diff --git a/CHANGELOG.md b/CHANGELOG.md index bc5c7dbf2d6302d324f7efbc0d5bc77a5e348cbe..afe0debcbec8b385be41ff36da4b66e7469d3b08 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -5,9 +5,6 @@ Coq development, but not every API-breaking change is listed. Changes marked ## Iris 3.0 -* [#] Lifting lemmas do no longer take as hypothesis the fact the the - considered expression is not a value. This is deduced from the fact that - it is reducible. * View shifts are radically simplified to just internalize frame-preserving updates. Weakestpre is defined inside the logic, and invariants and view shifts with masks are also coded up inside Iris. Adequacy of weakestpre diff --git a/docs/language.tex b/docs/language.tex index f0d922fc08805a29974dea690c68ffc0fe09f30f..ad097eb74756867909399b362bf94b969cc17503 100644 --- a/docs/language.tex +++ b/docs/language.tex @@ -1,7 +1,7 @@ \section{Language} \label{sec:language} -A \emph{language} $\Lang$ consists of a set \Expr{} of \emph{expressions} (metavariable $\expr$), a set \Val{} of \emph{values} (metavariable $\val$), and a set \State of \emph{states} (metavariable $\state$) such that +A \emph{language} $\Lang$ consists of a set \Expr{} of \emph{expressions} (metavariable $\expr$), a set \Val{} of \emph{values} (metavariable $\val$), and a nonempty set \State of \emph{states} (metavariable $\state$) such that \begin{itemize} \item There exist functions $\ofval : \Val \to \Expr$ and $\toval : \Expr \pfn \Val$ (notice the latter is partial), such that \begin{mathpar} diff --git a/docs/program-logic.tex b/docs/program-logic.tex index ed3f8e77278f50eeb59ae47e89cb0406065ad78a..3ed6b07bdbab8f732d0aed1537984ef2efd82167 100644 --- a/docs/program-logic.tex +++ b/docs/program-logic.tex @@ -92,8 +92,8 @@ View updates satisfy the following basic proof rules: We further define the notions of \emph{view shifts} and \emph{linear view shifts}: \begin{align*} - \prop \vs[\mask_1][\mask_2] \propB \eqdef{}& \always(\prop \Ra \pvs[\mask_1][\mask_2] \propB) \\ - \prop \vsW[\mask_1][\mask_2] \propB \eqdef{}& \prop \wand \pvs[\mask_1][\mask_2] \propB + \prop \vsW[\mask_1][\mask_2] \propB \eqdef{}& \prop \wand \pvs[\mask_1][\mask_2] \propB \\ + \prop \vs[\mask_1][\mask_2] \propB \eqdef{}& \always(\prop \wand \pvs[\mask_1][\mask_2] \propB) \end{align*} These two are useful when writing down specifications, but for reasoning, it is typically easier to just work directly with view updates. Still, just to give an idea of what view shifts ``are'', here are some proof rules for them: @@ -208,14 +208,13 @@ We will also want rules that connect weakest preconditions to the operational se In order to cover the most general case, those rules end up being more complicated: \begin{mathpar} \infer[wp-lift-step] - {\toval(\expr_1) = \bot} + {} { {\begin{inbox} % for some crazy reason, LaTeX is actually sensitive to the space between the "{ {" here and the "} }" below... ~~\pvs[\mask][\emptyset] \Exists \state_1. \red(\expr_1,\state_1) * \later\ownPhys{\state_1} * {}\\\qquad~~ \later\All \expr_2, \state_2, \vec\expr. \Bigl( (\expr_1, \state_1 \step \expr_2, \state_2, \vec\expr) * \ownPhys{\state_2} \Bigr) \wand \pvs[\emptyset][\mask] \Bigl(\wpre{\expr_2}[\mask]{\Ret\var.\prop} * \Sep_{\expr_\f \in \vec\expr} \wpre{\expr_\f}[\top]{\Ret\any.\TRUE}\Bigr) {}\\\proves \wpre{\expr_1}[\mask]{\Ret\var.\prop} \end{inbox}} } \\\\ \infer[wp-lift-pure-step] - {\toval(\expr_1) = \bot \and - \All \state_1. \red(\expr_1, \state_1) \and + {\All \state_1. \red(\expr_1, \state_1) \and \All \state_1, \expr_2, \state_2, \vec\expr. \expr_1,\state_1 \step \expr_2,\state_2,\vec\expr \Ra \state_1 = \state_2 } {\later\All \state, \expr_2, \vec\expr. (\expr_1,\state \step \expr_2, \state,\vec\expr) \Ra \wpre{\expr_2}[\mask]{\Ret\var.\prop} * \Sep_{\expr_\f \in \vec\expr} \wpre{\expr_\f}[\top]{\Ret\any.\TRUE} \proves \wpre{\expr_1}[\mask]{\Ret\var.\prop}} \end{mathpar} @@ -236,8 +235,7 @@ We can derive some specialized forms of the lifting axioms for the operational s {\later\ownPhys{\state_1} * \later \Bigl(\ownPhys{\state_2} \wand \prop[\val_2/\var] * \Sep_{\expr_\f \in \vec\expr} \wpre{\expr_\f}[\top]{\Ret\any.\TRUE} \Bigr) \proves \wpre{\expr_1}[\mask_1]{\Ret\var.\prop}} \infer[wp-lift-pure-det-step] - {\toval(\expr_1) = \bot \and - \All \state_1. \red(\expr_1, \state_1) \\ + {\All \state_1. \red(\expr_1, \state_1) \\ \All \state_1, \expr_2', \state'_2, \vec\expr'. \expr_1,\state_1 \step \expr'_2,\state'_2,\vec\expr' \Ra \state_1 = \state'_2 \land \expr_2 = \expr_2' \land \vec\expr = \vec\expr'} {\later \Bigl( \wpre{\expr_2}[\mask_1]{\Ret\var.\prop} * \Sep_{\expr_\f \in \vec\expr} \wpre{\expr_\f}[\top]{\Ret\any.\TRUE} \Bigr) \proves \wpre{\expr_1}[\mask_1]{\Ret\var.\prop}} \end{mathparpagebreakable} @@ -281,7 +279,7 @@ Notice that this is stronger than saying that the thread pool can reduce; we act It turns out that weakest precondition is actually quite convenient to work with, in particular when perfoming these proofs in Coq. Still, for a more traditional presentation, we can easily derive the notion of a Hoare triple: \[ -\hoare{\prop}{\expr}{\Ret\val.\propB}[\mask] \eqdef \always{(\prop \Ra \wpre{\expr}[\mask]{\Ret\val.\propB})} +\hoare{\prop}{\expr}{\Ret\val.\propB}[\mask] \eqdef \always{(\prop \wand \wpre{\expr}[\mask]{\Ret\val.\propB})} \] We only give some of the proof rules for Hoare triples here, since we usually do all our reasoning directly with weakest preconditions and use Hoare triples only to write specifications.