diff --git a/algebra/cofe.v b/algebra/cofe.v index 0d35a88a0c3a5fc67aee6593afe105612c432a05..9742a09158804010373d7f6640faf3f7f60b3ae5 100644 --- a/algebra/cofe.v +++ b/algebra/cofe.v @@ -675,8 +675,6 @@ Inductive later (A : Type) : Type := Next { later_car : A }. Add Printing Constructor later. Arguments Next {_} _. Arguments later_car {_} _. -Lemma later_eta {A} (x : later A) : Next (later_car x) = x. -Proof. by destruct x. Qed. Section later. Context {A : cofeT}. diff --git a/algebra/upred.v b/algebra/upred.v index 37cc9c626a24d14998c45c601c19f6aba8cf5c52..781094a6032aa4d02415c6f2a893dce6f94f58ec 100644 --- a/algebra/upred.v +++ b/algebra/upred.v @@ -1213,8 +1213,7 @@ Lemma prod_validI {A B : cmraT} (x : A * B) : ✓ x ⊣⊢ ✓ x.1 ∧ ✓ x.2. Proof. by unseal. Qed. (* Later *) -Lemma later_equivI {A : cofeT} (x y : later A) : - x ≡ y ⊣⊢ ▷ (later_car x ≡ later_car y). +Lemma later_equivI {A : cofeT} (x y : A) : Next x ≡ Next y ⊣⊢ ▷ (x ≡ y). Proof. by unseal. Qed. (* Discrete *) diff --git a/program_logic/ownership.v b/program_logic/ownership.v index ad1ae6176d518c8971b2e7bc352dffb408dc0386..f59c7af6fe158f124e9987a945d40f7d0ee7c92b 100644 --- a/program_logic/ownership.v +++ b/program_logic/ownership.v @@ -126,7 +126,7 @@ Proof. iRewrite "HI" in "HvI". rewrite uPred.option_validI agree_validI. iRewrite -"HvI" in "HI". by rewrite agree_idemp. } rewrite /invariant_unfold. - by rewrite agree_equivI uPred.later_equivI /= iProp_unfold_equivI. + by rewrite agree_equivI uPred.later_equivI iProp_unfold_equivI. Qed. Lemma ownI_open i P : wsat ★ ownI i P ★ ownE {[i]} ⊢ wsat ★ ▷ P ★ ownD {[i]}. diff --git a/program_logic/saved_prop.v b/program_logic/saved_prop.v index 0874a7e9ff2de0553cb18c4ad2585057f2613c55..ecfe85db26e1a289c7ba5fdc941f23424ae3141a 100644 --- a/program_logic/saved_prop.v +++ b/program_logic/saved_prop.v @@ -35,7 +35,7 @@ Section saved_prop. Lemma saved_prop_agree γ x y : saved_prop_own γ x ★ saved_prop_own γ y ⊢ ▷ (x ≡ y). Proof. - rewrite -own_op own_valid agree_validI agree_equivI later_equivI /=. + rewrite -own_op own_valid agree_validI agree_equivI later_equivI. set (G1 := cFunctor_map F (iProp_fold, iProp_unfold)). set (G2 := cFunctor_map F (@iProp_unfold Σ, @iProp_fold Σ)). assert (∀ z, G2 (G1 z) ≡ z) as help.