diff --git a/algebra/fin_maps.v b/algebra/fin_maps.v index 2a5afdf23d1b4623607fa2c60a237b4ecbaf0e60..1feea5ec5525bd8896b8d0eae99328c032ece24b 100644 --- a/algebra/fin_maps.v +++ b/algebra/fin_maps.v @@ -3,8 +3,8 @@ Require Import algebra.functor. Section cofe. Context `{Countable K} {A : cofeT}. +Implicit Types m : gmap K A. -(* COFE *) Instance map_dist : Dist (gmap K A) := λ n m1 m2, ∀ i, m1 !! i ={n}= m2 !! i. Program Definition map_chain (c : chain (gmap K A)) @@ -36,44 +36,45 @@ Global Instance lookup_ne n k : Proof. by intros m1 m2. Qed. Global Instance lookup_proper k : Proper ((≡) ==> (≡)) (lookup k : gmap K A → option A) := _. -Global Instance insert_ne (i : K) n : +Global Instance insert_ne i n : Proper (dist n ==> dist n ==> dist n) (insert (M:=gmap K A) i). Proof. intros x y ? m m' ? j; destruct (decide (i = j)); simplify_map_equality; [by constructor|by apply lookup_ne]. Qed. -Global Instance singleton_ne (i : K) n : +Global Instance singleton_ne i n : Proper (dist n ==> dist n) (singletonM i : A → gmap K A). Proof. by intros ???; apply insert_ne. Qed. -Global Instance delete_ne (i : K) n : +Global Instance delete_ne i n : Proper (dist n ==> dist n) (delete (M:=gmap K A) i). Proof. intros m m' ? j; destruct (decide (i = j)); simplify_map_equality; [by constructor|by apply lookup_ne]. Qed. + Instance map_empty_timeless : Timeless (∅ : gmap K A). Proof. intros m Hm i; specialize (Hm i); rewrite lookup_empty in Hm |- *. inversion_clear Hm; constructor. Qed. -Global Instance map_lookup_timeless (m : gmap K A) i : - Timeless m → Timeless (m !! i). +Global Instance map_lookup_timeless m i : Timeless m → Timeless (m !! i). Proof. intros ? [x|] Hx; [|by symmetry; apply (timeless _)]. assert (m ={1}= <[i:=x]> m) by (by symmetry in Hx; inversion Hx; cofe_subst; rewrite insert_id). by rewrite (timeless m (<[i:=x]>m)) // lookup_insert. Qed. -Global Instance map_insert_timeless (m : gmap K A) i x : +Global Instance map_insert_timeless m i x : Timeless x → Timeless m → Timeless (<[i:=x]>m). Proof. intros ?? m' Hm j; destruct (decide (i = j)); simplify_map_equality. { by apply (timeless _); rewrite -Hm lookup_insert. } by apply (timeless _); rewrite -Hm lookup_insert_ne. Qed. -Global Instance map_singleton_timeless (i : K) (x : A) : +Global Instance map_singleton_timeless i x : Timeless x → Timeless ({[ i ↦ x ]} : gmap K A) := _. End cofe. + Arguments mapC _ {_ _} _. (* CMRA *) @@ -84,12 +85,14 @@ Instance map_op : Op (gmap K A) := merge op. Instance map_unit : Unit (gmap K A) := fmap unit. Instance map_validN : ValidN (gmap K A) := λ n m, ∀ i, ✓{n} (m!!i). Instance map_minus : Minus (gmap K A) := merge minus. + Lemma lookup_op m1 m2 i : (m1 ⋅ m2) !! i = m1 !! i ⋅ m2 !! i. Proof. by apply lookup_merge. Qed. Lemma lookup_minus m1 m2 i : (m1 ⩪ m2) !! i = m1 !! i ⩪ m2 !! i. Proof. by apply lookup_merge. Qed. Lemma lookup_unit m i : unit m !! i = unit (m !! i). Proof. by apply lookup_fmap. Qed. + Lemma map_included_spec (m1 m2 : gmap K A) : m1 ≼ m2 ↔ ∀ i, m1 !! i ≼ m2 !! i. Proof. split. @@ -105,6 +108,7 @@ Proof. * intros Hm; exists (m2 ⩪ m1); intros i. by rewrite lookup_op lookup_minus cmra_op_minus. Qed. + Definition map_cmra_mixin : CMRAMixin (gmap K A). Proof. split. @@ -152,35 +156,32 @@ Proof. * by intros m i; rewrite /= lookup_op lookup_empty (left_id_L None _). * apply map_empty_timeless. Qed. - End cmra. + Arguments mapRA _ {_ _} _. Section properties. -Context `{Countable K} {A: cmraT}. +Context `{Countable K} {A : cmraT}. Implicit Types m : gmap K A. +Implicit Types i : K. +Implicit Types a : A. Lemma map_lookup_validN n m i x : ✓{n} m → m !! i ={n}= Some x → ✓{n} x. Proof. by move=> /(_ i) Hm Hi; move:Hm; rewrite Hi. Qed. Lemma map_insert_validN n m i x : ✓{n} x → ✓{n} m → ✓{n} (<[i:=x]>m). Proof. by intros ?? j; destruct (decide (i = j)); simplify_map_equality. Qed. +Lemma map_singleton_validN n i x : ✓{n} ({[ i ↦ x ]} : gmap K A) ↔ ✓{n} x. +Proof. + split; [|by intros; apply map_insert_validN, cmra_empty_valid]. + by move=>/(_ i); simplify_map_equality. +Qed. Lemma map_insert_op m1 m2 i x : m2 !! i = None → <[i:=x]>(m1 ⋅ m2) = <[i:=x]>m1 ⋅ m2. Proof. by intros Hi; apply (insert_merge_l _ m1 m2); rewrite Hi. Qed. - -Lemma map_validN_singleton n (i : K) (x : A) : - ✓{n} x <-> ✓{n} ({[ i ↦ x ]} : gmap K A). -Proof. - split. - - move=>Hx j. destruct (decide (i = j)); simplify_map_equality; done. - - move=>Hm. move: (Hm i). by simplify_map_equality. -Qed. - Lemma map_unit_singleton (i : K) (x : A) : unit ({[ i ↦ x ]} : gmap K A) = {[ i ↦ unit x ]}. Proof. apply map_fmap_singleton. Qed. - Lemma map_op_singleton (i : K) (x y : A) : {[ i ↦ x ]} ⋅ {[ i ↦ y ]} = ({[ i ↦ x ⋅ y ]} : gmap K A). Proof. by apply (merge_singleton _ _ _ x y). Qed. @@ -220,7 +221,7 @@ Lemma map_insert_updateP' (P : A → Prop) m i x : Proof. eauto using map_insert_updateP. Qed. Lemma map_insert_update m i x y : x ~~> y → <[i:=x]>m ~~> <[i:=y]>m. Proof. - rewrite !cmra_update_updateP; eauto using map_insert_updateP with congruence. + rewrite !cmra_update_updateP; eauto using map_insert_updateP with subst. Qed. Lemma map_singleton_updateP (P : A → Prop) (Q : gmap K A → Prop) i x : @@ -228,13 +229,9 @@ Lemma map_singleton_updateP (P : A → Prop) (Q : gmap K A → Prop) i x : Proof. apply map_insert_updateP. Qed. Lemma map_singleton_updateP' (P : A → Prop) i x : x ~~>: P → {[ i ↦ x ]} ~~>: λ m', ∃ y, m' = {[ i ↦ y ]} ∧ P y. -Proof. eauto using map_singleton_updateP. Qed. +Proof. apply map_insert_updateP'. Qed. Lemma map_singleton_update i (x y : A) : x ~~> y → {[ i ↦ x ]} ~~> {[ i ↦ y ]}. -Proof. - rewrite !cmra_update_updateP=>?. eapply map_singleton_updateP; first eassumption. - by move=>? ->. -Qed. - +Proof. apply map_insert_update. Qed. Context `{Fresh K (gset K), !FreshSpec K (gset K)}. Lemma map_updateP_alloc (Q : gmap K A → Prop) m x : diff --git a/algebra/iprod.v b/algebra/iprod.v index 47e590c19b6879b6c9296e7bdc870fd31a105437..10d145a033095fe6d8f84ecfb7e15a723b9cc8ba 100644 --- a/algebra/iprod.v +++ b/algebra/iprod.v @@ -1,22 +1,23 @@ Require Export algebra.cmra. Require Import algebra.functor. -(** Indexed product *) +(** * Indexed product *) (** Need to put this in a definition to make canonical structures to work. *) Definition iprod {A} (B : A → cofeT) := ∀ x, B x. Definition iprod_insert `{∀ x x' : A, Decision (x = x')} {B : A → cofeT} (x : A) (y : B x) (f : iprod B) : iprod B := λ x', match decide (x = x') with left H => eq_rect _ B y _ H | right _ => f x' end. -Global Instance iprod_empty {A} {B : A → cofeT} `{∀ x, Empty (B x)} : Empty (iprod B) := λ x, ∅. -Definition iprod_lookup_empty {A} {B : A → cofeT} `{∀ x, Empty (B x)} x : ∅ x = ∅ := eq_refl. -Definition iprod_singleton - `{∀ x x' : A, Decision (x = x')} {B : A → cofeT} `{∀ x : A, Empty (B x)} +Global Instance iprod_empty {A} {B : A → cofeT} + `{∀ x, Empty (B x)} : Empty (iprod B) := λ x, ∅. +Definition iprod_singleton {A} {B : A → cofeT} + `{∀ x x' : A, Decision (x = x'), ∀ x : A, Empty (B x)} (x : A) (y : B x) : iprod B := iprod_insert x y ∅. Section iprod_cofe. Context {A} {B : A → cofeT}. Implicit Types x : A. Implicit Types f g : iprod B. + Instance iprod_equiv : Equiv (iprod B) := λ f g, ∀ x, f x ≡ g x. Instance iprod_dist : Dist (iprod B) := λ n f g, ∀ x, f x ={n}= g x. Program Definition iprod_chain (c : chain (iprod B)) (x : A) : chain (B x) := @@ -41,6 +42,15 @@ Section iprod_cofe. Qed. Canonical Structure iprodC : cofeT := CofeT iprod_cofe_mixin. + (** Properties of empty *) + Section empty. + Context `{∀ x, Empty (B x)}. + Definition iprod_lookup_empty x : ∅ x = ∅ := eq_refl. + Instance iprod_empty_timeless : + (∀ x : A, Timeless (∅ : B x)) → Timeless (∅ : iprod B). + Proof. intros ? f Hf x. by apply (timeless _). Qed. + End empty. + (** Properties of iprod_insert. *) Context `{∀ x x' : A, Decision (x = x')}. @@ -50,7 +60,6 @@ Section iprod_cofe. intros y1 y2 ? f1 f2 ? x'; rewrite /iprod_insert. by destruct (decide _) as [[]|]. Qed. - Global Instance iprod_insert_proper x : Proper ((≡) ==> (≡) ==> (≡)) (iprod_insert x) := ne_proper_2 _. @@ -59,90 +68,62 @@ Section iprod_cofe. rewrite /iprod_insert; destruct (decide _) as [Hx|]; last done. by rewrite (proof_irrel Hx eq_refl). Qed. - Lemma iprod_lookup_insert_ne f x x' y : x ≠x' → (iprod_insert x y f) x' = f x'. Proof. by rewrite /iprod_insert; destruct (decide _). Qed. - Global Instance iprod_lookup_timeless f x : - Timeless f → Timeless (f x). + Global Instance iprod_lookup_timeless f x : Timeless f → Timeless (f x). Proof. - intros ? y Hf. + intros ? y ?. cut (f ≡ iprod_insert x y f). - { move=>{Hf} Hf. by rewrite (Hf x) iprod_lookup_insert. } - apply timeless; first by apply _. - move=>x'. destruct (decide (x = x')). - - subst x'. rewrite iprod_lookup_insert; done. - - rewrite iprod_lookup_insert_ne //. + { by move=> /(_ x)->; rewrite iprod_lookup_insert. } + by apply (timeless _)=>x'; destruct (decide (x = x')) as [->|]; + rewrite ?iprod_lookup_insert ?iprod_lookup_insert_ne. Qed. - Global Instance iprod_insert_timeless f x y : Timeless f → Timeless y → Timeless (iprod_insert x y f). Proof. - intros ?? g Heq x'. destruct (decide (x = x')). - - subst x'. rewrite iprod_lookup_insert. - apply (timeless _). - rewrite -(Heq x) iprod_lookup_insert; done. - - rewrite iprod_lookup_insert_ne //. - apply (timeless _). - rewrite -(Heq x') iprod_lookup_insert_ne; done. + intros ?? g Heq x'; destruct (decide (x = x')) as [->|]. + * rewrite iprod_lookup_insert. + apply (timeless _). by rewrite -(Heq x') iprod_lookup_insert. + * rewrite iprod_lookup_insert_ne //. + apply (timeless _). by rewrite -(Heq x') iprod_lookup_insert_ne. Qed. (** Properties of iprod_singletom. *) Context `{∀ x : A, Empty (B x)}. + Global Instance iprod_singleton_ne x n : Proper (dist n ==> dist n) (iprod_singleton x). Proof. by intros y1 y2 Hy; rewrite /iprod_singleton Hy. Qed. Global Instance iprod_singleton_proper x : Proper ((≡) ==> (≡)) (iprod_singleton x) := ne_proper _. + Lemma iprod_lookup_singleton x y : (iprod_singleton x y) x = y. Proof. by rewrite /iprod_singleton iprod_lookup_insert. Qed. - Lemma iprod_lookup_singleton_ne x x' y : - x ≠x' → (iprod_singleton x y) x' = ∅. + Lemma iprod_lookup_singleton_ne x x' y: x ≠x' → (iprod_singleton x y) x' = ∅. Proof. intros; by rewrite /iprod_singleton iprod_lookup_insert_ne. Qed. - Context `{∀ x : A, Timeless (∅ : B x)}. - Instance iprod_empty_timeless : Timeless (∅ : iprod B). - Proof. intros f Hf x. by apply (timeless _). Qed. - Global Instance iprod_singleton_timeless x (y : B x) : - Timeless y → Timeless (iprod_singleton x y) := _. - + (∀ x : A, Timeless (∅ : B x)) → Timeless y → Timeless (iprod_singleton x y). + Proof. eauto using iprod_insert_timeless, iprod_empty_timeless. Qed. End iprod_cofe. Arguments iprodC {_} _. -Definition iprod_map {A} {B1 B2 : A → cofeT} (f : ∀ x, B1 x → B2 x) - (g : iprod B1) : iprod B2 := λ x, f _ (g x). -Lemma iprod_map_ext {A} {B1 B2 : A → cofeT} (f1 f2 : ∀ x, B1 x → B2 x) g : - (∀ x, f1 x (g x) ≡ f2 x (g x)) → iprod_map f1 g ≡ iprod_map f2 g. -Proof. done. Qed. -Lemma iprod_map_id {A} {B: A → cofeT} (g : iprod B) : iprod_map (λ _, id) g = g. -Proof. done. Qed. -Lemma iprod_map_compose {A} {B1 B2 B3 : A → cofeT} - (f1 : ∀ x, B1 x → B2 x) (f2 : ∀ x, B2 x → B3 x) (g : iprod B1) : - iprod_map (λ x, f2 x ∘ f1 x) g = iprod_map f2 (iprod_map f1 g). -Proof. done. Qed. -Instance iprod_map_ne {A} {B1 B2 : A → cofeT} (f : ∀ x, B1 x → B2 x) n : - (∀ x, Proper (dist n ==> dist n) (f x)) → - Proper (dist n ==> dist n) (iprod_map f). -Proof. by intros ? y1 y2 Hy x; rewrite /iprod_map (Hy x). Qed. -Definition iprodC_map {A} {B1 B2 : A → cofeT} (f : iprod (λ x, B1 x -n> B2 x)) : - iprodC B1 -n> iprodC B2 := CofeMor (iprod_map f). -Instance iprodC_map_ne {A} {B1 B2 : A → cofeT} n : - Proper (dist n ==> dist n) (@iprodC_map A B1 B2). -Proof. intros f1 f2 Hf g x; apply Hf. Qed. - Section iprod_cmra. Context {A} {B : A → cmraT}. Implicit Types f g : iprod B. + Instance iprod_op : Op (iprod B) := λ f g x, f x ⋅ g x. - Definition iprod_lookup_op f g x : (f ⋅ g) x = f x ⋅ g x := eq_refl. Instance iprod_unit : Unit (iprod B) := λ f x, unit (f x). - Definition iprod_lookup_unit f x : (unit f) x = unit (f x) := eq_refl. Instance iprod_validN : ValidN (iprod B) := λ n f, ∀ x, ✓{n} (f x). Instance iprod_minus : Minus (iprod B) := λ f g x, f x ⩪ g x. + + Definition iprod_lookup_op f g x : (f ⋅ g) x = f x ⋅ g x := eq_refl. + Definition iprod_lookup_unit f x : (unit f) x = unit (f x) := eq_refl. Definition iprod_lookup_minus f g x : (f ⩪ g) x = f x ⩪ g x := eq_refl. + Lemma iprod_includedN_spec (f g : iprod B) n : f ≼{n} g ↔ ∀ x, f x ≼{n} g x. Proof. split. @@ -150,6 +131,7 @@ Section iprod_cmra. * intros Hh; exists (g ⩪ f)=> x; specialize (Hh x). by rewrite /op /iprod_op /minus /iprod_minus cmra_op_minus. Qed. + Definition iprod_cmra_mixin : CMRAMixin (iprod B). Proof. split. @@ -209,31 +191,27 @@ Section iprod_cmra. Lemma iprod_insert_update g x y1 y2 : y1 ~~> y2 → iprod_insert x y1 g ~~> iprod_insert x y2 g. Proof. - rewrite !cmra_update_updateP; - eauto using iprod_insert_updateP with congruence. + rewrite !cmra_update_updateP; eauto using iprod_insert_updateP with subst. Qed. (** Properties of iprod_singleton. *) - Context `{∀ x, Empty (B x)} `{∀ x, CMRAIdentity (B x)}. + Context `{∀ x, Empty (B x), ∀ x, CMRAIdentity (B x)}. - Lemma iprod_validN_singleton n x (y : B x) : - ✓{n} y <-> ✓{n} (iprod_singleton x y). + Lemma iprod_singleton_validN n x (y : B x) : + ✓{n} (iprod_singleton x y) ↔ ✓{n} y. Proof. - split. - - move=>Hx x'. destruct (decide (x = x')). - + subst x'. by rewrite iprod_lookup_singleton. - + rewrite iprod_lookup_singleton_ne //; []. - by apply cmra_empty_valid. - - move=>Hm. move: (Hm x). by rewrite iprod_lookup_singleton. + split; [by move=>/(_ x); rewrite iprod_lookup_singleton|]. + move=>Hx x'; destruct (decide (x = x')) as [->|]; + rewrite ?iprod_lookup_singleton ?iprod_lookup_singleton_ne //. + by apply cmra_empty_valid. Qed. Lemma iprod_unit_singleton x (y : B x) : unit (iprod_singleton x y) ≡ iprod_singleton x (unit y). Proof. - move=>x'. rewrite iprod_lookup_unit. destruct (decide (x = x')). - - subst x'. by rewrite !iprod_lookup_singleton. - - rewrite !iprod_lookup_singleton_ne //; []. - by apply cmra_unit_empty. + by move=>x'; destruct (decide (x = x')) as [->|]; + rewrite iprod_lookup_unit ?iprod_lookup_singleton + ?iprod_lookup_singleton_ne // cmra_unit_empty. Qed. Lemma iprod_op_singleton (x : A) (y1 y2 : B x) : @@ -248,32 +226,45 @@ Section iprod_cmra. y1 ~~>: P → (∀ y2, P y2 → Q (iprod_singleton x y2)) → iprod_singleton x y1 ~~>: Q. Proof. rewrite /iprod_singleton; eauto using iprod_insert_updateP. Qed. - Lemma iprod_singleton_updateP' x (P : B x → Prop) y1 : y1 ~~>: P → iprod_singleton x y1 ~~>: λ g', ∃ y2, g' = iprod_singleton x y2 ∧ P y2. Proof. eauto using iprod_singleton_updateP. Qed. + Lemma iprod_singleton_update x y1 y2 : + y1 ~~> y2 → iprod_singleton x y1 ~~> iprod_singleton x y2. + Proof. eauto using iprod_insert_update. Qed. Lemma iprod_singleton_updateP_empty x (P : B x → Prop) (Q : iprod B → Prop) : - (∅ ~~>: P) → (∀ y2, P y2 → Q (iprod_singleton x y2)) → - ∅ ~~>: Q. + ∅ ~~>: P → (∀ y2, P y2 → Q (iprod_singleton x y2)) → ∅ ~~>: Q. Proof. - intros Hx HQ gf n Hg. destruct (Hx (gf x) n) as (y2&?&?). - { apply: Hg. } - exists (iprod_singleton x y2). - split; first by apply HQ. - intros x'; destruct (decide (x' = x)) as [->|]; - rewrite iprod_lookup_op /iprod_singleton ?iprod_lookup_insert //; []. - move:(Hg x'). by rewrite iprod_lookup_insert_ne // left_id. + intros Hx HQ gf n Hg. destruct (Hx (gf x) n) as (y2&?&?); first apply Hg. + exists (iprod_singleton x y2); split; [by apply HQ|]. + intros x'; destruct (decide (x' = x)) as [->|]. + * by rewrite iprod_lookup_op iprod_lookup_singleton. + * rewrite iprod_lookup_op iprod_lookup_singleton_ne //. apply Hg. Qed. - - Lemma iprod_singleton_update x y1 y2 : - y1 ~~> y2 → iprod_singleton x y1 ~~> iprod_singleton x y2. - Proof. by intros; apply iprod_insert_update. Qed. End iprod_cmra. Arguments iprodRA {_} _. +(** * Functor *) +Definition iprod_map {A} {B1 B2 : A → cofeT} (f : ∀ x, B1 x → B2 x) + (g : iprod B1) : iprod B2 := λ x, f _ (g x). + +Lemma iprod_map_ext {A} {B1 B2 : A → cofeT} (f1 f2 : ∀ x, B1 x → B2 x) g : + (∀ x, f1 x (g x) ≡ f2 x (g x)) → iprod_map f1 g ≡ iprod_map f2 g. +Proof. done. Qed. +Lemma iprod_map_id {A} {B: A → cofeT} (g : iprod B) : iprod_map (λ _, id) g = g. +Proof. done. Qed. +Lemma iprod_map_compose {A} {B1 B2 B3 : A → cofeT} + (f1 : ∀ x, B1 x → B2 x) (f2 : ∀ x, B2 x → B3 x) (g : iprod B1) : + iprod_map (λ x, f2 x ∘ f1 x) g = iprod_map f2 (iprod_map f1 g). +Proof. done. Qed. + +Instance iprod_map_ne {A} {B1 B2 : A → cofeT} (f : ∀ x, B1 x → B2 x) n : + (∀ x, Proper (dist n ==> dist n) (f x)) → + Proper (dist n ==> dist n) (iprod_map f). +Proof. by intros ? y1 y2 Hy x; rewrite /iprod_map (Hy x). Qed. Instance iprod_map_cmra_monotone {A} {B1 B2: A → cmraT} (f : ∀ x, B1 x → B2 x) : (∀ x, CMRAMonotone (f x)) → CMRAMonotone (iprod_map f). Proof. @@ -283,6 +274,12 @@ Proof. * intros n g Hg x; rewrite /iprod_map; apply validN_preserving, Hg. Qed. +Definition iprodC_map {A} {B1 B2 : A → cofeT} (f : iprod (λ x, B1 x -n> B2 x)) : + iprodC B1 -n> iprodC B2 := CofeMor (iprod_map f). +Instance iprodC_map_ne {A} {B1 B2 : A → cofeT} n : + Proper (dist n ==> dist n) (@iprodC_map A B1 B2). +Proof. intros f1 f2 Hf g x; apply Hf. Qed. + Program Definition iprodF {A} (Σ : A → iFunctor) : iFunctor := {| ifunctor_car B := iprodRA (λ x, Σ x B); ifunctor_map B1 B2 f := iprodC_map (λ x, ifunctor_map (Σ x) f); diff --git a/program_logic/global_cmra.v b/program_logic/global_cmra.v index 326110b65c9a7531f03e8ca5b1413520ec3e5ac7..da093ee4020e36bba19908b85b0fecc62c5d4696 100644 --- a/program_logic/global_cmra.v +++ b/program_logic/global_cmra.v @@ -6,7 +6,7 @@ Definition gid := positive. Definition globalC (Σ : gid → iFunctor) : iFunctor := iprodF (λ i, mapF gid (Σ i)). -Class InG Λ (Σ : gid → iFunctor) (i : gid) (A : cmraT) := +Class InG (Λ : language) (Σ : gid → iFunctor) (i : gid) (A : cmraT) := inG : A = Σ i (laterC (iPreProp Λ (globalC Σ))). Section global. @@ -41,11 +41,9 @@ Proof. by rewrite /to_Σ; destruct inG. Qed. -Lemma globalC_validN n γ a : - ✓{n} (to_globalC γ a) <-> ✓{n} a. +Lemma globalC_validN n γ a : ✓{n} (to_globalC γ a) ↔ ✓{n} a. Proof. - rewrite /to_globalC. - rewrite -iprod_validN_singleton -map_validN_singleton. + rewrite /to_globalC iprod_singleton_validN map_singleton_validN. by rewrite /to_Σ; destruct inG. Qed. @@ -61,7 +59,7 @@ Qed. Global Instance globalC_timeless γ m : Timeless m → Timeless (to_globalC γ m). Proof. rewrite /to_globalC => ?. - apply iprod_singleton_timeless, map_singleton_timeless. + apply (iprod_singleton_timeless _ _ _), map_singleton_timeless. by rewrite /to_Σ; destruct inG. Qed.