Lemma foldr_insert_union {A} (m : M A) l :
diff --git a/prelude/finite.v b/prelude/finite.v
index 76006bf3a8d8596ce3256f95c0e0271f7e8e5cad..a529a1a040d7aeedf44ac7736e61a18ef337a88d 100644
--- a/prelude/finite.v
+++ b/prelude/finite.v
@@ -71,27 +71,27 @@ Proof.
   unfold card; intros. destruct finA as [[|x ?] ??]; simpl in *; [exfalso;lia|].
   constructor; exact x.
 Qed.
-Lemma finite_injective_contains `{finA: Finite A} `{finB: Finite B} (f: A → B)
-  `{!Injective (=) (=) f} : f <$> enum A `contains` enum B.
+Lemma finite_inj_contains `{finA: Finite A} `{finB: Finite B} (f: A → B)
+  `{!Inj (=) (=) f} : f <$> enum A `contains` enum B.
 Proof.
   intros. destruct finA, finB. apply NoDup_contains; auto using NoDup_fmap_2.
 Qed.
-Lemma finite_injective_Permutation `{Finite A} `{Finite B} (f : A → B)
-  `{!Injective (=) (=) f} : card A = card B → f <$> enum A ≡ₚ enum B.
+Lemma finite_inj_Permutation `{Finite A} `{Finite B} (f : A → B)
+  `{!Inj (=) (=) f} : card A = card B → f <$> enum A ≡ₚ enum B.
 Proof.
   intros. apply contains_Permutation_length_eq.
   * by rewrite fmap_length.
-  * by apply finite_injective_contains.
+  * by apply finite_inj_contains.
 Qed.
-Lemma finite_injective_surjective `{Finite A} `{Finite B} (f : A → B)
-  `{!Injective (=) (=) f} : card A = card B → Surjective (=) f.
+Lemma finite_inj_surj `{Finite A} `{Finite B} (f : A → B)
+  `{!Inj (=) (=) f} : card A = card B → Surj (=) f.
 Proof.
   intros HAB y. destruct (elem_of_list_fmap_2 f (enum A) y) as (x&?&?); eauto.
-  rewrite finite_injective_Permutation; auto using elem_of_enum.
+  rewrite finite_inj_Permutation; auto using elem_of_enum.
 Qed.
 
-Lemma finite_surjective A `{Finite A} B `{Finite B} :
-  0 < card A ≤ card B → ∃ g : B → A, Surjective (=) g.
+Lemma finite_surj A `{Finite A} B `{Finite B} :
+  0 < card A ≤ card B → ∃ g : B → A, Surj (=) g.
 Proof.
   intros [??]. destruct (finite_inhabited A) as [x']; auto with lia.
   exists (λ y : B, from_option x' (decode_nat (encode_nat y))).
@@ -99,38 +99,38 @@ Proof.
   { pose proof (encode_lt_card x); lia. }
   exists y. by rewrite Hy2, decode_encode_nat.
 Qed.
-Lemma finite_injective A `{Finite A} B `{Finite B} :
-  card A ≤ card B ↔ ∃ f : A → B, Injective (=) (=) f.
+Lemma finite_inj A `{Finite A} B `{Finite B} :
+  card A ≤ card B ↔ ∃ f : A → B, Inj (=) (=) f.
 Proof.
   split.
   * intros. destruct (decide (card A = 0)) as [HA|?].
     { exists (card_0_inv B HA). intros y. apply (card_0_inv _ HA y). }
-    destruct (finite_surjective A B) as (g&?); auto with lia.
-    destruct (surjective_cancel g) as (f&?). exists f. apply cancel_injective.
+    destruct (finite_surj A B) as (g&?); auto with lia.
+    destruct (surj_cancel g) as (f&?). exists f. apply cancel_inj.
   * intros [f ?]. unfold card. rewrite <-(fmap_length f).
-    by apply contains_length, (finite_injective_contains f).
+    by apply contains_length, (finite_inj_contains f).
 Qed.
 Lemma finite_bijective A `{Finite A} B `{Finite B} :
-  card A = card B ↔ ∃ f : A → B, Injective (=) (=) f ∧ Surjective (=) f.
+  card A = card B ↔ ∃ f : A → B, Inj (=) (=) f ∧ Surj (=) f.
 Proof.
   split.
-  * intros; destruct (proj1 (finite_injective A B)) as [f ?]; auto with lia.
-    exists f; auto using (finite_injective_surjective f).
-  * intros (f&?&?). apply (anti_symmetric (≤)); apply finite_injective.
+  * intros; destruct (proj1 (finite_inj A B)) as [f ?]; auto with lia.
+    exists f; auto using (finite_inj_surj f).
+  * intros (f&?&?). apply (anti_symm (≤)); apply finite_inj.
     + by exists f.
-    + destruct (surjective_cancel f) as (g&?); eauto using cancel_injective.
+    + destruct (surj_cancel f) as (g&?); eauto using cancel_inj.
 Qed.
-Lemma injective_card `{Finite A} `{Finite B} (f : A → B)
-  `{!Injective (=) (=) f} : card A ≤ card B.
-Proof. apply finite_injective. eauto. Qed.
-Lemma surjective_card `{Finite A} `{Finite B} (f : A → B)
-  `{!Surjective (=) f} : card B ≤ card A.
+Lemma inj_card `{Finite A} `{Finite B} (f : A → B)
+  `{!Inj (=) (=) f} : card A ≤ card B.
+Proof. apply finite_inj. eauto. Qed.
+Lemma surj_card `{Finite A} `{Finite B} (f : A → B)
+  `{!Surj (=) f} : card B ≤ card A.
 Proof.
-  destruct (surjective_cancel f) as (g&?).
-  apply injective_card with g, cancel_injective.
+  destruct (surj_cancel f) as (g&?).
+  apply inj_card with g, cancel_inj.
 Qed.
 Lemma bijective_card `{Finite A} `{Finite B} (f : A → B)
-  `{!Injective (=) (=) f} `{!Surjective (=) f} : card A = card B.
+  `{!Inj (=) (=) f} `{!Surj (=) f} : card A = card B.
 Proof. apply finite_bijective. eauto. Qed.
 
 (** Decidability of quantification over finite types *)
@@ -180,7 +180,7 @@ End enc_finite.
 
 Section bijective_finite.
   Context `{Finite A, ∀ x y : B, Decision (x = y)} (f : A → B) (g : B → A).
-  Context `{!Injective (=) (=) f, !Cancel (=) f g}.
+  Context `{!Inj (=) (=) f, !Cancel (=) f g}.
 
   Program Instance bijective_finite: Finite B := {| enum := f <$> enum A |}.
   Next Obligation. apply (NoDup_fmap_2 _), NoDup_enum. Qed.
diff --git a/prelude/gmap.v b/prelude/gmap.v
index 1c2cd5ec7865d8fb95e8b64bfb27d7443543f975..a3466c307cd76edcf60291c4f6e04c7eee7bf1a3 100644
--- a/prelude/gmap.v
+++ b/prelude/gmap.v
@@ -89,7 +89,7 @@ Proof.
   * done.
   * intros A f [m Hm] i; apply (lookup_partial_alter f m).
   * intros A f [m Hm] i j Hs; apply (lookup_partial_alter_ne f m).
-    by contradict Hs; apply (injective encode).
+    by contradict Hs; apply (inj encode).
   * intros A B f [m Hm] i; apply (lookup_fmap f m).
   * intros A [m Hm]; unfold map_to_list; simpl.
     apply bool_decide_unpack, map_Forall_to_list in Hm; revert Hm.
diff --git a/prelude/list.v b/prelude/list.v
index ef167dc392dd8dbcd7307416bb4e333f26e57bc4..d0e0eafb0b74e606bcc6a212063f8e12f481c750 100644
--- a/prelude/list.v
+++ b/prelude/list.v
@@ -339,13 +339,13 @@ Tactic Notation "discriminate_list_equality" :=
 (** The tactic [simplify_list_equality] simplifies hypotheses involving
 equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
 lookups in singleton lists. *)
-Lemma app_injective_1 {A} (l1 k1 l2 k2 : list A) :
+Lemma app_inj_1 {A} (l1 k1 l2 k2 : list A) :
   length l1 = length k1 → l1 ++ l2 = k1 ++ k2 → l1 = k1 ∧ l2 = k2.
 Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
-Lemma app_injective_2 {A} (l1 k1 l2 k2 : list A) :
+Lemma app_inj_2 {A} (l1 k1 l2 k2 : list A) :
   length l2 = length k2 → l1 ++ l2 = k1 ++ k2 → l1 = k1 ∧ l2 = k2.
 Proof.
-  intros ? Hl. apply app_injective_1; auto.
+  intros ? Hl. apply app_inj_1; auto.
   apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
 Qed.
 Ltac simplify_list_equality :=
@@ -353,8 +353,8 @@ Ltac simplify_list_equality :=
   | _ => progress simplify_equality'
   | H : _ ++ _ = _ ++ _ |- _ => first
     [ apply app_inv_head in H | apply app_inv_tail in H
-    | apply app_injective_1 in H; [destruct H|done]
-    | apply app_injective_2 in H; [destruct H|done] ]
+    | apply app_inj_1 in H; [destruct H|done]
+    | apply app_inj_2 in H; [destruct H|done] ]
   | H : [?x] !! ?i = Some ?y |- _ =>
     destruct i; [change (Some x = Some y) in H | discriminate]
   end.
@@ -386,13 +386,13 @@ Section setoid.
   Proof. induction 1; f_equal; fold_leibniz; auto. Qed.
 End setoid.
 
-Global Instance: Injective2 (=) (=) (=) (@cons A).
+Global Instance: Inj2 (=) (=) (=) (@cons A).
 Proof. by injection 1. Qed.
-Global Instance: ∀ k, Injective (=) (=) (k ++).
+Global Instance: ∀ k, Inj (=) (=) (k ++).
 Proof. intros ???. apply app_inv_head. Qed.
-Global Instance: ∀ k, Injective (=) (=) (++ k).
+Global Instance: ∀ k, Inj (=) (=) (++ k).
 Proof. intros ???. apply app_inv_tail. Qed.
-Global Instance: Associative (=) (@app A).
+Global Instance: Assoc (=) (@app A).
 Proof. intros ???. apply app_assoc. Qed.
 Global Instance: LeftId (=) [] (@app A).
 Proof. done. Qed.
@@ -698,7 +698,7 @@ Proof.
   induction l as [|x l IH]; intros Hl; constructor.
   * rewrite elem_of_list_lookup. intros [i ?].
     by feed pose proof (Hl (S i) 0 x); auto.
-  * apply IH. intros i j x' ??. by apply (injective S), (Hl (S i) (S j) x').
+  * apply IH. intros i j x' ??. by apply (inj S), (Hl (S i) (S j) x').
 Qed.
 
 Section no_dup_dec.
@@ -849,7 +849,7 @@ Proof.
   split; auto using elem_of_reverse_2.
   intros. rewrite <-(reverse_involutive l). by apply elem_of_reverse_2.
 Qed.
-Global Instance: Injective (=) (=) (@reverse A).
+Global Instance: Inj (=) (=) (@reverse A).
 Proof.
   intros l1 l2 Hl.
   by rewrite <-(reverse_involutive l1), <-(reverse_involutive l2), Hl.
@@ -885,7 +885,7 @@ Proof. induction l; f_equal'; auto. Qed.
 Lemma take_app_alt l k n : n = length l → take n (l ++ k) = l.
 Proof. intros ->. by apply take_app. Qed.
 Lemma take_app3_alt l1 l2 l3 n : n = length l1 → take n ((l1 ++ l2) ++ l3) = l1.
-Proof. intros ->. by rewrite <-(associative_L (++)), take_app. Qed.
+Proof. intros ->. by rewrite <-(assoc_L (++)), take_app. Qed.
 Lemma take_app_le l k n : n ≤ length l → take n (l ++ k) = take n l.
 Proof. revert n. induction l; intros [|?] ?; f_equal'; auto with lia. Qed.
 Lemma take_plus_app l k n m :
@@ -898,7 +898,7 @@ Lemma take_ge l n : length l ≤ n → take n l = l.
 Proof. revert n. induction l; intros [|?] ?; f_equal'; auto with lia. Qed.
 Lemma take_take l n m : take n (take m l) = take (min n m) l.
 Proof. revert n m. induction l; intros [|?] [|?]; f_equal'; auto. Qed.
-Lemma take_idempotent l n : take n (take n l) = take n l.
+Lemma take_idemp l n : take n (take n l) = take n l.
 Proof. by rewrite take_take, Min.min_idempotent. Qed.
 Lemma take_length l n : length (take n l) = min n (length l).
 Proof. revert n. induction l; intros [|?]; f_equal'; done. Qed.
@@ -949,7 +949,7 @@ Lemma drop_app_alt l k n : n = length l → drop n (l ++ k) = k.
 Proof. intros ->. by apply drop_app. Qed.
 Lemma drop_app3_alt l1 l2 l3 n :
   n = length l1 → drop n ((l1 ++ l2) ++ l3) = l2 ++ l3.
-Proof. intros ->. by rewrite <-(associative_L (++)), drop_app. Qed.
+Proof. intros ->. by rewrite <-(assoc_L (++)), drop_app. Qed.
 Lemma drop_app_ge l k n :
   length l ≤ n → drop n (l ++ k) = drop (n - length l) k.
 Proof.
@@ -1076,7 +1076,7 @@ Proof. intros ->. by rewrite resize_app_le, resize_all. Qed.
 Lemma resize_app_ge l1 l2 n x :
   length l1 ≤ n → resize n x (l1 ++ l2) = l1 ++ resize (n - length l1) x l2.
 Proof.
-  intros. rewrite !resize_spec, take_app_ge, (associative_L (++)) by done.
+  intros. rewrite !resize_spec, take_app_ge, (assoc_L (++)) by done.
   do 2 f_equal. rewrite app_length. lia.
 Qed.
 Lemma resize_length l n x : length (resize n x l) = n.
@@ -1089,7 +1089,7 @@ Proof.
   * intros. by rewrite !resize_nil, resize_replicate.
   * intros [|?] [|?] ?; f_equal'; auto with lia.
 Qed.
-Lemma resize_idempotent l n x : resize n x (resize n x l) = resize n x l.
+Lemma resize_idemp l n x : resize n x (resize n x l) = resize n x l.
 Proof. by rewrite resize_resize. Qed.
 Lemma resize_take_le l n m x : n ≤ m → resize n x (take m l) = resize n x l.
 Proof. revert n m. induction l; intros [|?][|?] ?; f_equal'; auto with lia. Qed.
@@ -1265,7 +1265,7 @@ Lemma sublist_alter_compose f g l i n k :
   sublist_alter (f ∘ g) i n l = sublist_alter f i n (sublist_alter g i n l).
 Proof.
   unfold sublist_alter, sublist_lookup. intros Hk ??; simplify_option_equality.
-  by rewrite !take_app_alt, drop_app_alt, !(associative_L (++)), drop_app_alt,
+  by rewrite !take_app_alt, drop_app_alt, !(assoc_L (++)), drop_app_alt,
     take_app_alt by (rewrite ?app_length, ?take_length, ?Hk; lia).
 Qed.
 
@@ -1344,22 +1344,22 @@ Definition Permutation_singleton_inj := @Permutation_length_1 A.
 Global Existing Instance Permutation_app'.
 Global Instance: Proper ((≡ₚ) ==> (=)) (@length A).
 Proof. induction 1; simpl; auto with lia. Qed.
-Global Instance: Commutative (≡ₚ) (@app A).
+Global Instance: Comm (≡ₚ) (@app A).
 Proof.
   intros l1. induction l1 as [|x l1 IH]; intros l2; simpl.
   * by rewrite (right_id_L [] (++)).
   * rewrite Permutation_middle, IH. simpl. by rewrite Permutation_middle.
 Qed.
-Global Instance: ∀ x : A, Injective (≡ₚ) (≡ₚ) (x ::).
+Global Instance: ∀ x : A, Inj (≡ₚ) (≡ₚ) (x ::).
 Proof. red. eauto using Permutation_cons_inv. Qed.
-Global Instance: ∀ k : list A, Injective (≡ₚ) (≡ₚ) (k ++).
+Global Instance: ∀ k : list A, Inj (≡ₚ) (≡ₚ) (k ++).
 Proof.
   red. induction k as [|x k IH]; intros l1 l2; simpl; auto.
-  intros. by apply IH, (injective (x ::)).
+  intros. by apply IH, (inj (x ::)).
 Qed.
-Global Instance: ∀ k : list A, Injective (≡ₚ) (≡ₚ) (++ k).
+Global Instance: ∀ k : list A, Inj (≡ₚ) (≡ₚ) (++ k).
 Proof.
-  intros k l1 l2. rewrite !(commutative (++) _ k). by apply (injective (k ++)).
+  intros k l1 l2. rewrite !(comm (++) _ k). by apply (inj (k ++)).
 Qed.
 Lemma replicate_Permutation n x l : replicate n x ≡ₚ l → replicate n x = l.
 Proof.
@@ -1370,7 +1370,7 @@ Qed.
 Lemma reverse_Permutation l : reverse l ≡ₚ l.
 Proof.
   induction l as [|x l IH]; [done|].
-  by rewrite reverse_cons, (commutative (++)), IH.
+  by rewrite reverse_cons, (comm (++)), IH.
 Qed.
 Lemma delete_Permutation l i x : l !! i = Some x → l ≡ₚ x :: delete i l.
 Proof.
@@ -1383,7 +1383,7 @@ Global Instance: PreOrder (@prefix_of A).
 Proof.
   split.
   * intros ?. eexists []. by rewrite (right_id_L [] (++)).
-  * intros ???[k1->] [k2->]. exists (k1 ++ k2). by rewrite (associative_L (++)).
+  * intros ???[k1->] [k2->]. exists (k1 ++ k2). by rewrite (assoc_L (++)).
 Qed.
 Lemma prefix_of_nil l : [] `prefix_of` l.
 Proof. by exists l. Qed.
@@ -1400,14 +1400,14 @@ Lemma prefix_of_cons_inv_2 x y l1 l2 :
   x :: l1 `prefix_of` y :: l2 → l1 `prefix_of` l2.
 Proof. intros [k ?]; simplify_equality'. by exists k. Qed.
 Lemma prefix_of_app k l1 l2 : l1 `prefix_of` l2 → k ++ l1 `prefix_of` k ++ l2.
-Proof. intros [k' ->]. exists k'. by rewrite (associative_L (++)). Qed.
+Proof. intros [k' ->]. exists k'. by rewrite (assoc_L (++)). Qed.
 Lemma prefix_of_app_alt k1 k2 l1 l2 :
   k1 = k2 → l1 `prefix_of` l2 → k1 ++ l1 `prefix_of` k2 ++ l2.
 Proof. intros ->. apply prefix_of_app. Qed.
 Lemma prefix_of_app_l l1 l2 l3 : l1 ++ l3 `prefix_of` l2 → l1 `prefix_of` l2.
-Proof. intros [k ->]. exists (l3 ++ k). by rewrite (associative_L (++)). Qed.
+Proof. intros [k ->]. exists (l3 ++ k). by rewrite (assoc_L (++)). Qed.
 Lemma prefix_of_app_r l1 l2 l3 : l1 `prefix_of` l2 → l1 `prefix_of` l2 ++ l3.
-Proof. intros [k ->]. exists (k ++ l3). by rewrite (associative_L (++)). Qed.
+Proof. intros [k ->]. exists (k ++ l3). by rewrite (assoc_L (++)). Qed.
 Lemma prefix_of_length l1 l2 : l1 `prefix_of` l2 → length l1 ≤ length l2.
 Proof. intros [? ->]. rewrite app_length. lia. Qed.
 Lemma prefix_of_snoc_not l x : ¬l ++ [x] `prefix_of` l.
@@ -1416,7 +1416,7 @@ Global Instance: PreOrder (@suffix_of A).
 Proof.
   split.
   * intros ?. by eexists [].
-  * intros ???[k1->] [k2->]. exists (k2 ++ k1). by rewrite (associative_L (++)).
+  * intros ???[k1->] [k2->]. exists (k2 ++ k1). by rewrite (assoc_L (++)).
 Qed.
 Global Instance prefix_of_dec `{∀ x y, Decision (x = y)} : ∀ l1 l2,
     Decision (l1 `prefix_of` l2) := fix go l1 l2 :=
@@ -1513,41 +1513,41 @@ Lemma suffix_of_cons_nil_inv x l : ¬x :: l `suffix_of` [].
 Proof. by intros [[] ?]. Qed.
 Lemma suffix_of_snoc l1 l2 x :
   l1 `suffix_of` l2 → l1 ++ [x] `suffix_of` l2 ++ [x].
-Proof. intros [k ->]. exists k. by rewrite (associative_L (++)). Qed.
+Proof. intros [k ->]. exists k. by rewrite (assoc_L (++)). Qed.
 Lemma suffix_of_snoc_alt x y l1 l2 :
   x = y → l1 `suffix_of` l2 → l1 ++ [x] `suffix_of` l2 ++ [y].
 Proof. intros ->. apply suffix_of_snoc. Qed.
 Lemma suffix_of_app l1 l2 k : l1 `suffix_of` l2 → l1 ++ k `suffix_of` l2 ++ k.
-Proof. intros [k' ->]. exists k'. by rewrite (associative_L (++)). Qed.
+Proof. intros [k' ->]. exists k'. by rewrite (assoc_L (++)). Qed.
 Lemma suffix_of_app_alt l1 l2 k1 k2 :
   k1 = k2 → l1 `suffix_of` l2 → l1 ++ k1 `suffix_of` l2 ++ k2.
 Proof. intros ->. apply suffix_of_app. Qed.
 Lemma suffix_of_snoc_inv_1 x y l1 l2 :
   l1 ++ [x] `suffix_of` l2 ++ [y] → x = y.
 Proof.
-  intros [k' E]. rewrite (associative_L (++)) in E.
+  intros [k' E]. rewrite (assoc_L (++)) in E.
   by simplify_list_equality.
 Qed.
 Lemma suffix_of_snoc_inv_2 x y l1 l2 :
   l1 ++ [x] `suffix_of` l2 ++ [y] → l1 `suffix_of` l2.
 Proof.
-  intros [k' E]. exists k'. rewrite (associative_L (++)) in E.
+  intros [k' E]. exists k'. rewrite (assoc_L (++)) in E.
   by simplify_list_equality.
 Qed.
 Lemma suffix_of_app_inv l1 l2 k :
   l1 ++ k `suffix_of` l2 ++ k → l1 `suffix_of` l2.
 Proof.
-  intros [k' E]. exists k'. rewrite (associative_L (++)) in E.
+  intros [k' E]. exists k'. rewrite (assoc_L (++)) in E.
   by simplify_list_equality.
 Qed.
 Lemma suffix_of_cons_l l1 l2 x : x :: l1 `suffix_of` l2 → l1 `suffix_of` l2.
-Proof. intros [k ->]. exists (k ++ [x]). by rewrite <-(associative_L (++)). Qed.
+Proof. intros [k ->]. exists (k ++ [x]). by rewrite <-(assoc_L (++)). Qed.
 Lemma suffix_of_app_l l1 l2 l3 : l3 ++ l1 `suffix_of` l2 → l1 `suffix_of` l2.
-Proof. intros [k ->]. exists (k ++ l3). by rewrite <-(associative_L (++)). Qed.
+Proof. intros [k ->]. exists (k ++ l3). by rewrite <-(assoc_L (++)). Qed.
 Lemma suffix_of_cons_r l1 l2 x : l1 `suffix_of` l2 → l1 `suffix_of` x :: l2.
 Proof. intros [k ->]. by exists (x :: k). Qed.
 Lemma suffix_of_app_r l1 l2 l3 : l1 `suffix_of` l2 → l1 `suffix_of` l3 ++ l2.
-Proof. intros [k ->]. exists (l3 ++ k). by rewrite (associative_L (++)). Qed.
+Proof. intros [k ->]. exists (l3 ++ k). by rewrite (assoc_L (++)). Qed.
 Lemma suffix_of_cons_inv l1 l2 x y :
   x :: l1 `suffix_of` y :: l2 → x :: l1 = y :: l2 ∨ x :: l1 `suffix_of` l2.
 Proof.
@@ -1682,7 +1682,7 @@ Proof.
     { eexists [], k. by repeat constructor. }
     rewrite sublist_cons_l. intros (k1 & k2 &?&?); subst.
     destruct (IH l2 k2) as (h1 & h2 &?&?&?); trivial; subst.
-    exists (k1 ++ x :: h1), h2. rewrite <-(associative_L (++)).
+    exists (k1 ++ x :: h1), h2. rewrite <-(assoc_L (++)).
     auto using sublist_inserts_l, sublist_skip.
   * intros (?&?&?&?&?); subst. auto using sublist_app.
 Qed.
@@ -1698,10 +1698,10 @@ Proof.
   revert l1 l2. induction k as [|y k IH]; intros l1 l2.
   { by rewrite !(right_id_L [] (++)). }
   intros. feed pose proof (IH (l1 ++ [y]) (l2 ++ [y])) as Hl12.
-  { by rewrite <-!(associative_L (++)). }
+  { by rewrite <-!(assoc_L (++)). }
   rewrite sublist_app_l in Hl12. destruct Hl12 as (k1&k2&E&?&Hk2).
   destruct k2 as [|z k2] using rev_ind; [inversion Hk2|].
-  rewrite (associative_L (++)) in E; simplify_list_equality.
+  rewrite (assoc_L (++)) in E; simplify_list_equality.
   eauto using sublist_inserts_r.
 Qed.
 Global Instance: PartialOrder (@sublist A).
@@ -1737,7 +1737,7 @@ Proof.
   induction Hl12 as [|x l1 l2 _ IH|x l1 l2 _ IH]; intros k.
   * by eexists [].
   * destruct (IH (k ++ [x])) as [is His]. exists is.
-    by rewrite <-!(associative_L (++)) in His.
+    by rewrite <-!(assoc_L (++)) in His.
   * destruct (IH k) as [is His]. exists (is ++ [length k]).
     rewrite fold_right_app. simpl. by rewrite delete_middle.
 Qed.
@@ -1809,7 +1809,7 @@ Proof.
   * exists k. by rewrite Hk.
   * eexists []. rewrite (right_id_L [] (++)). by constructor.
   * exists (x :: k). by rewrite Hk, Permutation_middle.
-  * exists (k ++ k'). by rewrite Hk', Hk, (associative_L (++)).
+  * exists (k ++ k'). by rewrite Hk', Hk, (assoc_L (++)).
 Qed.
 Lemma contains_Permutation_length_le l1 l2 :
   length l2 ≤ length l1 → l1 `contains` l2 → l1 ≡ₚ l2.
@@ -1829,7 +1829,7 @@ Proof.
   * transitivity l2. by apply Permutation_contains.
     transitivity k2. done. by apply Permutation_contains.
 Qed.
-Global Instance: AntiSymmetric (≡ₚ) (@contains A).
+Global Instance: AntiSymm (≡ₚ) (@contains A).
 Proof. red. auto using contains_Permutation_length_le, contains_length. Qed.
 Lemma contains_take l i : take i l `contains` l.
 Proof. auto using sublist_take, sublist_contains. Qed.
@@ -1863,11 +1863,11 @@ Qed.
 Lemma contains_inserts_l k l1 l2 : l1 `contains` l2 → l1 `contains` k ++ l2.
 Proof. induction k; try constructor; auto. Qed.
 Lemma contains_inserts_r k l1 l2 : l1 `contains` l2 → l1 `contains` l2 ++ k.
-Proof. rewrite (commutative (++)). apply contains_inserts_l. Qed.
+Proof. rewrite (comm (++)). apply contains_inserts_l. Qed.
 Lemma contains_skips_l k l1 l2 : l1 `contains` l2 → k ++ l1 `contains` k ++ l2.
 Proof. induction k; try constructor; auto. Qed.
 Lemma contains_skips_r k l1 l2 : l1 `contains` l2 → l1 ++ k `contains` l2 ++ k.
-Proof. rewrite !(commutative (++) _ k). apply contains_skips_l. Qed.
+Proof. rewrite !(comm (++) _ k). apply contains_skips_l. Qed.
 Lemma contains_app l1 l2 k1 k2 :
   l1 `contains` l2 → k1 `contains` k2 → l1 ++ k1 `contains` l2 ++ k2.
 Proof.
@@ -1925,10 +1925,10 @@ Proof.
   revert l1 l2. induction k as [|y k IH]; intros l1 l2.
   { by rewrite !(right_id_L [] (++)). }
   intros. feed pose proof (IH (l1 ++ [y]) (l2 ++ [y])) as Hl12.
-  { by rewrite <-!(associative_L (++)). }
+  { by rewrite <-!(assoc_L (++)). }
   rewrite contains_app_l in Hl12. destruct Hl12 as (k1&k2&E1&?&Hk2).
   rewrite contains_cons_l in Hk2. destruct Hk2 as (k2'&E2&?).
-  rewrite E2, (Permutation_cons_append k2'), (associative_L (++)) in E1.
+  rewrite E2, (Permutation_cons_append k2'), (assoc_L (++)) in E1.
   apply Permutation_app_inv_r in E1. rewrite E1. eauto using contains_inserts_r.
 Qed.
 Lemma contains_cons_middle x l k1 k2 :
@@ -1937,7 +1937,7 @@ Proof. rewrite <-Permutation_middle. by apply contains_skip. Qed.
 Lemma contains_app_middle l1 l2 k1 k2 :
   l2 `contains` k1 ++ k2 → l1 ++ l2 `contains` k1 ++ l1 ++ k2.
 Proof.
-  rewrite !(associative (++)), (commutative (++) k1 l1), <-(associative_L (++)).
+  rewrite !(assoc (++)), (comm (++) k1 l1), <-(assoc_L (++)).
   by apply contains_skips_l.
 Qed.
 Lemma contains_middle l k1 k2 : l `contains` k1 ++ l ++ k2.
@@ -1964,7 +1964,7 @@ Proof.
 Qed.
 Lemma NoDup_Permutation l k : NoDup l → NoDup k → (∀ x, x ∈ l ↔ x ∈ k) → l ≡ₚ k.
 Proof.
-  intros. apply (anti_symmetric contains); apply NoDup_contains; naive_solver.
+  intros. apply (anti_symm contains); apply NoDup_contains; naive_solver.
 Qed.
 
 Section contains_dec.
@@ -2506,7 +2506,7 @@ Section Forall2_order.
   Proof. split; apply _. Qed.
   Global Instance: PreOrder R → PreOrder (Forall2 R).
   Proof. split; apply _. Qed.
-  Global Instance: AntiSymmetric (=) R → AntiSymmetric (=) (Forall2 R).
+  Global Instance: AntiSymm (=) R → AntiSymm (=) (Forall2 R).
   Proof. induction 2; inversion_clear 1; f_equal; auto. Qed.
   Global Instance: Proper (R ==> Forall2 R ==> Forall2 R) (::).
   Proof. by constructor. Qed.
@@ -2620,7 +2620,7 @@ Section fmap.
   Lemma list_fmap_ext (g : A → B) (l1 l2 : list A) :
     (∀ x, f x = g x) → l1 = l2 → fmap f l1 = fmap g l2.
   Proof. intros ? <-. induction l1; f_equal'; auto. Qed.
-  Global Instance: Injective (=) (=) f → Injective (=) (=) (fmap f).
+  Global Instance: Inj (=) (=) f → Inj (=) (=) (fmap f).
   Proof.
     intros ? l1. induction l1 as [|x l1 IH]; [by intros [|??]|].
     intros [|??]; intros; f_equal'; simplify_equality; auto.
@@ -2694,12 +2694,12 @@ Section fmap.
     induction l; simpl; inversion_clear 1; constructor; auto.
     rewrite elem_of_list_fmap in *. naive_solver.
   Qed.
-  Lemma NoDup_fmap_2 `{!Injective (=) (=) f} l : NoDup l → NoDup (f <$> l).
+  Lemma NoDup_fmap_2 `{!Inj (=) (=) f} l : NoDup l → NoDup (f <$> l).
   Proof.
     induction 1; simpl; constructor; trivial. rewrite elem_of_list_fmap.
-    intros [y [Hxy ?]]. apply (injective f) in Hxy. by subst.
+    intros [y [Hxy ?]]. apply (inj f) in Hxy. by subst.
   Qed.
-  Lemma NoDup_fmap `{!Injective (=) (=) f} l : NoDup (f <$> l) ↔ NoDup l.
+  Lemma NoDup_fmap `{!Inj (=) (=) f} l : NoDup (f <$> l) ↔ NoDup l.
   Proof. split; auto using NoDup_fmap_1, NoDup_fmap_2. Qed.
   Global Instance fmap_sublist: Proper (sublist ==> sublist) (fmap f).
   Proof. induction 1; simpl; econstructor; eauto. Qed.
@@ -2774,7 +2774,7 @@ Section bind.
   Proof.
     induction 1; csimpl; auto.
     * by apply contains_app.
-    * by rewrite !(associative_L (++)), (commutative (++) (f _)).
+    * by rewrite !(assoc_L (++)), (comm (++) (f _)).
     * by apply contains_inserts_l.
     * etransitivity; eauto.
   Qed.
@@ -2782,7 +2782,7 @@ Section bind.
   Proof.
     induction 1; csimpl; auto.
     * by f_equiv.
-    * by rewrite !(associative_L (++)), (commutative (++) (f _)).
+    * by rewrite !(assoc_L (++)), (comm (++) (f _)).
     * etransitivity; eauto.
   Qed.
   Lemma bind_cons x l : (x :: l) ≫= f = f x ++ l ≫= f.
@@ -2790,7 +2790,7 @@ Section bind.
   Lemma bind_singleton x : [x] ≫= f = f x.
   Proof. csimpl. by rewrite (right_id_L _ (++)). Qed.
   Lemma bind_app l1 l2 : (l1 ++ l2) ≫= f = (l1 ≫= f) ++ (l2 ≫= f).
-  Proof. by induction l1; csimpl; rewrite <-?(associative_L (++)); f_equal. Qed.
+  Proof. by induction l1; csimpl; rewrite <-?(assoc_L (++)); f_equal. Qed.
   Lemma elem_of_list_bind (x : B) (l : list A) :
     x ∈ l ≫= f ↔ ∃ y, x ∈ f y ∧ y ∈ l.
   Proof.
@@ -2944,7 +2944,7 @@ Section permutations.
     revert l1 l2. induction l3 as [|y l3 IH]; intros l1 l2; simpl.
     { rewrite !elem_of_list_singleton. intros ? ->. exists [x1].
       change (interleave x2 [x1]) with ([[x2; x1]] ++ [[x1; x2]]).
-      by rewrite (commutative (++)), elem_of_list_singleton. }
+      by rewrite (comm (++)), elem_of_list_singleton. }
     rewrite elem_of_cons, elem_of_list_fmap.
     intros Hl1 [? | [l2' [??]]]; simplify_equality'.
     * rewrite !elem_of_cons, elem_of_list_fmap in Hl1.
@@ -3069,7 +3069,7 @@ Section zip_with.
     destruct (IH l k) as (l1&k1&l2&k2&->&->&->&->&?); [done |].
     exists (x :: l1), (y :: k1), l2, k2; simpl; auto with congruence.
   Qed.
-  Lemma zip_with_inj `{!Injective2 (=) (=) (=) f} l1 l2 k1 k2 :
+  Lemma zip_with_inj `{!Inj2 (=) (=) (=) f} l1 l2 k1 k2 :
     length l1 = length k1 → length l2 = length k2 →
     zip_with f l1 k1 = zip_with f l2 k2 → l1 = l2 ∧ k1 = k2.
   Proof.
@@ -3198,9 +3198,9 @@ Proof.
   * revert l. induction k as [|z k IH]; simpl; intros l; inversion_clear 1.
     { by eexists [], k, z. }
     destruct (IH (z :: l)) as (k'&k''&y&->&->); [done |].
-    eexists (z :: k'), k'', y. by rewrite reverse_cons, <-(associative_L (++)).
+    eexists (z :: k'), k'', y. by rewrite reverse_cons, <-(assoc_L (++)).
   * intros (k'&k''&y&->&->). revert l. induction k' as [|z k' IH]; [by left|].
-    intros l; right. by rewrite reverse_cons, <-!(associative_L (++)).
+    intros l; right. by rewrite reverse_cons, <-!(assoc_L (++)).
 Qed.
 Section zipped_list_ind.
   Context {A} (P : list A → list A → Prop).
@@ -3214,7 +3214,7 @@ Lemma zipped_Forall_app {A} (P : list A → list A → A → Prop) l k k' :
   zipped_Forall P l (k ++ k') → zipped_Forall P (reverse k ++ l) k'.
 Proof.
   revert l. induction k as [|x k IH]; simpl; [done |].
-  inversion_clear 1. rewrite reverse_cons, <-(associative_L (++)). by apply IH.
+  inversion_clear 1. rewrite reverse_cons, <-(assoc_L (++)). by apply IH.
 Qed.
 
 (** * Relection over lists *)
@@ -3339,8 +3339,8 @@ Ltac simplify_list_equality ::= repeat
   | H : [] = _ <$> _ |- _ => symmetry in H; apply fmap_nil_inv in H
   | H : zip_with _ _ _ = [] |- _ => apply zip_with_nil_inv in H; destruct H
   | H : [] = zip_with _ _ _ |- _ => symmetry in H
-  | |- context [(_ ++ _) ++ _] => rewrite <-(associative_L (++))
-  | H : context [(_ ++ _) ++ _] |- _ => rewrite <-(associative_L (++)) in H
+  | |- context [(_ ++ _) ++ _] => rewrite <-(assoc_L (++))
+  | H : context [(_ ++ _) ++ _] |- _ => rewrite <-(assoc_L (++)) in H
   | H : context [_ <$> (_ ++ _)] |- _ => rewrite fmap_app in H
   | |- context [_ <$> (_ ++ _)]  => rewrite fmap_app
   | |- context [_ ++ []] => rewrite (right_id_L [] (++))
@@ -3350,11 +3350,11 @@ Ltac simplify_list_equality ::= repeat
   | |- context [drop _ (_ <$> _)] => rewrite <-fmap_drop
   | H : context [drop _ (_ <$> _)] |- _ => rewrite <-fmap_drop in H
   | H : _ ++ _ = _ ++ _ |- _ =>
-    repeat (rewrite <-app_comm_cons in H || rewrite <-(associative_L (++)) in H);
-    apply app_injective_1 in H; [destruct H|solve_length]
+    repeat (rewrite <-app_comm_cons in H || rewrite <-(assoc_L (++)) in H);
+    apply app_inj_1 in H; [destruct H|solve_length]
   | H : _ ++ _ = _ ++ _ |- _ =>
-    repeat (rewrite app_comm_cons in H || rewrite (associative_L (++)) in H);
-    apply app_injective_2 in H; [destruct H|solve_length]
+    repeat (rewrite app_comm_cons in H || rewrite (assoc_L (++)) in H);
+    apply app_inj_2 in H; [destruct H|solve_length]
   | |- context [zip_with _ (_ ++ _) (_ ++ _)] =>
     rewrite zip_with_app by solve_length
   | |- context [take _ (_ ++ _)] => rewrite take_app_alt by solve_length
diff --git a/prelude/numbers.v b/prelude/numbers.v
index 65b9621e9377f9720ca2ba31bcf158a03ac2c302..e2e728b3ffc7c56126783c42c4033561dcdb1115 100644
--- a/prelude/numbers.v
+++ b/prelude/numbers.v
@@ -35,7 +35,7 @@ Instance nat_eq_dec: ∀ x y : nat, Decision (x = y) := eq_nat_dec.
 Instance nat_le_dec: ∀ x y : nat, Decision (x ≤ y) := le_dec.
 Instance nat_lt_dec: ∀ x y : nat, Decision (x < y) := lt_dec.
 Instance nat_inhabited: Inhabited nat := populate 0%nat.
-Instance: Injective (=) (=) S.
+Instance: Inj (=) (=) S.
 Proof. by injection 1. Qed.
 Instance: PartialOrder (≤).
 Proof. repeat split; repeat intro; auto with lia. Qed.
@@ -110,9 +110,9 @@ Instance positive_inhabited: Inhabited positive := populate 1.
 
 Instance maybe_xO : Maybe xO := λ p, match p with p~0 => Some p | _ => None end.
 Instance maybe_x1 : Maybe xI := λ p, match p with p~1 => Some p | _ => None end.
-Instance: Injective (=) (=) (~0).
+Instance: Inj (=) (=) (~0).
 Proof. by injection 1. Qed.
-Instance: Injective (=) (=) (~1).
+Instance: Inj (=) (=) (~1).
 Proof. by injection 1. Qed.
 
 (** Since [positive] represents lists of bits, we define list operations
@@ -141,9 +141,9 @@ Global Instance: LeftId (=) 1 (++).
 Proof. intros p. by induction p; intros; f_equal'. Qed.
 Global Instance: RightId (=) 1 (++).
 Proof. done. Qed.
-Global Instance: Associative (=) (++).
+Global Instance: Assoc (=) (++).
 Proof. intros ?? p. by induction p; intros; f_equal'. Qed.
-Global Instance: ∀ p : positive, Injective (=) (=) (++ p).
+Global Instance: ∀ p : positive, Inj (=) (=) (++ p).
 Proof. intros p ???. induction p; simplify_equality; auto. Qed.
 
 Lemma Preverse_go_app p1 p2 p3 :
@@ -184,7 +184,7 @@ Infix "`mod`" := N.modulo (at level 35) : N_scope.
 
 Arguments N.add _ _ : simpl never.
 
-Instance: Injective (=) (=) Npos.
+Instance: Inj (=) (=) Npos.
 Proof. by injection 1. Qed.
 
 Instance N_eq_dec: ∀ x y : N, Decision (x = y) := N.eq_dec.
@@ -220,9 +220,9 @@ Infix "`rem`" := Z.rem (at level 35) : Z_scope.
 Infix "≪" := Z.shiftl (at level 35) : Z_scope.
 Infix "≫" := Z.shiftr (at level 35) : Z_scope.
 
-Instance: Injective (=) (=) Zpos.
+Instance: Inj (=) (=) Zpos.
 Proof. by injection 1. Qed.
-Instance: Injective (=) (=) Zneg.
+Instance: Inj (=) (=) Zneg.
 Proof. by injection 1. Qed.
 
 Instance Z_eq_dec: ∀ x y : Z, Decision (x = y) := Z.eq_dec.
@@ -371,18 +371,18 @@ Lemma Qcplus_lt_mono_l (x y z : Qc) : x < y ↔ z + x < z + y.
 Proof. by rewrite !Qclt_nge, <-Qcplus_le_mono_l. Qed.
 Lemma Qcplus_lt_mono_r (x y z : Qc) : x < y ↔ x + z < y + z.
 Proof. by rewrite !Qclt_nge, <-Qcplus_le_mono_r. Qed.
-Instance: Injective (=) (=) Qcopp.
+Instance: Inj (=) (=) Qcopp.
 Proof.
   intros x y H. by rewrite <-(Qcopp_involutive x), H, Qcopp_involutive.
 Qed.
-Instance: ∀ z, Injective (=) (=) (Qcplus z).
+Instance: ∀ z, Inj (=) (=) (Qcplus z).
 Proof.
-  intros z x y H. by apply (anti_symmetric (≤));
+  intros z x y H. by apply (anti_symm (≤));
     rewrite (Qcplus_le_mono_l _ _ z), H.
 Qed.
-Instance: ∀ z, Injective (=) (=) (λ x, x + z).
+Instance: ∀ z, Inj (=) (=) (λ x, x + z).
 Proof.
-  intros z x y H. by apply (anti_symmetric (≤));
+  intros z x y H. by apply (anti_symm (≤));
     rewrite (Qcplus_le_mono_r _ _ z), H.
 Qed.
 Lemma Qcplus_pos_nonneg (x y : Qc) : 0 < x → 0 ≤ y → 0 < x + y.
diff --git a/prelude/option.v b/prelude/option.v
index 4a28e666c318c4464495435fbf43429ec9e50149..f6e217602c1ec45725c6192d87cfd5c5d4f18f1e 100644
--- a/prelude/option.v
+++ b/prelude/option.v
@@ -16,7 +16,7 @@ Lemma Some_ne_None {A} (a : A) : Some a ≠ None.
 Proof. congruence. Qed.
 Lemma eq_None_ne_Some {A} (x : option A) a : x = None → x ≠ Some a.
 Proof. congruence. Qed.
-Instance Some_inj {A} : Injective (=) (=) (@Some A).
+Instance Some_inj {A} : Inj (=) (=) (@Some A).
 Proof. congruence. Qed.
 
 (** The non dependent elimination principle on the option type. *)
@@ -232,14 +232,14 @@ Section option_union_intersection_difference.
   Proof. by intros [?|]. Qed.
   Global Instance: RightId (=) None (union_with f).
   Proof. by intros [?|]. Qed.
-  Global Instance: Commutative (=) f → Commutative (=) (union_with f).
-  Proof. by intros ? [?|] [?|]; compute; rewrite 1?(commutative f). Qed.
+  Global Instance: Comm (=) f → Comm (=) (union_with f).
+  Proof. by intros ? [?|] [?|]; compute; rewrite 1?(comm f). Qed.
   Global Instance: LeftAbsorb (=) None (intersection_with f).
   Proof. by intros [?|]. Qed.
   Global Instance: RightAbsorb (=) None (intersection_with f).
   Proof. by intros [?|]. Qed.
-  Global Instance: Commutative (=) f → Commutative (=) (intersection_with f).
-  Proof. by intros ? [?|] [?|]; compute; rewrite 1?(commutative f). Qed.
+  Global Instance: Comm (=) f → Comm (=) (intersection_with f).
+  Proof. by intros ? [?|] [?|]; compute; rewrite 1?(comm f). Qed.
   Global Instance: RightId (=) None (difference_with f).
   Proof. by intros [?|]. Qed.
 End option_union_intersection_difference.
diff --git a/prelude/orders.v b/prelude/orders.v
index 0dd57462b40c49e54521da8409918aac0cab8397..2203764820e562bfe45d07183b24bd03b5003f2f 100644
--- a/prelude/orders.v
+++ b/prelude/orders.v
@@ -17,8 +17,8 @@ Section orders.
 
   Lemma reflexive_eq `{!Reflexive R} X Y : X = Y → X ⊆ Y.
   Proof. by intros <-. Qed.
-  Lemma anti_symmetric_iff `{!PartialOrder R} X Y : X = Y ↔ R X Y ∧ R Y X.
-  Proof. split. by intros ->. by intros [??]; apply (anti_symmetric _). Qed.
+  Lemma anti_symm_iff `{!PartialOrder R} X Y : X = Y ↔ R X Y ∧ R Y X.
+  Proof. split. by intros ->. by intros [??]; apply (anti_symm _). Qed.
   Lemma strict_spec X Y : X ⊂ Y ↔ X ⊆ Y ∧ Y ⊈ X.
   Proof. done. Qed.
   Lemma strict_include X Y : X ⊂ Y → X ⊆ Y.
@@ -46,17 +46,17 @@ Section orders.
   Qed.
   Global Instance preorder_subset_dec_slow `{∀ X Y, Decision (X ⊆ Y)}
     (X Y : A) : Decision (X ⊂ Y) | 100 := _.
-  Lemma strict_spec_alt `{!AntiSymmetric (=) R} X Y : X ⊂ Y ↔ X ⊆ Y ∧ X ≠ Y.
+  Lemma strict_spec_alt `{!AntiSymm (=) R} X Y : X ⊂ Y ↔ X ⊆ Y ∧ X ≠ Y.
   Proof.
     split.
     * intros [? HYX]. split. done. by intros <-.
-    * intros [? HXY]. split. done. by contradict HXY; apply (anti_symmetric R).
+    * intros [? HXY]. split. done. by contradict HXY; apply (anti_symm R).
   Qed.
   Lemma po_eq_dec `{!PartialOrder R, ∀ X Y, Decision (X ⊆ Y)} (X Y : A) :
     Decision (X = Y).
   Proof.
     refine (cast_if_and (decide (X ⊆ Y)) (decide (Y ⊆ X)));
-     abstract (rewrite anti_symmetric_iff; tauto).
+     abstract (rewrite anti_symm_iff; tauto).
   Defined.
   Lemma total_not `{!Total R} X Y : X ⊈ Y → Y ⊆ X.
   Proof. intros. destruct (total R X Y); tauto. Qed.
@@ -77,7 +77,7 @@ Section strict_orders.
 
   Lemma irreflexive_eq `{!Irreflexive R} X Y : X = Y → ¬X ⊂ Y.
   Proof. intros ->. apply (irreflexivity R). Qed.
-  Lemma strict_anti_symmetric `{!StrictOrder R} X Y :
+  Lemma strict_anti_symm `{!StrictOrder R} X Y :
     X ⊂ Y → Y ⊂ X → False.
   Proof. intros. apply (irreflexivity R X). by transitivity Y. Qed.
   Global Instance trichotomyT_dec `{!TrichotomyT R, !StrictOrder R} X Y :
@@ -85,7 +85,7 @@ Section strict_orders.
     match trichotomyT R X Y with
     | inleft (left H) => left H
     | inleft (right H) => right (irreflexive_eq _ _ H)
-    | inright H => right (strict_anti_symmetric _ _ H)
+    | inright H => right (strict_anti_symm _ _ H)
     end.
   Global Instance trichotomyT_trichotomy `{!TrichotomyT R} : Trichotomy R.
   Proof. intros X Y. destruct (trichotomyT R X Y) as [[|]|]; tauto. Qed.
@@ -98,7 +98,7 @@ Ltac simplify_order := repeat
   | H1 : ?R ?x ?y |- _ =>
     match goal with
     | H2 : R y x |- _ =>
-      assert (x = y) by (by apply (anti_symmetric R)); clear H1 H2
+      assert (x = y) by (by apply (anti_symm R)); clear H1 H2
     | H2 : R y ?z |- _ =>
       unless (R x z) by done;
       assert (R x z) by (by transitivity y)
@@ -150,7 +150,7 @@ Section sorted.
   Lemma Sorted_StronglySorted `{!Transitive R} l :
     Sorted R l → StronglySorted R l.
   Proof. by apply Sorted.Sorted_StronglySorted. Qed.
-  Lemma StronglySorted_unique `{!AntiSymmetric (=) R} l1 l2 :
+  Lemma StronglySorted_unique `{!AntiSymm (=) R} l1 l2 :
     StronglySorted R l1 → StronglySorted R l2 → l1 ≡ₚ l2 → l1 = l2.
   Proof.
     intros Hl1; revert l2. induction Hl1 as [|x1 l1 ? IH Hx1]; intros l2 Hl2 E.
@@ -162,9 +162,9 @@ Section sorted.
       assert (x2 ∈ x1 :: l1) as Hx2' by (by rewrite E; left).
       assert (x1 ∈ x2 :: l2) as Hx1' by (by rewrite <-E; left).
       inversion Hx1'; inversion Hx2'; simplify_equality; auto. }
-    f_equal. by apply IH, (injective (x2 ::)).
+    f_equal. by apply IH, (inj (x2 ::)).
   Qed.
-  Lemma Sorted_unique `{!Transitive R, !AntiSymmetric (=) R} l1 l2 :
+  Lemma Sorted_unique `{!Transitive R, !AntiSymm (=) R} l1 l2 :
     Sorted R l1 → Sorted R l2 → l1 ≡ₚ l2 → l1 = l2.
   Proof. auto using StronglySorted_unique, Sorted_StronglySorted. Qed.
 
@@ -272,7 +272,7 @@ Section merge_sort_correct.
       l ++ merge_stack_flatten st.
   Proof.
     revert l. induction st as [|[l'|] st IH]; intros l; simpl; auto.
-    by rewrite IH, merge_Permutation, (associative_L _), (commutative (++) l).
+    by rewrite IH, merge_Permutation, (assoc_L _), (comm (++) l).
   Qed.
   Lemma Sorted_merge_stack st :
     merge_stack_Sorted st → Sorted R (merge_stack R st).
@@ -364,7 +364,7 @@ Hint Extern 0 (@Equivalence _ (≡)) =>
 Section partial_order.
   Context `{SubsetEq A, !PartialOrder (@subseteq A _)}.
   Global Instance: LeibnizEquiv A.
-  Proof. intros ?? [??]; by apply (anti_symmetric (⊆)). Qed.
+  Proof. intros ?? [??]; by apply (anti_symm (⊆)). Qed.
 End partial_order.
 
 (** * Join semi lattices *)
@@ -393,15 +393,15 @@ Section join_semi_lattice.
     unfold equiv, preorder_equiv.
     split; apply union_preserving; simpl in *; tauto.
   Qed.
-  Global Instance: Idempotent ((≡) : relation A) (∪).
+  Global Instance: IdemP ((≡) : relation A) (∪).
   Proof. split; eauto. Qed.
   Global Instance: LeftId ((≡) : relation A) ∅ (∪).
   Proof. split; eauto. Qed.
   Global Instance: RightId ((≡) : relation A) ∅ (∪).
   Proof. split; eauto. Qed.
-  Global Instance: Commutative ((≡) : relation A) (∪).
+  Global Instance: Comm ((≡) : relation A) (∪).
   Proof. split; auto. Qed.
-  Global Instance: Associative ((≡) : relation A) (∪).
+  Global Instance: Assoc ((≡) : relation A) (∪).
   Proof. split; auto. Qed.
   Lemma subseteq_union X Y : X ⊆ Y ↔ X ∪ Y ≡ Y.
   Proof. repeat split; eauto. intros HXY. rewrite <-HXY. auto. Qed.
@@ -422,13 +422,13 @@ Section join_semi_lattice.
   Lemma union_list_app Xs1 Xs2 : ⋃ (Xs1 ++ Xs2) ≡ ⋃ Xs1 ∪ ⋃ Xs2.
   Proof.
     induction Xs1 as [|X Xs1 IH]; simpl; [by rewrite (left_id ∅ _)|].
-    by rewrite IH, (associative _).
+    by rewrite IH, (assoc _).
   Qed.
   Lemma union_list_reverse Xs : ⋃ (reverse Xs) ≡ ⋃ Xs.
   Proof.
     induction Xs as [|X Xs IH]; simpl; [done |].
     by rewrite reverse_cons, union_list_app,
-      union_list_singleton, (commutative _), IH.
+      union_list_singleton, (comm _), IH.
   Qed.
   Lemma union_list_preserving Xs Ys : Xs ⊆* Ys → ⋃ Xs ⊆ ⋃ Ys.
   Proof. induction 1; simpl; auto using union_preserving. Qed.
@@ -448,16 +448,16 @@ Section join_semi_lattice.
 
   Section leibniz.
     Context `{!LeibnizEquiv A}.
-    Global Instance: Idempotent (=) (∪).
-    Proof. intros ?. unfold_leibniz. apply (idempotent _). Qed.
+    Global Instance: IdemP (=) (∪).
+    Proof. intros ?. unfold_leibniz. apply (idemp _). Qed.
     Global Instance: LeftId (=) ∅ (∪).
     Proof. intros ?. unfold_leibniz. apply (left_id _ _). Qed.
     Global Instance: RightId (=) ∅ (∪).
     Proof. intros ?. unfold_leibniz. apply (right_id _ _). Qed.
-    Global Instance: Commutative (=) (∪).
-    Proof. intros ??. unfold_leibniz. apply (commutative _). Qed.
-    Global Instance: Associative (=) (∪).
-    Proof. intros ???. unfold_leibniz. apply (associative _). Qed.
+    Global Instance: Comm (=) (∪).
+    Proof. intros ??. unfold_leibniz. apply (comm _). Qed.
+    Global Instance: Assoc (=) (∪).
+    Proof. intros ???. unfold_leibniz. apply (assoc _). Qed.
     Lemma subseteq_union_L X Y : X ⊆ Y ↔ X ∪ Y = Y.
     Proof. unfold_leibniz. apply subseteq_union. Qed.
     Lemma subseteq_union_1_L X Y : X ⊆ Y → X ∪ Y = Y.
@@ -519,11 +519,11 @@ Section meet_semi_lattice.
     unfold equiv, preorder_equiv. split;
       apply intersection_preserving; simpl in *; tauto.
   Qed.
-  Global Instance: Idempotent ((≡) : relation A) (∩).
+  Global Instance: IdemP ((≡) : relation A) (∩).
   Proof. split; eauto. Qed.
-  Global Instance: Commutative ((≡) : relation A) (∩).
+  Global Instance: Comm ((≡) : relation A) (∩).
   Proof. split; auto. Qed.
-  Global Instance: Associative ((≡) : relation A) (∩).
+  Global Instance: Assoc ((≡) : relation A) (∩).
   Proof. split; auto. Qed.
   Lemma subseteq_intersection X Y : X ⊆ Y ↔ X ∩ Y ≡ X.
   Proof. repeat split; eauto. intros HXY. rewrite <-HXY. auto. Qed.
@@ -534,12 +534,12 @@ Section meet_semi_lattice.
 
   Section leibniz.
     Context `{!LeibnizEquiv A}.
-    Global Instance: Idempotent (=) (∩).
-    Proof. intros ?. unfold_leibniz. apply (idempotent _). Qed.
-    Global Instance: Commutative (=) (∩).
-    Proof. intros ??. unfold_leibniz. apply (commutative _). Qed.
-    Global Instance: Associative (=) (∩).
-    Proof. intros ???. unfold_leibniz. apply (associative _). Qed.
+    Global Instance: IdemP (=) (∩).
+    Proof. intros ?. unfold_leibniz. apply (idemp _). Qed.
+    Global Instance: Comm (=) (∩).
+    Proof. intros ??. unfold_leibniz. apply (comm _). Qed.
+    Global Instance: Assoc (=) (∩).
+    Proof. intros ???. unfold_leibniz. apply (assoc _). Qed.
     Lemma subseteq_intersection_L X Y : X ⊆ Y ↔ X ∩ Y = X.
     Proof. unfold_leibniz. apply subseteq_intersection. Qed.
     Lemma subseteq_intersection_1_L X Y : X ⊆ Y → X ∩ Y = X.
@@ -556,7 +556,7 @@ Section lattice.
   Global Instance: LeftAbsorb ((≡) : relation A) ∅ (∩).
   Proof. split. by apply intersection_subseteq_l. by apply subseteq_empty. Qed.
   Global Instance: RightAbsorb ((≡) : relation A) ∅ (∩).
-  Proof. intros ?. by rewrite (commutative _), (left_absorb _ _). Qed.
+  Proof. intros ?. by rewrite (comm _), (left_absorb _ _). Qed.
   Lemma union_intersection_l (X Y Z : A) : X ∪ (Y ∩ Z) ≡ (X ∪ Y) ∩ (X ∪ Z).
   Proof.
     split; [apply union_least|apply lattice_distr].
@@ -566,7 +566,7 @@ Section lattice.
     * apply union_subseteq_r_transitive, intersection_subseteq_r.
   Qed.
   Lemma union_intersection_r (X Y Z : A) : (X ∩ Y) ∪ Z ≡ (X ∪ Z) ∩ (Y ∪ Z).
-  Proof. by rewrite !(commutative _ _ Z), union_intersection_l. Qed.
+  Proof. by rewrite !(comm _ _ Z), union_intersection_l. Qed.
   Lemma intersection_union_l (X Y Z : A) : X ∩ (Y ∪ Z) ≡ (X ∩ Y) ∪ (X ∩ Z).
   Proof.
     split.
@@ -582,7 +582,7 @@ Section lattice.
       + apply intersection_subseteq_r_transitive, union_subseteq_r.
   Qed.
   Lemma intersection_union_r (X Y Z : A) : (X ∪ Y) ∩ Z ≡ (X ∩ Z) ∪ (Y ∩ Z).
-  Proof. by rewrite !(commutative _ _ Z), intersection_union_l. Qed.
+  Proof. by rewrite !(comm _ _ Z), intersection_union_l. Qed.
 
   Section leibniz.
     Context `{!LeibnizEquiv A}.
diff --git a/prelude/pmap.v b/prelude/pmap.v
index ec91cd490a96c06daf0604f7c7ef86f2e850d07f..00cd7e874b9352e3c70555374a3070de2a2c2b14 100644
--- a/prelude/pmap.v
+++ b/prelude/pmap.v
@@ -178,14 +178,14 @@ Proof.
     * rewrite elem_of_cons. intros [?|?]; simplify_equality.
       { left; exists 1. by rewrite (left_id_L 1 (++))%positive. }
       destruct (IHl (j~0) (Pto_list_raw j~1 r acc)) as [(i'&->&?)|?]; auto.
-      { left; exists (i' ~ 0). by rewrite Preverse_xO, (associative_L _). }
+      { left; exists (i' ~ 0). by rewrite Preverse_xO, (assoc_L _). }
       destruct (IHr (j~1) acc) as [(i'&->&?)|?]; auto.
-      left; exists (i' ~ 1). by rewrite Preverse_xI, (associative_L _).
+      left; exists (i' ~ 1). by rewrite Preverse_xI, (assoc_L _).
     * intros.
       destruct (IHl (j~0) (Pto_list_raw j~1 r acc)) as [(i'&->&?)|?]; auto.
-      { left; exists (i' ~ 0). by rewrite Preverse_xO, (associative_L _). }
+      { left; exists (i' ~ 0). by rewrite Preverse_xO, (assoc_L _). }
       destruct (IHr (j~1) acc) as [(i'&->&?)|?]; auto.
-      left; exists (i' ~ 1). by rewrite Preverse_xI, (associative_L _). }
+      left; exists (i' ~ 1). by rewrite Preverse_xI, (assoc_L _). }
   revert t j i acc. assert (∀ t j i acc,
     (i, x) ∈ acc → (i, x) ∈ Pto_list_raw j t acc) as help.
   { intros t; induction t as [|[y|] l IHl r IHr]; intros j i acc;
@@ -195,15 +195,15 @@ Proof.
   * done.
   * rewrite elem_of_cons. destruct i as [i|i|]; simplify_equality'.
     + right. apply help. specialize (IHr (j~1) i).
-      rewrite Preverse_xI, (associative_L _) in IHr. by apply IHr.
+      rewrite Preverse_xI, (assoc_L _) in IHr. by apply IHr.
     + right. specialize (IHl (j~0) i).
-      rewrite Preverse_xO, (associative_L _) in IHl. by apply IHl.
+      rewrite Preverse_xO, (assoc_L _) in IHl. by apply IHl.
     + left. by rewrite (left_id_L 1 (++))%positive.
   * destruct i as [i|i|]; simplify_equality'.
     + apply help. specialize (IHr (j~1) i).
-      rewrite Preverse_xI, (associative_L _) in IHr. by apply IHr.
+      rewrite Preverse_xI, (assoc_L _) in IHr. by apply IHr.
     + specialize (IHl (j~0) i).
-      rewrite Preverse_xO, (associative_L _) in IHl. by apply IHl.
+      rewrite Preverse_xO, (assoc_L _) in IHl. by apply IHl.
 Qed.
 Lemma Pto_list_nodup {A} j (t : Pmap_raw A) acc :
   (∀ i x, (i ++ Preverse j, x) ∈ acc → t !! i = None) →
@@ -222,18 +222,18 @@ Proof.
       discriminate (Hin Hj). }
    apply IHl.
    { intros i x. rewrite Pelem_of_to_list. intros [(?&Hi&?)|Hi].
-     + rewrite Preverse_xO, Preverse_xI, !(associative_L _) in Hi.
-       by apply (injective (++ _)) in Hi.
-     + apply (Hin (i~0) x). by rewrite Preverse_xO, (associative_L _) in Hi. }
+     + rewrite Preverse_xO, Preverse_xI, !(assoc_L _) in Hi.
+       by apply (inj (++ _)) in Hi.
+     + apply (Hin (i~0) x). by rewrite Preverse_xO, (assoc_L _) in Hi. }
    apply IHr; auto. intros i x Hi.
-   apply (Hin (i~1) x). by rewrite Preverse_xI, (associative_L _) in Hi.
+   apply (Hin (i~1) x). by rewrite Preverse_xI, (assoc_L _) in Hi.
  * apply IHl.
    { intros i x. rewrite Pelem_of_to_list. intros [(?&Hi&?)|Hi].
-     + rewrite Preverse_xO, Preverse_xI, !(associative_L _) in Hi.
-       by apply (injective (++ _)) in Hi.
-     + apply (Hin (i~0) x). by rewrite Preverse_xO, (associative_L _) in Hi. }
+     + rewrite Preverse_xO, Preverse_xI, !(assoc_L _) in Hi.
+       by apply (inj (++ _)) in Hi.
+     + apply (Hin (i~0) x). by rewrite Preverse_xO, (assoc_L _) in Hi. }
    apply IHr; auto. intros i x Hi.
-   apply (Hin (i~1) x). by rewrite Preverse_xI, (associative_L _) in Hi.
+   apply (Hin (i~1) x). by rewrite Preverse_xI, (assoc_L _) in Hi.
 Qed.
 Lemma Pomap_lookup {A B} (f : A → option B) t i :
   Pomap_raw f t !! i = t !! i ≫= f.
diff --git a/prelude/pretty.v b/prelude/pretty.v
index dbd0311de05aea0cfe6c1f044dc6ad51081db88a..b246ec428a2cfb16d918d51ed796d59efc90e10b 100644
--- a/prelude/pretty.v
+++ b/prelude/pretty.v
@@ -36,7 +36,7 @@ Proof.
   by destruct (decide (0 < x)%N); auto using pretty_N_go_help_irrel.
 Qed.
 Instance pretty_N : Pretty N := λ x, pretty_N_go x ""%string.
-Instance pretty_N_injective : Injective (@eq N) (=) pretty.
+Instance pretty_N_inj : Inj (@eq N) (=) pretty.
 Proof.
   assert (∀ x y, x < 10 → y < 10 →
     pretty_N_char x =  pretty_N_char y → x = y)%N.
diff --git a/prelude/strings.v b/prelude/strings.v
index fd41ea2dee75363cae661bdb916fdc8aa5fe871d..f2074f2488ae2cd40f474b2d1beca5c45efd0236 100644
--- a/prelude/strings.v
+++ b/prelude/strings.v
@@ -13,7 +13,7 @@ Arguments String.append _ _ : simpl never.
 Instance assci_eq_dec : ∀ a1 a2, Decision (a1 = a2) := ascii_dec.
 Instance string_eq_dec (s1 s2 : string) : Decision (s1 = s2).
 Proof. solve_decision. Defined.
-Instance: Injective (=) (=) (String.append s1).
+Instance: Inj (=) (=) (String.append s1).
 Proof. intros s1 ???. induction s1; simplify_equality'; f_equal'; auto. Qed.
 
 (* Reverse *)
diff --git a/prelude/tactics.v b/prelude/tactics.v
index 8a0551fb89a73076b660765f8e0069dca927cd15..357f4fbde4633748810a9bcf6c4982add7b316d9 100644
--- a/prelude/tactics.v
+++ b/prelude/tactics.v
@@ -186,8 +186,8 @@ Ltac simplify_equality := repeat
   | H : ?x = _ |- _ => subst x
   | H : _ = ?x |- _ => subst x
   | H : _ = _ |- _ => discriminate H
-  | H : ?f _ = ?f _ |- _ => apply (injective f) in H
-  | H : ?f _ _ = ?f _ _ |- _ => apply (injective2 f) in H; destruct H
+  | H : ?f _ = ?f _ |- _ => apply (inj f) in H
+  | H : ?f _ _ = ?f _ _ |- _ => apply (inj2 f) in H; destruct H
     (* before [injection'] to circumvent bug #2939 in some situations *)
   | H : ?f _ = ?f _ |- _ => injection' H
   | H : ?f _ _ = ?f _ _ |- _ => injection' H
diff --git a/prelude/vector.v b/prelude/vector.v
index da77f8fd936010db1d0f13fb1ec49117126231e1..4b11efe4a387abef0b512d38a160589da779b483 100644
--- a/prelude/vector.v
+++ b/prelude/vector.v
@@ -69,9 +69,9 @@ Ltac inv_fin i :=
     revert dependent i; match goal with |- ∀ i, @?P i => apply (fin_S_inv P) end
   end.
 
-Instance: Injective (=) (=) (@FS n).
+Instance: Inj (=) (=) (@FS n).
 Proof. intros n i j. apply Fin.FS_inj. Qed.
-Instance: Injective (=) (=) (@fin_to_nat n).
+Instance: Inj (=) (=) (@fin_to_nat n).
 Proof.
   intros n i. induction i; intros j; inv_fin j; intros; f_equal'; auto with lia.
 Qed.
diff --git a/program_logic/adequacy.v b/program_logic/adequacy.v
index f6e81accf55dc2fffaa309f1f35f6d41f80170fa..c0a1c6b136f284c06be027b35d7492968a82b1c6 100644
--- a/program_logic/adequacy.v
+++ b/program_logic/adequacy.v
@@ -41,10 +41,10 @@ Proof.
       (rs1 ++ r2 :: rs2 ++ [r2'])) as (rs'&Qs'&?&?).
     { apply Forall3_app, Forall3_cons,
         Forall3_app, Forall3_cons, Forall3_nil; eauto using wptp_le. }
-    { by rewrite -Permutation_middle /= (associative (++))
-        (commutative (++)) /= associative big_op_app. }
+    { by rewrite -Permutation_middle /= (assoc (++))
+        (comm (++)) /= assoc big_op_app. }
     exists rs', ([λ _, True%I] ++ Qs'); split; auto.
-    by rewrite (associative _ _ _ Qs') -(associative _ Qs1).
+    by rewrite (assoc _ _ _ Qs') -(assoc _ Qs1).
   * apply (IH (Qs1 ++ Q :: Qs2) (rs1 ++ r2 â‹… r2' :: rs2)).
     { rewrite /option_list right_id_L.
       apply Forall3_app, Forall3_cons; eauto using wptp_le.
diff --git a/program_logic/auth.v b/program_logic/auth.v
index b4dff6309ac7149c57eda87b8d68c2c58a45c693..afffd9862562f774e5d7b73f27518fe3aebcc169 100644
--- a/program_logic/auth.v
+++ b/program_logic/auth.v
@@ -11,14 +11,6 @@ Section auth.
   Implicit Types a b : A.
   Implicit Types γ : gname.
 
-  (* Adding this locally only, since it overlaps with Auth_timelss in algebra/auth.v.
-     TODO: Would moving this to auth.v and making it global break things? *)
-  Local Instance AuthA_timeless (x : auth A) : Timeless x.
-  Proof.
-    (* FIXME: "destruct x; auto with typeclass_instances" should find this through Auth, right? *)
-    destruct x. apply Auth_timeless; apply _.
-  Qed.
-
   (* TODO: Need this to be proven somewhere. *)
   Hypothesis auth_valid :
     forall a b, (✓ Auth (Excl a) b : iPropG Λ Σ) ⊑ (∃ b', a ≡ b ⋅ b').
@@ -37,7 +29,7 @@ Section auth.
     rewrite sep_exist_l. apply exist_elim=>γ. rewrite -(exist_intro γ).
     transitivity (▷auth_inv γ ★ auth_own γ a)%I.
     { rewrite /auth_inv -later_intro -(exist_intro a).
-      rewrite [(_ ★ φ _)%I]commutative -associative. apply sep_mono; first done.
+      rewrite [(_ ★ φ _)%I]comm -assoc. apply sep_mono; first done.
       rewrite /auth_own -own_op auth_both_op. done. }
     rewrite (inv_alloc N) /auth_ctx pvs_frame_r. apply pvs_mono.
     by rewrite always_and_sep_l'.
@@ -50,7 +42,7 @@ Section auth.
   Proof.
     rewrite /auth_inv. rewrite later_exist sep_exist_r. apply exist_elim=>b.
     rewrite later_sep [(â–·own _ _ _)%I]pvs_timeless !pvs_frame_r. apply pvs_mono.
-    rewrite /auth_own [(_ ★ ▷φ _)%I]commutative -associative -own_op.
+    rewrite /auth_own [(_ ★ ▷φ _)%I]comm -assoc -own_op.
     rewrite own_valid_r auth_valid !sep_exist_l /=. apply exist_elim=>a'.
     rewrite [∅ ⋅ _]left_id -(exist_intro a').
     apply (eq_rewrite b (a â‹… a')
@@ -66,7 +58,7 @@ Section auth.
     ⊑ pvs E E (▷auth_inv γ ★ auth_own γ (L a)).
   Proof.
     intros HL Hv. rewrite /auth_inv /auth_own -(exist_intro (L a â‹… a')).
-    rewrite later_sep [(_ ★ ▷φ _)%I]commutative -associative.
+    rewrite later_sep [(_ ★ ▷φ _)%I]comm -assoc.
     rewrite -pvs_frame_l. apply sep_mono; first done.
     rewrite -later_intro -own_op.
     by apply own_update, (auth_local_update_l L).
@@ -85,14 +77,14 @@ Section auth.
     rewrite /auth_ctx=>HN.
     rewrite -inv_fsa; last eassumption.
     apply sep_mono; first done. apply wand_intro_l.
-    rewrite associative auth_opened !pvs_frame_r !sep_exist_r.
+    rewrite assoc auth_opened !pvs_frame_r !sep_exist_r.
     apply fsa_strip_pvs; first done. apply exist_elim=>a'.
-    rewrite (forall_elim a'). rewrite [(▷_ ★ _)%I]commutative.
-    rewrite -[((_ ★ ▷_) ★ _)%I]associative wand_elim_r fsa_frame_l.
-    apply fsa_mono_pvs; first done. intros x. rewrite commutative -!associative.
+    rewrite (forall_elim a'). rewrite [(▷_ ★ _)%I]comm.
+    rewrite -[((_ ★ ▷_) ★ _)%I]assoc wand_elim_r fsa_frame_l.
+    apply fsa_mono_pvs; first done. intros x. rewrite comm -!assoc.
     apply const_elim_sep_l=>-[HL Hv].
-    rewrite associative [(_ ★ (_ -★ _))%I]commutative -associative.
+    rewrite assoc [(_ ★ (_ -★ _))%I]comm -assoc.
     rewrite auth_closing //; []. erewrite pvs_frame_l. apply pvs_mono.
-    by rewrite associative [(_ ★ ▷_)%I]commutative -associative wand_elim_l.
+    by rewrite assoc [(_ ★ ▷_)%I]comm -assoc wand_elim_l.
   Qed.
 End auth.
diff --git a/program_logic/hoare.v b/program_logic/hoare.v
index dbda42db2f9d95d31c8d4dcaa0ad8eb62c4bc468..59619a203836a910c0e9e39426953fca71a3eba0 100644
--- a/program_logic/hoare.v
+++ b/program_logic/hoare.v
@@ -40,8 +40,8 @@ Lemma ht_vs E P P' Q Q' e :
   ⊑ {{ P }} e @ E {{ Q }}.
 Proof.
   apply (always_intro' _ _), impl_intro_l.
-  rewrite (associative _ P) {1}/vs always_elim impl_elim_r.
-  rewrite associative pvs_impl_r pvs_always_r wp_always_r.
+  rewrite (assoc _ P) {1}/vs always_elim impl_elim_r.
+  rewrite assoc pvs_impl_r pvs_always_r wp_always_r.
   rewrite -(pvs_wp E e Q) -(wp_pvs E e Q); apply pvs_mono, wp_mono=> v.
   by rewrite (forall_elim v) {1}/vs always_elim impl_elim_r.
 Qed.
@@ -51,8 +51,8 @@ Lemma ht_atomic E1 E2 P P' Q Q' e :
   ⊑ {{ P }} e @ E1 {{ Q }}.
 Proof.
   intros ??; apply (always_intro' _ _), impl_intro_l.
-  rewrite (associative _ P) {1}/vs always_elim impl_elim_r.
-  rewrite (associative _) pvs_impl_r pvs_always_r wp_always_r.
+  rewrite (assoc _ P) {1}/vs always_elim impl_elim_r.
+  rewrite assoc pvs_impl_r pvs_always_r wp_always_r.
   rewrite -(wp_atomic E1 E2) //; apply pvs_mono, wp_mono=> v.
   by rewrite (forall_elim v) {1}/vs always_elim impl_elim_r.
 Qed.
@@ -61,7 +61,7 @@ Lemma ht_bind `{LanguageCtx Λ K} E P Q Q' e :
   ⊑ {{ P }} K e @ E {{ Q' }}.
 Proof.
   intros; apply (always_intro' _ _), impl_intro_l.
-  rewrite (associative _ P) {1}/ht always_elim impl_elim_r.
+  rewrite (assoc _ P) {1}/ht always_elim impl_elim_r.
   rewrite wp_always_r -wp_bind //; apply wp_mono=> v.
   by rewrite (forall_elim v) /ht always_elim impl_elim_r.
 Qed.
@@ -72,25 +72,25 @@ Lemma ht_frame_l E P Q R e :
   {{ P }} e @ E {{ Q }} ⊑ {{ R ★ P }} e @ E {{ λ v, R ★ Q v }}.
 Proof.
   apply always_intro, impl_intro_l.
-  rewrite always_and_sep_r -(associative _) (sep_and P) always_elim impl_elim_r.
+  rewrite always_and_sep_r -assoc (sep_and P) always_elim impl_elim_r.
   by rewrite wp_frame_l.
 Qed.
 Lemma ht_frame_r E P Q R e :
   {{ P }} e @ E {{ Q }} ⊑ {{ P ★ R }} e @ E {{ λ v, Q v ★ R }}.
-Proof. setoid_rewrite (commutative _ _ R); apply ht_frame_l. Qed.
+Proof. setoid_rewrite (comm _ _ R); apply ht_frame_l. Qed.
 Lemma ht_frame_later_l E P R e Q :
   to_val e = None →
   {{ P }} e @ E {{ Q }} ⊑ {{ ▷ R ★ P }} e @ E {{ λ v, R ★ Q v }}.
 Proof.
   intros; apply always_intro, impl_intro_l.
-  rewrite always_and_sep_r -(associative _) (sep_and P) always_elim impl_elim_r.
+  rewrite always_and_sep_r -assoc (sep_and P) always_elim impl_elim_r.
   by rewrite wp_frame_later_l //; apply wp_mono=>v; rewrite pvs_frame_l.
 Qed.
 Lemma ht_frame_later_r E P R e Q :
   to_val e = None →
   {{ P }} e @ E {{ Q }} ⊑ {{ P ★ ▷ R }} e @ E {{ λ v, Q v ★ R }}.
 Proof.
-  rewrite (commutative _ _ (â–· R)%I); setoid_rewrite (commutative _ _ R).
+  rewrite (comm _ _ (â–· R)%I); setoid_rewrite (comm _ _ R).
   apply ht_frame_later_l.
 Qed.
 End hoare.
diff --git a/program_logic/hoare_lifting.v b/program_logic/hoare_lifting.v
index 17d14715ad6afe88ce148ea8b20d140d4813229b..fd876ea963d68b80cab2dffa9cf175abd14eb6a6 100644
--- a/program_logic/hoare_lifting.v
+++ b/program_logic/hoare_lifting.v
@@ -27,19 +27,19 @@ Lemma ht_lift_step E1 E2
   ⊑ {{ P }} e1 @ E2 {{ R }}.
 Proof.
   intros ?? Hsafe Hstep; apply (always_intro' _ _), impl_intro_l.
-  rewrite (associative _ P) {1}/vs always_elim impl_elim_r pvs_always_r.
+  rewrite (assoc _ P) {1}/vs always_elim impl_elim_r pvs_always_r.
   rewrite -(wp_lift_step E1 E2 φ _ e1 σ1) //; apply pvs_mono.
-  rewrite always_and_sep_r' -associative; apply sep_mono; first done.
+  rewrite always_and_sep_r' -assoc; apply sep_mono; first done.
   rewrite (later_intro (∀ _, _)) -later_sep; apply later_mono.
   apply forall_intro=>e2; apply forall_intro=>σ2; apply forall_intro=>ef.
   rewrite (forall_elim e2) (forall_elim σ2) (forall_elim ef).
   apply wand_intro_l; rewrite !always_and_sep_l'.
-  rewrite (associative _ _ P') -(associative _ _ _ P') associative.
+  rewrite (assoc _ _ P') -(assoc _ _ _ P') assoc.
   rewrite {1}/vs -always_wand_impl always_elim wand_elim_r.
   rewrite pvs_frame_r; apply pvs_mono.
-  rewrite (commutative _ (Q1 _ _ _)) -associative (associative _ (Q1 _ _ _)).
+  rewrite (comm _ (Q1 _ _ _)) -assoc (assoc _ (Q1 _ _ _)).
   rewrite {1}/ht -always_wand_impl always_elim wand_elim_r.
-  rewrite associative (commutative _ _ (wp _ _ _)) -associative.
+  rewrite assoc (comm _ _ (wp _ _ _)) -assoc.
   apply sep_mono; first done.
   destruct ef as [e'|]; simpl; [|by apply const_intro].
   rewrite {1}/ht -always_wand_impl always_elim wand_elim_r; apply wp_mono=>v.
@@ -63,7 +63,7 @@ Proof.
   apply forall_mono=>e2; apply forall_mono=>σ2; apply forall_mono=>ef.
   apply and_intro; [|apply and_intro; [|done]].
   * rewrite -vs_impl; apply (always_intro' _ _),impl_intro_l;rewrite and_elim_l.
-    rewrite !associative; apply sep_mono; last done.
+    rewrite !assoc; apply sep_mono; last done.
     rewrite -!always_and_sep_l' -!always_and_sep_r'; apply const_elim_l=>-[??].
     by repeat apply and_intro; try apply const_intro.
   * apply (always_intro' _ _), impl_intro_l; rewrite and_elim_l.
@@ -88,12 +88,12 @@ Proof.
   apply forall_intro=>e2; apply forall_intro=>ef; apply impl_intro_l.
   rewrite (forall_elim e2) (forall_elim ef).
   rewrite always_and_sep_l' !always_and_sep_r' {1}(always_sep_dup' (â–  _)).
-  rewrite {1}(associative _ (_ ★ _)%I) -(associative _ (■ _)%I).
-  rewrite (associative _ (â–  _)%I P) -{1}(commutative _ P) -(associative _ P).
-  rewrite (associative _ (■ _)%I) associative -(associative _ (■ _ ★ P))%I.
-  rewrite (commutative _ (■ _ ★ P'))%I associative.
+  rewrite {1}(assoc _ (_ ★ _)%I) -(assoc _ (■ _)%I).
+  rewrite (assoc _ (â–  _)%I P) -{1}(comm _ P) -(assoc _ P).
+  rewrite (assoc _ (■ _)%I) assoc -(assoc _ (■ _ ★ P))%I.
+  rewrite (comm _ (■ _ ★ P'))%I assoc.
   rewrite {1}/ht -always_wand_impl always_elim wand_elim_r.
-  rewrite -associative; apply sep_mono; first done.
+  rewrite -assoc; apply sep_mono; first done.
   destruct ef as [e'|]; simpl; [|by apply const_intro].
   rewrite {1}/ht -always_wand_impl always_elim wand_elim_r; apply wp_mono=>v.
   by apply const_intro.
@@ -111,11 +111,11 @@ Proof.
   rewrite -(ht_lift_pure_step _ (λ e2' ef', e2 = e2' ∧ ef = ef')); eauto.
   apply forall_intro=>e2'; apply forall_intro=>ef'; apply and_mono.
   * apply (always_intro' _ _), impl_intro_l.
-    rewrite -always_and_sep_l' -associative; apply const_elim_l=>-[??]; subst.
+    rewrite -always_and_sep_l' -assoc; apply const_elim_l=>-[??]; subst.
     by rewrite /ht always_elim impl_elim_r.
   * destruct ef' as [e'|]; simpl; [|by apply const_intro].
     apply (always_intro' _ _), impl_intro_l.
-    rewrite -always_and_sep_l' -associative; apply const_elim_l=>-[??]; subst.
+    rewrite -always_and_sep_l' -assoc; apply const_elim_l=>-[??]; subst.
     by rewrite /= /ht always_elim impl_elim_r.
 Qed.
 
diff --git a/program_logic/invariants.v b/program_logic/invariants.v
index f5a2f0994777d0cd63dea16464c2218e3e2459bc..99961ffb9633f6b6abdca4022dcbaf32133cf2c0 100644
--- a/program_logic/invariants.v
+++ b/program_logic/invariants.v
@@ -15,7 +15,7 @@ Definition ndot `{Countable A} (N : namespace) (x : A) : namespace :=
   encode x :: N.
 Coercion nclose (N : namespace) : coPset := coPset_suffixes (encode N).
 
-Instance ndot_injective `{Countable A} : Injective2 (=) (=) (=) (@ndot A _ _).
+Instance ndot_inj `{Countable A} : Inj2 (=) (=) (=) (@ndot A _ _).
 Proof. by intros N1 x1 N2 x2 ?; simplify_equality. Qed.
 Lemma nclose_nnil : nclose nnil = coPset_all.
 Proof. by apply (sig_eq_pi _). Qed.
@@ -25,7 +25,7 @@ Lemma nclose_subseteq `{Countable A} N x : nclose (ndot N x) ⊆ nclose N.
 Proof.
   intros p; rewrite /nclose !elem_coPset_suffixes; intros [q ->].
   destruct (list_encode_suffix N (ndot N x)) as [q' ?]; [by exists [encode x]|].
-  by exists (q ++ q')%positive; rewrite <-(associative_L _); f_equal.
+  by exists (q ++ q')%positive; rewrite <-(assoc_L _); f_equal.
 Qed.
 Lemma ndot_nclose `{Countable A} N x : encode (ndot N x) ∈ nclose N.
 Proof. apply nclose_subseteq with x, encode_nclose. Qed.
@@ -34,9 +34,9 @@ Lemma nclose_disjoint `{Countable A} N (x y : A) :
 Proof.
   intros Hxy; apply elem_of_equiv_empty_L=> p; unfold nclose, ndot.
   rewrite elem_of_intersection !elem_coPset_suffixes; intros [[q ->] [q' Hq]].
-  apply Hxy, (injective encode), (injective encode_nat); revert Hq.
+  apply Hxy, (inj encode), (inj encode_nat); revert Hq.
   rewrite !(list_encode_cons (encode _)).
-  rewrite !(associative_L _) (injective_iff (++ _)%positive) /=.
+  rewrite !(assoc_L _) (inj_iff (++ _)%positive) /=.
   generalize (encode_nat (encode y)).
   induction (encode_nat (encode x)); intros [|?] ?; f_equal'; naive_solver.
 Qed.
@@ -72,16 +72,16 @@ Lemma inv_fsa {A : Type} {FSA} (FSAs : FrameShiftAssertion (A:=A) FSA)
 Proof.
   move=>HN.
   rewrite /inv sep_exist_r. apply exist_elim=>i.
-  rewrite always_and_sep_l' -associative. apply const_elim_sep_l=>HiN.
+  rewrite always_and_sep_l' -assoc. apply const_elim_sep_l=>HiN.
   rewrite -(fsa_trans3 E (E ∖ {[encode i]})) //; last by solve_elem_of+.
   (* Add this to the local context, so that solve_elem_of finds it. *)
   assert ({[encode i]} ⊆ nclose N) by eauto.
   rewrite (always_sep_dup' (ownI _ _)).
   rewrite {1}pvs_openI !pvs_frame_r.
   apply pvs_mask_frame_mono ; [solve_elem_of..|].
-  rewrite (commutative _ (â–·_)%I) -associative wand_elim_r fsa_frame_l.
+  rewrite (comm _ (â–·_)%I) -assoc wand_elim_r fsa_frame_l.
   apply fsa_mask_frame_mono; [solve_elem_of..|]. intros a.
-  rewrite associative -always_and_sep_l' pvs_closeI pvs_frame_r left_id.
+  rewrite assoc -always_and_sep_l' pvs_closeI pvs_frame_r left_id.
   apply pvs_mask_frame'; solve_elem_of.
 Qed.
 
diff --git a/program_logic/language.v b/program_logic/language.v
index 783ac2a73205c49436b4248d8296ef246af6551e..4b24374ca98ad409477799138868dbb194c2b9db 100644
--- a/program_logic/language.v
+++ b/program_logic/language.v
@@ -48,8 +48,8 @@ Section language.
   Proof. intros (?&?&?&?); eauto using values_stuck. Qed.
   Lemma atomic_of_val v : ¬atomic (of_val v).
   Proof. by intros Hat%atomic_not_val; rewrite to_of_val in Hat. Qed.
-  Global Instance: Injective (=) (=) (@of_val Λ).
-  Proof. by intros v v' Hv; apply (injective Some); rewrite -!to_of_val Hv. Qed.
+  Global Instance: Inj (=) (=) (@of_val Λ).
+  Proof. by intros v v' Hv; apply (inj Some); rewrite -!to_of_val Hv. Qed.
 End language.
 
 Class LanguageCtx (Λ : language) (K : expr Λ → expr Λ) := {
diff --git a/program_logic/lifting.v b/program_logic/lifting.v
index e72e87a056de6b8cf33a945f14e450138919990c..91a19e33caab7ae91d83d07743c53c7cbfd3bf85 100644
--- a/program_logic/lifting.v
+++ b/program_logic/lifting.v
@@ -31,12 +31,12 @@ Proof.
     as (r'&(r1&r2&?&?&Hwp)&Hws); auto; clear Hvs; cofe_subst r'.
   destruct (wsat_update_pst k (E1 ∪ Ef) σ1 σ1' r1 (r2 ⋅ rf)) as [-> Hws'].
   { by apply ownP_spec; auto. }
-  { by rewrite (associative _). }
+  { by rewrite assoc. }
   constructor; [done|intros e2 σ2 ef ?; specialize (Hws' σ2)].
   destruct (λ H1 H2 H3, Hwp e2 σ2 ef (update_pst σ2 r1) k H1 H2 H3 rf k Ef σ2)
     as (r'&(r1'&r2'&?&?&?)&?); auto; cofe_subst r'.
   { split. destruct k; try eapply Hstep; eauto. apply ownP_spec; auto. }
-  { rewrite (commutative _ r2) -(associative _); eauto using wsat_le. }
+  { rewrite (comm _ r2) -assoc; eauto using wsat_le. }
   by exists r1', r2'; split_ands; [| |by intros ? ->].
 Qed.
 
@@ -71,7 +71,7 @@ Proof.
   rewrite -pvs_intro. apply sep_mono, later_mono; first done.
   apply forall_intro=>e2'; apply forall_intro=>σ2'.
   apply forall_intro=>ef; apply wand_intro_l.
-  rewrite always_and_sep_l' -associative -always_and_sep_l'.
+  rewrite always_and_sep_l' -assoc -always_and_sep_l'.
   apply const_elim_l=>-[v2' [Hv ?]] /=.
   rewrite -pvs_intro.
   rewrite (forall_elim v2') (forall_elim σ2') (forall_elim ef) const_equiv //.
@@ -90,7 +90,7 @@ Proof.
   apply sep_mono, later_mono; first done.
   apply forall_intro=>e2'; apply forall_intro=>σ2'; apply forall_intro=>ef'.
   apply wand_intro_l.
-  rewrite always_and_sep_l' -associative -always_and_sep_l'.
+  rewrite always_and_sep_l' -assoc -always_and_sep_l'.
   apply const_elim_l=>-[-> [-> ->]] /=. by rewrite wand_elim_r.
 Qed.
 
diff --git a/program_logic/model.v b/program_logic/model.v
index dda84c106aec750600cd2b256482215ef148d638..42bddbdd2074f7e60e806d92b21fe11f11cf538c 100644
--- a/program_logic/model.v
+++ b/program_logic/model.v
@@ -46,8 +46,8 @@ Lemma iProp_unfold_fold {Λ Σ} (P : iPreProp Λ Σ) :
 Proof. apply solution_fold_unfold. Qed.
 Bind Scope uPred_scope with iProp.
 
-Instance iProp_fold_inj n Λ Σ : Injective (dist n) (dist n) (@iProp_fold Λ Σ).
+Instance iProp_fold_inj n Λ Σ : Inj (dist n) (dist n) (@iProp_fold Λ Σ).
 Proof. by intros X Y H; rewrite -(iProp_unfold_fold X) H iProp_unfold_fold. Qed.
 Instance iProp_unfold_inj n Λ Σ :
-  Injective (dist n) (dist n) (@iProp_unfold Λ Σ).
+  Inj (dist n) (dist n) (@iProp_unfold Λ Σ).
 Proof. by intros X Y H; rewrite -(iProp_fold_unfold X) H iProp_fold_unfold. Qed.
diff --git a/program_logic/ownership.v b/program_logic/ownership.v
index 2f7de641b6446fe0d0f610659a27c89e3db92e7d..dff05bd9df7f1686ff45f9afaaaf219317b2bb3a 100644
--- a/program_logic/ownership.v
+++ b/program_logic/ownership.v
@@ -49,11 +49,11 @@ Global Instance ownG_ne n : Proper (dist n ==> dist n) (@ownG Λ Σ).
 Proof. by intros m m' Hm; unfold ownG; rewrite Hm. Qed.
 Global Instance ownG_proper : Proper ((≡) ==> (≡)) (@ownG Λ Σ) := ne_proper _.
 Lemma ownG_op m1 m2 : ownG (m1 ⋅ m2) ≡ (ownG m1 ★ ownG m2)%I.
-Proof. by rewrite /ownG -uPred.ownM_op Res_op !(left_id _ _). Qed.
+Proof. by rewrite /ownG -uPred.ownM_op Res_op !left_id. Qed.
 Lemma always_ownG_unit m : (□ ownG (unit m))%I ≡ ownG (unit m).
 Proof.
   apply uPred.always_ownM.
-  by rewrite Res_unit !cmra_unit_empty -{2}(cmra_unit_idempotent m).
+  by rewrite Res_unit !cmra_unit_empty -{2}(cmra_unit_idemp m).
 Qed.
 Lemma ownG_valid m : (ownG m) ⊑ (✓ m).
 Proof. by rewrite /ownG uPred.ownM_valid; apply uPred.valid_mono=> n [? []]. Qed.
diff --git a/program_logic/pviewshifts.v b/program_logic/pviewshifts.v
index 663090b3b7ed8b374cf34c2b59408e69b7f45cf0..2f576280c3accb1083a4be5b5789d63478f7615c 100644
--- a/program_logic/pviewshifts.v
+++ b/program_logic/pviewshifts.v
@@ -20,8 +20,8 @@ Next Obligation.
 Qed.
 Next Obligation.
   intros Λ Σ E1 E2 P r1 r2 n1 n2 HP [r3 ?] Hn ? rf k Ef σ ?? Hws; setoid_subst.
-  destruct (HP (r3⋅rf) k Ef σ) as (r'&?&Hws'); rewrite ?(associative op); auto.
-  exists (r' â‹… r3); rewrite -(associative _); split; last done.
+  destruct (HP (r3⋅rf) k Ef σ) as (r'&?&Hws'); rewrite ?(assoc op); auto.
+  exists (r' â‹… r3); rewrite -assoc; split; last done.
   apply uPred_weaken with r' k; eauto using cmra_included_l.
 Qed.
 Arguments pvs {_ _} _ _ _%I : simpl never.
@@ -68,15 +68,15 @@ Lemma pvs_mask_frame E1 E2 Ef P :
   Ef ∩ (E1 ∪ E2) = ∅ → pvs E1 E2 P ⊑ pvs (E1 ∪ Ef) (E2 ∪ Ef) P.
 Proof.
   intros ? r n ? HP rf k Ef' σ ???.
-  destruct (HP rf k (Ef∪Ef') σ) as (r'&?&?); rewrite ?(associative_L _); eauto.
-  by exists r'; rewrite -(associative_L _).
+  destruct (HP rf k (Ef∪Ef') σ) as (r'&?&?); rewrite ?(assoc_L _); eauto.
+  by exists r'; rewrite -(assoc_L _).
 Qed.
 Lemma pvs_frame_r E1 E2 P Q : (pvs E1 E2 P ★ Q) ⊑ pvs E1 E2 (P ★ Q).
 Proof.
   intros r n ? (r1&r2&Hr&HP&?) rf k Ef σ ???.
   destruct (HP (r2 ⋅ rf) k Ef σ) as (r'&?&?); eauto.
-  { by rewrite (associative _) -(dist_le _ _ _ _ Hr); last lia. }
-  exists (r' â‹… r2); split; last by rewrite -(associative _).
+  { by rewrite assoc -(dist_le _ _ _ _ Hr); last lia. }
+  exists (r' â‹… r2); split; last by rewrite -assoc.
   exists r', r2; split_ands; auto; apply uPred_weaken with r2 n; auto.
 Qed.
 Lemma pvs_openI i P : ownI i P ⊑ pvs {[ i ]} ∅ (▷ P).
@@ -85,13 +85,13 @@ Proof.
   apply ownI_spec in Hinv; last auto.
   destruct (wsat_open k Ef σ (r ⋅ rf) i P) as (rP&?&?); auto.
   { rewrite lookup_wld_op_l ?Hinv; eauto; apply dist_le with (S n); eauto. }
-  exists (rP â‹… r); split; last by rewrite (left_id_L _ _) -(associative _).
+  exists (rP â‹… r); split; last by rewrite (left_id_L _ _) -assoc.
   eapply uPred_weaken with rP (S k); eauto using cmra_included_l.
 Qed.
 Lemma pvs_closeI i P : (ownI i P ∧ ▷ P) ⊑ pvs ∅ {[ i ]} True.
 Proof.
   intros r [|n] ? [? HP] rf [|k] Ef σ ? HE ?; try lia; exists ∅; split; [done|].
-  rewrite (left_id _ _); apply wsat_close with P r.
+  rewrite left_id; apply wsat_close with P r.
   * apply ownI_spec, uPred_weaken with r (S n); auto.
   * solve_elem_of +HE.
   * by rewrite -(left_id_L ∅ (∪) Ef).
@@ -135,7 +135,7 @@ Proof. apply pvs_trans; solve_elem_of. Qed.
 Lemma pvs_strip_pvs E P Q : P ⊑ pvs E E Q → pvs E E P ⊑ pvs E E Q.
 Proof. move=>->. by rewrite pvs_trans'. Qed.
 Lemma pvs_frame_l E1 E2 P Q : (P ★ pvs E1 E2 Q) ⊑ pvs E1 E2 (P ★ Q).
-Proof. rewrite !(commutative _ P); apply pvs_frame_r. Qed.
+Proof. rewrite !(comm _ P); apply pvs_frame_r. Qed.
 Lemma pvs_always_l E1 E2 P Q `{!AlwaysStable P} :
   (P ∧ pvs E1 E2 Q) ⊑ pvs E1 E2 (P ∧ Q).
 Proof. by rewrite !always_and_sep_l' pvs_frame_l. Qed.
@@ -145,7 +145,7 @@ Proof. by rewrite !always_and_sep_r' pvs_frame_r. Qed.
 Lemma pvs_impl_l E1 E2 P Q : (□ (P → Q) ∧ pvs E1 E2 P) ⊑ pvs E1 E2 Q.
 Proof. by rewrite pvs_always_l always_elim impl_elim_l. Qed.
 Lemma pvs_impl_r E1 E2 P Q : (pvs E1 E2 P ∧ □ (P → Q)) ⊑ pvs E1 E2 Q.
-Proof. by rewrite (commutative _) pvs_impl_l. Qed.
+Proof. by rewrite comm pvs_impl_l. Qed.
 
 Lemma pvs_mask_frame' E1 E1' E2 E2' P :
   E1' ⊆ E1 → E2' ⊆ E2 → E1 ∖ E1' = E2 ∖ E2' → pvs E1' E2' P ⊑ pvs E1 E2 P.
@@ -206,8 +206,8 @@ Proof. intros. apply fsa_mask_frame_mono; auto. Qed.
 Lemma fsa_frame_l E P Q :
   (P ★ FSA E Q) ⊑ FSA E (λ a, P ★ Q a).
 Proof.
-  rewrite commutative fsa_frame_r. apply fsa_mono=>a.
-  by rewrite commutative.
+  rewrite comm fsa_frame_r. apply fsa_mono=>a.
+  by rewrite comm.
 Qed.
 Lemma fsa_strip_pvs E P Q : P ⊑ FSA E Q → pvs E E P ⊑ FSA E Q.
 Proof.
diff --git a/program_logic/resources.v b/program_logic/resources.v
index d704106d5c0bc0efc406747678db4ce5fc090f07..ee5ad3d635ddf46adfd4c2de225aeb4b866d0284 100644
--- a/program_logic/resources.v
+++ b/program_logic/resources.v
@@ -102,10 +102,10 @@ Proof.
   * by intros n [???] ? [???] [???] ? [???];
       constructor; simpl in *; cofe_subst.
   * by intros n ? (?&?&?); split_ands'; apply cmra_validN_S.
-  * intros ???; constructor; simpl; apply (associative _).
-  * intros ??; constructor; simpl; apply (commutative _).
-  * intros ?; constructor; simpl; apply cmra_unit_l.
-  * intros ?; constructor; simpl; apply cmra_unit_idempotent.
+  * by intros ???; constructor; rewrite /= assoc.
+  * by intros ??; constructor; rewrite /= comm.
+  * by intros ?; constructor; rewrite /= cmra_unit_l.
+  * by intros ?; constructor; rewrite /= cmra_unit_idemp.
   * intros n r1 r2; rewrite !res_includedN.
     by intros (?&?&?); split_ands'; apply cmra_unit_preservingN.
   * intros n r1 r2 (?&?&?);
@@ -127,7 +127,7 @@ Global Instance res_cmra_identity : CMRAIdentity resRA.
 Proof.
   split.
   * intros n; split_ands'; apply cmra_empty_valid.
-  * by split; rewrite /= (left_id _ _).
+  * by split; rewrite /= left_id.
   * apply _.
 Qed.
 
@@ -150,12 +150,12 @@ Lemma lookup_wld_op_l n r1 r2 i P :
 Proof.
   move=>/wld_validN /(_ i) Hval Hi1P; move: Hi1P Hval; rewrite lookup_op.
   destruct (wld r2 !! i) as [P'|] eqn:Hi; rewrite !Hi ?right_id // =>-> ?.
-  by constructor; rewrite (agree_op_inv P P') // agree_idempotent.
+  by constructor; rewrite (agree_op_inv P P') // agree_idemp.
 Qed.
 Lemma lookup_wld_op_r n r1 r2 i P :
   ✓{n} (r1⋅r2) → wld r2 !! i ≡{n}≡ Some P → (wld r1 ⋅ wld r2) !! i ≡{n}≡ Some P.
 Proof.
-  rewrite (commutative _ r1) (commutative _ (wld r1)); apply lookup_wld_op_l.
+  rewrite (comm _ r1) (comm _ (wld r1)); apply lookup_wld_op_l.
 Qed.
 Global Instance Res_timeless eσ m : Timeless m → Timeless (Res ∅ eσ m).
 Proof. by intros ? ? [???]; constructor; apply (timeless _). Qed.
diff --git a/program_logic/viewshifts.v b/program_logic/viewshifts.v
index 53db3c226f49f2e67102a199887c9a51b68b16f7..d666a056ff00725e46b21a0c90805c25e1703f5f 100644
--- a/program_logic/viewshifts.v
+++ b/program_logic/viewshifts.v
@@ -24,7 +24,7 @@ Implicit Types P Q R : iProp Λ Σ.
 Lemma vs_alt E1 E2 P Q : (P ⊑ pvs E1 E2 Q) → P ={E1,E2}=> Q.
 Proof.
   intros; rewrite -{1}always_const; apply always_intro, impl_intro_l.
-  by rewrite always_const (right_id _ _).
+  by rewrite always_const right_id.
 Qed.
 
 Global Instance vs_ne E1 E2 n :
@@ -51,7 +51,7 @@ Lemma vs_transitive E1 E2 E3 P Q R :
   E2 ⊆ E1 ∪ E3 → ((P ={E1,E2}=> Q) ∧ (Q ={E2,E3}=> R)) ⊑ (P ={E1,E3}=> R).
 Proof.
   intros; rewrite -always_and; apply always_intro, impl_intro_l.
-  rewrite always_and (associative _) (always_elim (P → _)) impl_elim_r.
+  rewrite always_and assoc (always_elim (P → _)) impl_elim_r.
   by rewrite pvs_impl_r; apply pvs_trans.
 Qed.
 
@@ -69,12 +69,12 @@ Qed.
 Lemma vs_frame_l E1 E2 P Q R : (P ={E1,E2}=> Q) ⊑ (R ★ P ={E1,E2}=> R ★ Q).
 Proof.
   apply always_intro, impl_intro_l.
-  rewrite -pvs_frame_l always_and_sep_r -always_wand_impl -(associative _).
+  rewrite -pvs_frame_l always_and_sep_r -always_wand_impl -assoc.
   by rewrite always_elim wand_elim_r.
 Qed.
 
 Lemma vs_frame_r E1 E2 P Q R : (P ={E1,E2}=> Q) ⊑ (P ★ R ={E1,E2}=> Q ★ R).
-Proof. rewrite !(commutative _ _ R); apply vs_frame_l. Qed.
+Proof. rewrite !(comm _ _ R); apply vs_frame_l. Qed.
 
 Lemma vs_mask_frame E1 E2 Ef P Q :
   Ef ∩ (E1 ∪ E2) = ∅ → (P ={E1,E2}=> Q) ⊑ (P ={E1 ∪ Ef,E2 ∪ Ef}=> Q).
@@ -91,11 +91,11 @@ Lemma vs_open_close N E P Q R :
   (inv N R ★ (▷ R ★ P ={E ∖ nclose N}=> ▷ R ★ Q)) ⊑ (P ={E}=> Q).
 Proof.
   intros; apply (always_intro' _ _), impl_intro_l.
-  rewrite always_and_sep_r' associative [(P ★ _)%I]commutative -associative.
+  rewrite always_and_sep_r' assoc [(P ★ _)%I]comm -assoc.
   rewrite -(pvs_open_close E N) //. apply sep_mono; first done.
   apply wand_intro_l.
   (* Oh wow, this is annyoing... *)
-  rewrite associative -always_and_sep_r'.
+  rewrite assoc -always_and_sep_r'.
   by rewrite /vs always_elim impl_elim_r.
 Qed.
 
diff --git a/program_logic/weakestpre.v b/program_logic/weakestpre.v
index 6ceabb531197317345df46764d73c776c21dbf4c..728a8042f48650789e29e8aa534489317a6c8673 100644
--- a/program_logic/weakestpre.v
+++ b/program_logic/weakestpre.v
@@ -44,10 +44,10 @@ Next Obligation.
   * constructor; eauto using uPred_weaken.
   * intros [rf' Hr] ??; constructor; [done|intros rf k Ef σ1 ???].
     destruct (Hgo (rf' ⋅ rf) k Ef σ1) as [Hsafe Hstep];
-      rewrite ?associative -?Hr; auto; constructor; [done|].
+      rewrite ?assoc -?Hr; auto; constructor; [done|].
     intros e2 σ2 ef ?; destruct (Hstep e2 σ2 ef) as (r2&r2'&?&?&?); auto.
     exists r2, (r2' â‹… rf'); split_ands; eauto 10 using (IH k), cmra_included_l.
-    by rewrite -!associative (associative _ r2).
+    by rewrite -!assoc (assoc _ r2).
 Qed.
 Instance: Params (@wp) 4.
 
@@ -88,7 +88,7 @@ Proof.
   { constructor; eapply pvs_mask_frame_mono, HpvsQ; eauto. }
   constructor; [done|]=> rf k Ef σ1 ???.
   assert (E2 ∪ Ef = E1 ∪ (E2 ∖ E1 ∪ Ef)) as HE'.
-  { by rewrite associative_L -union_difference_L. }
+  { by rewrite assoc_L -union_difference_L. }
   destruct (Hgo rf k ((E2 ∖ E1) ∪ Ef) σ1) as [Hsafe Hstep]; rewrite -?HE'; auto.
   split; [done|intros e2 σ2 ef ?].
   destruct (Hstep e2 σ2 ef) as (r2&r2'&?&?&?); auto.
@@ -141,9 +141,9 @@ Proof.
   destruct Hwp' as [k r2 v Hvs'|k r2 e2 Hgo];
     [|destruct (atomic_step e σ1 e2 σ2 ef); naive_solver].
   apply pvs_trans in Hvs'; auto.
-  destruct (Hvs' (r2' ⋅ rf) k Ef σ2) as (r3&[]); rewrite ?(associative _); auto.
+  destruct (Hvs' (r2' ⋅ rf) k Ef σ2) as (r3&[]); rewrite ?assoc; auto.
   exists r3, r2'; split_ands; last done.
-  * by rewrite -(associative _).
+  * by rewrite -assoc.
   * constructor; apply pvs_intro; auto.
 Qed.
 Lemma wp_frame_r E e Q R : (wp E e Q ★ R) ⊑ wp E e (λ v, Q v ★ R).
@@ -155,12 +155,12 @@ Proof.
   { constructor; apply pvs_frame_r; auto. exists r, rR; eauto. }
   constructor; [done|]=> rf k Ef σ1 ???.
   destruct (Hgo (rR⋅rf) k Ef σ1) as [Hsafe Hstep]; auto.
-  { by rewrite (associative _). }
+  { by rewrite assoc. }
   split; [done|intros e2 σ2 ef ?].
   destruct (Hstep e2 σ2 ef) as (r2&r2'&?&?&?); auto.
   exists (r2 â‹… rR), r2'; split_ands; auto.
-  * by rewrite -(associative _ r2)
-      (commutative _ rR) !associative -(associative _ _ rR).
+  * by rewrite -(assoc _ r2)
+      (comm _ rR) !assoc -(assoc _ _ rR).
   * apply IH; eauto using uPred_weaken.
 Qed.
 Lemma wp_frame_later_r E e Q R :
@@ -169,12 +169,12 @@ Proof.
   intros He r' n Hvalid (r&rR&Hr&Hwp&?); revert Hvalid; rewrite Hr; clear Hr.
   destruct Hwp as [|n r e ? Hgo]; [by rewrite to_of_val in He|].
   constructor; [done|]=>rf k Ef σ1 ???; destruct n as [|n]; first omega.
-  destruct (Hgo (rR⋅rf) k Ef σ1) as [Hsafe Hstep];rewrite ?(associative _);auto.
+  destruct (Hgo (rR⋅rf) k Ef σ1) as [Hsafe Hstep];rewrite ?assoc;auto.
   split; [done|intros e2 σ2 ef ?].
   destruct (Hstep e2 σ2 ef) as (r2&r2'&?&?&?); auto.
   exists (r2 â‹… rR), r2'; split_ands; auto.
-  * by rewrite -(associative _ r2)
-      (commutative _ rR) !associative -(associative _ _ rR).
+  * by rewrite -(assoc _ r2)
+      (comm _ rR) !assoc -(assoc _ _ rR).
   * apply wp_frame_r; [auto|exists r2, rR; split_ands; auto].
     eapply uPred_weaken with rR n; eauto.
 Qed.
@@ -207,11 +207,11 @@ Proof. move=>->. by rewrite pvs_wp. Qed.
 Lemma wp_value' E Q e v : to_val e = Some v → Q v ⊑ wp E e Q.
 Proof. intros; rewrite -(of_to_val e v) //; by apply wp_value. Qed.
 Lemma wp_frame_l E e Q R : (R ★ wp E e Q) ⊑ wp E e (λ v, R ★ Q v).
-Proof. setoid_rewrite (commutative _ R); apply wp_frame_r. Qed.
+Proof. setoid_rewrite (comm _ R); apply wp_frame_r. Qed.
 Lemma wp_frame_later_l E e Q R :
   to_val e = None → (▷ R ★ wp E e Q) ⊑ wp E e (λ v, R ★ Q v).
 Proof.
-  rewrite (commutative _ (â–· R)%I); setoid_rewrite (commutative _ R).
+  rewrite (comm _ (â–· R)%I); setoid_rewrite (comm _ R).
   apply wp_frame_later_r.
 Qed.
 Lemma wp_always_l E e Q R `{!AlwaysStable R} :
@@ -226,7 +226,7 @@ Proof.
   by rewrite always_elim (forall_elim v) impl_elim_l.
 Qed.
 Lemma wp_impl_r E e Q1 Q2 : (wp E e Q1 ∧ □ ∀ v, Q1 v → Q2 v) ⊑ wp E e Q2.
-Proof. by rewrite commutative wp_impl_l. Qed.
+Proof. by rewrite comm wp_impl_l. Qed.
 Lemma wp_mask_weaken E1 E2 e Q : E1 ⊆ E2 → wp E1 e Q ⊑ wp E2 e Q.
 Proof. auto using wp_mask_frame_mono. Qed.
 
diff --git a/program_logic/wsat.v b/program_logic/wsat.v
index d0805d44787375776ca800620b3701adee8eac1e..7d8db791fb90889a564bff5667f6a15724031f55 100644
--- a/program_logic/wsat.v
+++ b/program_logic/wsat.v
@@ -49,13 +49,13 @@ Proof.
   destruct n as [|n], n' as [|n']; simpl; try by (auto with lia).
   intros [rs [Hval Hσ HE Hwld]] ?; exists rs; constructor; auto.
   intros i P ? HiP; destruct (wld (r â‹… big_opM rs) !! i) as [P'|] eqn:HP';
-    [apply (injective Some) in HiP|inversion_clear HiP].
+    [apply (inj Some) in HiP|inversion_clear HiP].
   assert (P' ≡{S n}≡ to_agree $ Next $ iProp_unfold $
                        iProp_fold $ later_car $ P' (S n)) as HPiso.
   { rewrite iProp_unfold_fold later_eta to_agree_car //.
     apply (map_lookup_validN _ (wld (r â‹… big_opM rs)) i); rewrite ?HP'; auto. }
   assert (P ≡{n'}≡ iProp_fold (later_car (P' (S n)))) as HPP'.
-  { apply (injective iProp_unfold), (injective Next), (injective to_agree).
+  { apply (inj iProp_unfold), (inj Next), (inj to_agree).
     by rewrite -HiP -(dist_le _ _ _ _ HPiso). }
   destruct (Hwld i (iProp_fold (later_car (P' (S n))))) as (r'&?&?); auto.
   { by rewrite HP' -HPiso. }
@@ -83,7 +83,7 @@ Proof.
   intros HiP Hi [rs [Hval Hσ HE Hwld]].
   destruct (Hwld i P) as (rP&?&?); [solve_elem_of +|by apply lookup_wld_op_l|].
   assert (rP ⋅ r ⋅ big_opM (delete i rs) ≡ r ⋅ big_opM rs) as Hr.
-  { by rewrite (commutative _ rP) -associative big_opM_delete. }
+  { by rewrite (comm _ rP) -assoc big_opM_delete. }
   exists rP; split; [exists (delete i rs); constructor; rewrite ?Hr|]; auto.
   * intros j; rewrite lookup_delete_is_Some Hr.
     generalize (HE j); solve_elem_of +Hi.
@@ -98,15 +98,14 @@ Proof.
   intros HiP HiE [rs [Hval Hσ HE Hwld]] ?.
   assert (rs !! i = None) by (apply eq_None_not_Some; naive_solver).
   assert (r ⋅ big_opM (<[i:=rP]> rs) ≡ rP ⋅ r ⋅ big_opM rs) as Hr.
-  { by rewrite (commutative _ rP) -associative big_opM_insert. }
+  { by rewrite (comm _ rP) -assoc big_opM_insert. }
   exists (<[i:=rP]>rs); constructor; rewrite ?Hr; auto.
   * intros j; rewrite Hr lookup_insert_is_Some=>-[?|[??]]; subst.
     + rewrite !lookup_op HiP !op_is_Some; solve_elem_of -.
     + destruct (HE j) as [Hj Hj']; auto; solve_elem_of +Hj Hj'.
   * intros j P'; rewrite Hr elem_of_union elem_of_singleton=>-[?|?]; subst.
     + rewrite !lookup_wld_op_l ?HiP; auto=> HP.
-      apply (injective Some), (injective to_agree),
-        (injective Next), (injective iProp_unfold) in HP.
+      apply (inj Some), (inj to_agree), (inj Next), (inj iProp_unfold) in HP.
       exists rP; split; [rewrite lookup_insert|apply HP]; auto.
     + intros. destruct (Hwld j P') as (r'&?&?); auto.
       exists r'; rewrite lookup_insert_ne; naive_solver.
@@ -117,13 +116,13 @@ Lemma wsat_update_pst n E σ1 σ1' r rf :
 Proof.
   intros Hpst_r [rs [(?&?&?) Hpst HE Hwld]]; simpl in *.
   assert (pst rf ⋅ pst (big_opM rs) = ∅) as Hpst'.
-  { by apply: (excl_validN_inv_l (S n) σ1); rewrite -Hpst_r associative. }
+  { by apply: (excl_validN_inv_l (S n) σ1); rewrite -Hpst_r assoc. }
   assert (σ1' = σ1) as ->.
   { apply leibniz_equiv, (timeless _), dist_le with (S n); auto.
-    apply (injective Excl).
-    by rewrite -Hpst_r -Hpst -associative Hpst' (right_id _). }
+    apply (inj Excl).
+    by rewrite -Hpst_r -Hpst -assoc Hpst' right_id. }
   split; [done|exists rs].
-  by constructor; split_ands'; try (rewrite /= -associative Hpst').
+  by constructor; split_ands'; try (rewrite /= -assoc Hpst').
 Qed.
 Lemma wsat_update_gst n E σ r rf mm1 (P : iGst Λ Σ → Prop) :
   mm1 ≼{S n} gst r → mm1 ~~>: (λ mm2, default False mm2 P) →
@@ -131,7 +130,7 @@ Lemma wsat_update_gst n E σ r rf mm1 (P : iGst Λ Σ → Prop) :
 Proof.
   intros [mf Hr] Hup [rs [(?&?&?) Hσ HE Hwld]].
   destruct (Hup (mf â‹… gst (rf â‹… big_opM rs)) (S n)) as ([m2|]&?&Hval'); try done.
-  { by rewrite /= (associative _ mm1) -Hr associative. }
+  { by rewrite /= (assoc _ mm1) -Hr assoc. }
   exists m2; split; [exists rs; split; split_ands'; auto|done].
 Qed.
 Lemma wsat_alloc n E1 E2 σ r P rP :
@@ -152,22 +151,21 @@ Proof.
   { apply eq_None_not_Some=>?; destruct (HE i) as [_ Hri']; auto; revert Hri'.
     rewrite /= !lookup_op !op_is_Some -!not_eq_None_Some; tauto. }
   assert (r ⋅ big_opM (<[i:=rP]> rs) ≡ rP ⋅ r ⋅ big_opM rs) as Hr.
-  { by rewrite (commutative _ rP) -associative big_opM_insert. }
+  { by rewrite (comm _ rP) -assoc big_opM_insert. }
   exists i; split_ands; [exists (<[i:=rP]>rs); constructor| |]; auto.
-  * destruct Hval as (?&?&?);  rewrite -associative Hr.
+  * destruct Hval as (?&?&?);  rewrite -assoc Hr.
     split_ands'; rewrite /= ?left_id; [|eauto|eauto].
     intros j; destruct (decide (j = i)) as [->|].
-    + by rewrite !lookup_op Hri HrPi Hrsi !(right_id _ _) lookup_singleton.
-    + by rewrite lookup_op lookup_singleton_ne // (left_id _ _).
-  * by rewrite -associative Hr /= left_id.
-  * intros j; rewrite -associative Hr; destruct (decide (j = i)) as [->|].
+    + by rewrite !lookup_op Hri HrPi Hrsi !right_id lookup_singleton.
+    + by rewrite lookup_op lookup_singleton_ne // left_id.
+  * by rewrite -assoc Hr /= left_id.
+  * intros j; rewrite -assoc Hr; destruct (decide (j = i)) as [->|].
     + rewrite /= !lookup_op lookup_singleton !op_is_Some; solve_elem_of +Hi.
     + rewrite lookup_insert_ne //.
       rewrite lookup_op lookup_singleton_ne // left_id; eauto.
-  * intros j P'; rewrite -associative Hr; destruct (decide (j=i)) as [->|].
+  * intros j P'; rewrite -assoc Hr; destruct (decide (j=i)) as [->|].
     + rewrite /= !lookup_op Hri HrPi Hrsi right_id lookup_singleton=>? HP.
-      apply (injective Some), (injective to_agree),
-        (injective Next), (injective iProp_unfold) in HP.
+      apply (inj Some), (inj to_agree), (inj Next), (inj iProp_unfold) in HP.
       exists rP; rewrite lookup_insert; split; [|apply HP]; auto.
     + rewrite /= lookup_op lookup_singleton_ne // left_id=> ??.
       destruct (Hwld j P') as [r' ?]; auto.