diff --git a/base_logic/derived.v b/base_logic/derived.v
index d3debb15f99b56d654520ada30b32adf88fc1df7..5432b0b1e677cc5bb253f615801b46b43c7a19f3 100644
--- a/base_logic/derived.v
+++ b/base_logic/derived.v
@@ -352,14 +352,8 @@ Lemma wand_elim_r P Q : P ★ (P -★ Q) ⊢ Q.
 Proof. rewrite (comm _ P); apply wand_elim_l. Qed.
 Lemma wand_elim_r' P Q R : (Q ⊢ P -★ R) → P ★ Q ⊢ R.
 Proof. intros ->; apply wand_elim_r. Qed.
-Lemma wand_apply_l P Q Q' R R' : (P ⊢ Q' -★ R') → (R' ⊢ R) → (Q ⊢ Q') → P ★ Q ⊢ R.
-Proof. intros -> -> <-; apply wand_elim_l. Qed.
-Lemma wand_apply_r P Q Q' R R' : (P ⊢ Q' -★ R') → (R' ⊢ R) → (Q ⊢ Q') → Q ★ P ⊢ R.
-Proof. intros -> -> <-; apply wand_elim_r. Qed.
-Lemma wand_apply_l' P Q Q' R : (P ⊢ Q' -★ R) → (Q ⊢ Q') → P ★ Q ⊢ R.
-Proof. intros -> <-; apply wand_elim_l. Qed.
-Lemma wand_apply_r' P Q Q' R : (P ⊢ Q' -★ R) → (Q ⊢ Q') → Q ★ P ⊢ R.
-Proof. intros -> <-; apply wand_elim_r. Qed.
+Lemma wand_apply P Q R S : (P ⊢ Q -★ R) → (S ⊢ P ★ Q) → S ⊢ R.
+Proof. intros HR%wand_elim_l' HQ. by rewrite HQ. Qed.
 Lemma wand_frame_l P Q R : (Q -★ R) ⊢ P ★ Q -★ P ★ R.
 Proof. apply wand_intro_l. rewrite -assoc. apply sep_mono_r, wand_elim_r. Qed.
 Lemma wand_frame_r P Q R : (Q -★ R) ⊢ Q ★ P -★ R ★ P.
diff --git a/heap_lang/derived.v b/heap_lang/derived.v
index cd65d6692e343290e2165cd6d0b448a70f0daba3..9a95ee5c896a723d668ce27a506ab672fcae09cb 100644
--- a/heap_lang/derived.v
+++ b/heap_lang/derived.v
@@ -46,8 +46,8 @@ Lemma wp_match_inr E e0 x1 e1 x2 e2 Φ :
 Proof. intros. by rewrite -wp_case_inr // -[X in _ ⊢ X]later_intro -wp_let. Qed.
 
 Lemma wp_le E (n1 n2 : Z) P Φ :
-  (n1 ≤ n2 → P ⊢ ▷ |={E}=> Φ (LitV (LitBool true))) →
-  (n2 < n1 → P ⊢ ▷ |={E}=> Φ (LitV (LitBool false))) →
+  (n1 ≤ n2 → P ⊢ ▷ Φ (LitV (LitBool true))) →
+  (n2 < n1 → P ⊢ ▷ Φ (LitV (LitBool false))) →
   P ⊢ WP BinOp LeOp (Lit (LitInt n1)) (Lit (LitInt n2)) @ E {{ Φ }}.
 Proof.
   intros. rewrite -wp_bin_op //; [].
@@ -55,8 +55,8 @@ Proof.
 Qed.
 
 Lemma wp_lt E (n1 n2 : Z) P Φ :
-  (n1 < n2 → P ⊢ ▷ |={E}=> Φ (LitV (LitBool true))) →
-  (n2 ≤ n1 → P ⊢ ▷ |={E}=> Φ (LitV (LitBool false))) →
+  (n1 < n2 → P ⊢ ▷ Φ (LitV (LitBool true))) →
+  (n2 ≤ n1 → P ⊢ ▷ Φ (LitV (LitBool false))) →
   P ⊢ WP BinOp LtOp (Lit (LitInt n1)) (Lit (LitInt n2)) @ E {{ Φ }}.
 Proof.
   intros. rewrite -wp_bin_op //; [].
@@ -65,8 +65,8 @@ Qed.
 
 Lemma wp_eq E e1 e2 v1 v2 P Φ :
   to_val e1 = Some v1 → to_val e2 = Some v2 →
-  (v1 = v2 → P ⊢ ▷ |={E}=> Φ (LitV (LitBool true))) →
-  (v1 ≠ v2 → P ⊢ ▷ |={E}=> Φ (LitV (LitBool false))) →
+  (v1 = v2 → P ⊢ ▷ Φ (LitV (LitBool true))) →
+  (v1 ≠ v2 → P ⊢ ▷ Φ (LitV (LitBool false))) →
   P ⊢ WP BinOp EqOp e1 e2 @ E {{ Φ }}.
 Proof.
   intros. rewrite -wp_bin_op //; [].
diff --git a/heap_lang/heap.v b/heap_lang/heap.v
index 7f0dea5253dcbb2524ccb21068d1f56cc2fa1ed4..43d374169f01ec1b650edd8de9058a0b02b15a8a 100644
--- a/heap_lang/heap.v
+++ b/heap_lang/heap.v
@@ -122,12 +122,12 @@ Section heap.
   (** Weakest precondition *)
   Lemma wp_alloc E e v :
     to_val e = Some v → nclose heapN ⊆ E →
-    {{{ heap_ctx }}} Alloc e @ E {{{ l; LitV (LitLoc l), l ↦ v }}}.
+    {{{ heap_ctx }}} Alloc e @ E {{{ l, RET LitV (LitLoc l); l ↦ v }}}.
   Proof.
-    iIntros (<-%of_to_val ? Φ) "[#Hinv HΦ]". rewrite /heap_ctx.
+    iIntros (<-%of_to_val ? Φ) "#Hinv HΦ". rewrite /heap_ctx.
     iMod (auth_empty heap_name) as "Ha".
     iMod (auth_open with "[$Hinv $Ha]") as (σ) "(%&Hσ&Hcl)"; first done.
-    iApply wp_alloc_pst. iFrame "Hσ". iNext. iIntros (l) "[% Hσ] !>".
+    iApply (wp_alloc_pst with "Hσ"). iNext. iIntros (l) "[% Hσ]".
     iMod ("Hcl" with "* [Hσ]") as "Ha".
     { iFrame. iPureIntro. rewrite to_heap_insert.
       eapply alloc_singleton_local_update; by auto using lookup_to_heap_None. }
@@ -137,26 +137,26 @@ Section heap.
   Lemma wp_load E l q v :
     nclose heapN ⊆ E →
     {{{ heap_ctx ★ ▷ l ↦{q} v }}} Load (Lit (LitLoc l)) @ E
-    {{{; v, l ↦{q} v }}}.
+    {{{ RET v; l ↦{q} v }}}.
   Proof.
-    iIntros (? Φ) "[[#Hinv >Hl] HΦ]".
+    iIntros (? Φ) "[#Hinv >Hl] HΦ".
     rewrite /heap_ctx heap_mapsto_eq /heap_mapsto_def.
     iMod (auth_open with "[$Hinv $Hl]") as (σ) "(%&Hσ&Hcl)"; first done.
-    iApply (wp_load_pst _ σ); first eauto using heap_singleton_included.
-    iIntros "{$Hσ}"; iNext; iIntros "Hσ !>".
+    iApply (wp_load_pst _ σ with "Hσ"); first eauto using heap_singleton_included.
+    iNext; iIntros "Hσ".
     iMod ("Hcl" with "* [Hσ]") as "Ha"; first eauto. by iApply "HΦ".
   Qed.
 
   Lemma wp_store E l v' e v :
     to_val e = Some v → nclose heapN ⊆ E →
     {{{ heap_ctx ★ ▷ l ↦ v' }}} Store (Lit (LitLoc l)) e @ E
-    {{{; LitV LitUnit, l ↦ v }}}.
+    {{{ RET LitV LitUnit; l ↦ v }}}.
   Proof.
-    iIntros (<-%of_to_val ? Φ) "[[#Hinv >Hl] HΦ]".
+    iIntros (<-%of_to_val ? Φ) "[#Hinv >Hl] HΦ".
     rewrite /heap_ctx heap_mapsto_eq /heap_mapsto_def.
     iMod (auth_open with "[$Hinv $Hl]") as (σ) "(%&Hσ&Hcl)"; first done.
-    iApply (wp_store_pst _ σ); first eauto using heap_singleton_included.
-    iIntros "{$Hσ}"; iNext; iIntros "Hσ !>". iMod ("Hcl" with "* [Hσ]") as "Ha".
+    iApply (wp_store_pst _ σ with "Hσ"); first eauto using heap_singleton_included.
+    iNext; iIntros "Hσ". iMod ("Hcl" with "* [Hσ]") as "Ha".
     { iFrame. iPureIntro. rewrite to_heap_insert.
       eapply singleton_local_update, exclusive_local_update; last done.
       by eapply heap_singleton_included'. }
@@ -166,26 +166,26 @@ Section heap.
   Lemma wp_cas_fail E l q v' e1 v1 e2 v2 :
     to_val e1 = Some v1 → to_val e2 = Some v2 → v' ≠ v1 → nclose heapN ⊆ E →
     {{{ heap_ctx ★ ▷ l ↦{q} v' }}} CAS (Lit (LitLoc l)) e1 e2 @ E
-    {{{; LitV (LitBool false), l ↦{q} v' }}}.
+    {{{ RET LitV (LitBool false); l ↦{q} v' }}}.
   Proof.
-    iIntros (<-%of_to_val <-%of_to_val ?? Φ) "[[#Hinv >Hl] HΦ]".
+    iIntros (<-%of_to_val <-%of_to_val ?? Φ) "[#Hinv >Hl] HΦ".
     rewrite /heap_ctx heap_mapsto_eq /heap_mapsto_def.
     iMod (auth_open with "[$Hinv $Hl]") as (σ) "(%&Hσ&Hcl)"; first done.
-    iApply (wp_cas_fail_pst _ σ); [eauto using heap_singleton_included|done|].
-    iIntros "{$Hσ}"; iNext; iIntros "Hσ !>".
+    iApply (wp_cas_fail_pst _ σ with "Hσ"); [eauto using heap_singleton_included|done|].
+    iNext; iIntros "Hσ".
     iMod ("Hcl" with "* [Hσ]") as "Ha"; first eauto. by iApply "HΦ".
   Qed.
 
   Lemma wp_cas_suc E l e1 v1 e2 v2 :
     to_val e1 = Some v1 → to_val e2 = Some v2 → nclose heapN ⊆ E →
     {{{ heap_ctx ★ ▷ l ↦ v1 }}} CAS (Lit (LitLoc l)) e1 e2 @ E
-    {{{; LitV (LitBool true), l ↦ v2 }}}.
+    {{{ RET LitV (LitBool true); l ↦ v2 }}}.
   Proof.
-    iIntros (<-%of_to_val <-%of_to_val ? Φ) "[[#Hinv >Hl] HΦ]".
+    iIntros (<-%of_to_val <-%of_to_val ? Φ) "[#Hinv >Hl] HΦ".
     rewrite /heap_ctx heap_mapsto_eq /heap_mapsto_def.
     iMod (auth_open with "[$Hinv $Hl]") as (σ) "(%&Hσ&Hcl)"; first done.
-    iApply (wp_cas_suc_pst _ σ); first eauto using heap_singleton_included.
-    iIntros "{$Hσ}"; iNext; iIntros "Hσ !>". iMod ("Hcl" with "* [Hσ]") as "Ha".
+    iApply (wp_cas_suc_pst _ σ with "Hσ"); first by eauto using heap_singleton_included.
+    iNext. iIntros "Hσ". iMod ("Hcl" with "* [Hσ]") as "Ha".
     { iFrame. iPureIntro. rewrite to_heap_insert.
       eapply singleton_local_update, exclusive_local_update; last done.
       by eapply heap_singleton_included'. }
diff --git a/heap_lang/lib/barrier/proof.v b/heap_lang/lib/barrier/proof.v
index 9436c07e1bd22d0433797b8262ffab1a4d2682e9..764fa2347341f2acc3f1a3f010cd5555ef9f3815 100644
--- a/heap_lang/lib/barrier/proof.v
+++ b/heap_lang/lib/barrier/proof.v
@@ -92,10 +92,10 @@ Qed.
 (** Actual proofs *)
 Lemma newbarrier_spec (P : iProp Σ) :
   heapN ⊥ N →
-  {{{ heap_ctx }}} newbarrier #() {{{ l; #l, recv l P ★ send l P }}}.
+  {{{ heap_ctx }}} newbarrier #() {{{ l, RET #l; recv l P ★ send l P }}}.
 Proof.
-  iIntros (HN Φ) "[#? HΦ]".
-  rewrite /newbarrier /=. wp_seq. wp_alloc l as "Hl".
+  iIntros (HN Φ) "#? HΦ".
+  rewrite -wp_fupd /newbarrier /=. wp_seq. wp_alloc l as "Hl".
   iApply ("HΦ" with ">[-]").
   iMod (saved_prop_alloc (F:=idCF) P) as (γ) "#?".
   iMod (sts_alloc (barrier_inv l P) _ N (State Low {[ γ ]}) with "[-]")
@@ -117,10 +117,10 @@ Proof.
 Qed.
 
 Lemma signal_spec l P :
-  {{{ send l P ★ P }}} signal #l {{{; #(), True }}}.
+  {{{ send l P ★ P }}} signal #l {{{ RET #(); True }}}.
 Proof.
   rewrite /signal /send /barrier_ctx /=.
-  iIntros (Φ) "((Hs&HP)&HΦ)"; iDestruct "Hs" as (γ) "[#(%&Hh&Hsts) Hγ]". wp_let.
+  iIntros (Φ) "(Hs&HP) HΦ"; iDestruct "Hs" as (γ) "[#(%&Hh&Hsts) Hγ]". wp_let.
   iMod (sts_openS (barrier_inv l P) _ _ γ with "[Hγ]")
     as ([p I]) "(% & [Hl Hr] & Hclose)"; eauto.
   destruct p; [|done]. wp_store.
@@ -133,10 +133,10 @@ Proof.
 Qed.
 
 Lemma wait_spec l P:
-  {{{ recv l P }}} wait #l {{{ ; #(), P }}}.
+  {{{ recv l P }}} wait #l {{{ RET #(); P }}}.
 Proof.
   rename P into R; rewrite /recv /barrier_ctx.
-  iIntros (Φ) "[Hr HΦ]"; iDestruct "Hr" as (γ P Q i) "(#(%&Hh&Hsts)&Hγ&#HQ&HQR)".
+  iIntros (Φ) "Hr HΦ"; iDestruct "Hr" as (γ P Q i) "(#(%&Hh&Hsts)&Hγ&#HQ&HQR)".
   iLöb as "IH". wp_rec. wp_bind (! _)%E.
   iMod (sts_openS (barrier_inv l P) _ _ γ with "[Hγ]")
     as ([p I]) "(% & [Hl Hr] & Hclose)"; eauto.
@@ -158,7 +158,7 @@ Proof.
       iNext. rewrite {2}/barrier_inv /=; iFrame "Hl". iExists Ψ; iFrame. auto. }
     iPoseProof (saved_prop_agree i Q (Ψ i) with "[#]") as "Heq"; first by auto.
     iModIntro. wp_if.
-    iModIntro. iApply "HΦ". iApply "HQR". by iRewrite "Heq".
+    iApply "HΦ". iApply "HQR". by iRewrite "Heq".
 Qed.
 
 Lemma recv_split E l P1 P2 :
diff --git a/heap_lang/lib/barrier/specification.v b/heap_lang/lib/barrier/specification.v
index 319dd0be941307eabc4823e1bf0b6d677ca40116..c0de6dd97b73b9b7fcb0d23bc392441152673cd3 100644
--- a/heap_lang/lib/barrier/specification.v
+++ b/heap_lang/lib/barrier/specification.v
@@ -20,10 +20,10 @@ Proof.
   intros HN.
   exists (λ l, CofeMor (recv N l)), (λ l, CofeMor (send N l)).
   split_and?; simpl.
-  - iIntros (P) "#? !# _". iApply (newbarrier_spec _ P); first done.
-    iSplit; first done. iNext. eauto.
-  - iIntros (l P) "!# [Hl HP]". iApply signal_spec; iFrame "Hl HP"; by eauto.
-  - iIntros (l P) "!# Hl". iApply wait_spec; iFrame "Hl"; eauto.
+  - iIntros (P) "#? !# _". iApply (newbarrier_spec _ P with "[]"); [done..|].
+    iNext. eauto.
+  - iIntros (l P) "!# [Hl HP]". iApply (signal_spec with "[$Hl $HP]"). by eauto.
+  - iIntros (l P) "!# Hl". iApply (wait_spec with "Hl"). eauto.
   - iIntros (l P Q) "!#". by iApply recv_split.
   - apply recv_weaken.
 Qed.
diff --git a/heap_lang/lib/counter.v b/heap_lang/lib/counter.v
index 60f534434f849879387697fc8566c238d9c4e878..16a4967301f07a33b4341755c147a9337cc96397 100644
--- a/heap_lang/lib/counter.v
+++ b/heap_lang/lib/counter.v
@@ -35,9 +35,9 @@ Section mono_proof.
 
   Lemma newcounter_mono_spec (R : iProp Σ) :
     heapN ⊥ N →
-    {{{ heap_ctx }}} newcounter #() {{{ l; #l, mcounter l 0 }}}.
+    {{{ heap_ctx }}} newcounter #() {{{ l, RET #l; mcounter l 0 }}}.
   Proof.
-    iIntros (? Φ) "[#Hh HΦ]". rewrite /newcounter /=. wp_seq. wp_alloc l as "Hl".
+    iIntros (? Φ) "#Hh HΦ". rewrite -wp_fupd /newcounter /=. wp_seq. wp_alloc l as "Hl".
     iMod (own_alloc (● (O:mnat) ⋅ ◯ (O:mnat))) as (γ) "[Hγ Hγ']"; first done.
     iMod (inv_alloc N _ (mcounter_inv γ l) with "[Hl Hγ]").
     { iNext. iExists 0%nat. by iFrame. }
@@ -45,9 +45,9 @@ Section mono_proof.
   Qed.
 
   Lemma inc_mono_spec l n :
-    {{{ mcounter l n }}} inc #l {{{; #(), mcounter l (S n) }}}.
+    {{{ mcounter l n }}} inc #l {{{ RET #(); mcounter l (S n) }}}.
   Proof.
-    iIntros (Φ) "[Hl HΦ]". iLöb as "IH". wp_rec.
+    iIntros (Φ) "Hl HΦ". iLöb as "IH". wp_rec.
     iDestruct "Hl" as (γ) "(% & #? & #Hinv & Hγf)".
     wp_bind (! _)%E. iInv N as (c) ">[Hγ Hl]" "Hclose".
     wp_load. iMod ("Hclose" with "[Hl Hγ]") as "_"; [iNext; iExists c; by iFrame|].
@@ -70,9 +70,9 @@ Section mono_proof.
   Qed.
 
   Lemma read_mono_spec l j :
-    {{{ mcounter l j }}} read #l {{{ i; #i, ■ (j ≤ i)%nat ∧ mcounter l i }}}.
+    {{{ mcounter l j }}} read #l {{{ i, RET #i; ■ (j ≤ i)%nat ∧ mcounter l i }}}.
   Proof.
-    iIntros (ϕ) "[Hc HΦ]". iDestruct "Hc" as (γ) "(% & #? & #Hinv & Hγf)".
+    iIntros (ϕ) "Hc HΦ". iDestruct "Hc" as (γ) "(% & #? & #Hinv & Hγf)".
     rewrite /read /=. wp_let. iInv N as (c) ">[Hγ Hl]" "Hclose". wp_load.
     iDestruct (own_valid_2 with "[$Hγ $Hγf]")
       as %[?%mnat_included _]%auth_valid_discrete_2.
@@ -112,9 +112,9 @@ Section contrib_spec.
   Lemma newcounter_contrib_spec (R : iProp Σ) :
     heapN ⊥ N →
     {{{ heap_ctx }}} newcounter #()
-    {{{ γ l; #l, ccounter_ctx γ l ★ ccounter γ 1 0 }}}.
+    {{{ γ l, RET #l; ccounter_ctx γ l ★ ccounter γ 1 0 }}}.
   Proof.
-    iIntros (? Φ) "[#Hh HΦ]". rewrite /newcounter /=. wp_seq. wp_alloc l as "Hl".
+    iIntros (? Φ) "#Hh HΦ". rewrite -wp_fupd /newcounter /=. wp_seq. wp_alloc l as "Hl".
     iMod (own_alloc (● (Some (1%Qp, O%nat)) ⋅ ◯ (Some (1%Qp, 0%nat))))
       as (γ) "[Hγ Hγ']"; first done.
     iMod (inv_alloc N _ (ccounter_inv γ l) with "[Hl Hγ]").
@@ -124,9 +124,9 @@ Section contrib_spec.
 
   Lemma inc_contrib_spec γ l q n :
     {{{ ccounter_ctx γ l ★ ccounter γ q n }}} inc #l
-    {{{; #(), ccounter γ q (S n) }}}.
+    {{{ RET #(); ccounter γ q (S n) }}}.
   Proof.
-    iIntros (Φ) "((#(%&?&?) & Hγf) & HΦ)". iLöb as "IH". wp_rec.
+    iIntros (Φ) "(#(%&?&?) & Hγf) HΦ". iLöb as "IH". wp_rec.
     wp_bind (! _)%E. iInv N as (c) ">[Hγ Hl]" "Hclose".
     wp_load. iMod ("Hclose" with "[Hl Hγ]") as "_"; [iNext; iExists c; by iFrame|].
     iModIntro. wp_let. wp_op.
@@ -145,9 +145,9 @@ Section contrib_spec.
 
   Lemma read_contrib_spec γ l q n :
     {{{ ccounter_ctx γ l ★ ccounter γ q n }}} read #l
-    {{{ c; #c, ■ (n ≤ c)%nat ∧ ccounter γ q n }}}.
+    {{{ c, RET #c; ■ (n ≤ c)%nat ∧ ccounter γ q n }}}.
   Proof.
-    iIntros (Φ) "((#(%&?&?) & Hγf) & HΦ)".
+    iIntros (Φ) "(#(%&?&?) & Hγf) HΦ".
     rewrite /read /=. wp_let. iInv N as (c) ">[Hγ Hl]" "Hclose". wp_load.
     iDestruct (own_valid_2 with "[$Hγ $Hγf]")
       as %[[? ?%nat_included]%Some_pair_included_total_2 _]%auth_valid_discrete_2.
@@ -157,9 +157,9 @@ Section contrib_spec.
 
   Lemma read_contrib_spec_1 γ l n :
     {{{ ccounter_ctx γ l ★ ccounter γ 1 n }}} read #l
-    {{{ n; #n, ccounter γ 1 n }}}.
+    {{{ n, RET #n; ccounter γ 1 n }}}.
   Proof.
-    iIntros (Φ) "((#(%&?&?) & Hγf) & HΦ)".
+    iIntros (Φ) "(#(%&?&?) & Hγf) HΦ".
     rewrite /read /=. wp_let. iInv N as (c) ">[Hγ Hl]" "Hclose". wp_load.
     iDestruct (own_valid_2 with "[$Hγ $Hγf]") as %[Hn _]%auth_valid_discrete_2.
     apply (Some_included_exclusive _) in Hn as [= ->]%leibniz_equiv; last done.
diff --git a/heap_lang/lib/lock.v b/heap_lang/lib/lock.v
index 42bc6a572dcdb160d017b0476184733b4f147a94..43f81ecb517a61995abe5797328987b1f0344588 100644
--- a/heap_lang/lib/lock.v
+++ b/heap_lang/lib/lock.v
@@ -18,11 +18,11 @@ Structure lock Σ `{!heapG Σ} := Lock {
   (* -- operation specs -- *)
   newlock_spec N (R : iProp Σ) :
     heapN ⊥ N →
-    {{{ heap_ctx ★ R }}} newlock #() {{{ lk γ; lk, is_lock N γ lk R }}};
+    {{{ heap_ctx ★ R }}} newlock #() {{{ lk γ, RET lk; is_lock N γ lk R }}};
   acquire_spec N γ lk R :
-    {{{ is_lock N γ lk R }}} acquire lk {{{; #(), locked γ ★ R }}};
+    {{{ is_lock N γ lk R }}} acquire lk {{{ RET #(); locked γ ★ R }}};
   release_spec N γ lk R :
-    {{{ is_lock N γ lk R ★ locked γ ★ R }}} release lk {{{; #(), True }}}
+    {{{ is_lock N γ lk R ★ locked γ ★ R }}} release lk {{{ RET #(); True }}}
 }.
 
 Arguments newlock {_ _} _.
diff --git a/heap_lang/lib/par.v b/heap_lang/lib/par.v
index bae873a2327d28d564a6b690f1c3f448a1cf53f1..5efd170e7884bd36fd559a0530ccc5dba22e8a46 100644
--- a/heap_lang/lib/par.v
+++ b/heap_lang/lib/par.v
@@ -16,6 +16,10 @@ Global Opaque par.
 Section proof.
 Context `{!heapG Σ, !spawnG Σ}.
 
+(* Notice that this allows us to strip a later *after* the two Ψ have been
+   brought together.  That is strictly stronger than first stripping a later
+   and then merging them, as demonstrated by [tests/joining_existentials.v].
+   This is why these are not Texan triples. *)
 Lemma par_spec (Ψ1 Ψ2 : val → iProp Σ) e (f1 f2 : val) (Φ : val → iProp Σ) :
   to_val e = Some (f1,f2)%V →
   (heap_ctx ★ WP f1 #() {{ Ψ1 }} ★ WP f2 #() {{ Ψ2 }} ★
@@ -23,11 +27,11 @@ Lemma par_spec (Ψ1 Ψ2 : val → iProp Σ) e (f1 f2 : val) (Φ : val → iProp
   ⊢ WP par e {{ Φ }}.
 Proof.
   iIntros (?) "(#Hh&Hf1&Hf2&HΦ)".
-  rewrite /par. wp_value. iModIntro. wp_let. wp_proj.
-  wp_apply (spawn_spec parN with "[- $Hh $Hf1]"); try wp_done; try solve_ndisj.
+  rewrite /par. wp_value. wp_let. wp_proj.
+  wp_apply (spawn_spec parN with "[$Hh $Hf1]"); try wp_done; try solve_ndisj.
   iIntros (l) "Hl". wp_let. wp_proj. wp_bind (f2 _).
   iApply (wp_wand_r with "[- $Hf2]"); iIntros (v) "H2". wp_let.
-  wp_apply (join_spec with "[- $Hl]"). iIntros (w) "H1".
+  wp_apply (join_spec with "[$Hl]"). iIntros (w) "H1".
   iSpecialize ("HΦ" with "* [-]"); first by iSplitL "H1". by wp_let.
 Qed.
 
diff --git a/heap_lang/lib/spawn.v b/heap_lang/lib/spawn.v
index 9c4bb70c3aa9baf8e9213251fc55fd1ea3689106..54053ad1b2c77989ddb5fb5fbf17a270da244ac0 100644
--- a/heap_lang/lib/spawn.v
+++ b/heap_lang/lib/spawn.v
@@ -49,31 +49,31 @@ Proof. solve_proper. Qed.
 Lemma spawn_spec (Ψ : val → iProp Σ) e (f : val) :
   to_val e = Some f →
   heapN ⊥ N →
-  {{{ heap_ctx ★ WP f #() {{ Ψ }} }}} spawn e {{{ l; #l, join_handle l Ψ }}}.
+  {{{ heap_ctx ★ WP f #() {{ Ψ }} }}} spawn e {{{ l, RET #l; join_handle l Ψ }}}.
 Proof.
-  iIntros (<-%of_to_val ? Φ) "((#Hh & Hf) & HΦ)". rewrite /spawn /=.
+  iIntros (<-%of_to_val ? Φ) "(#Hh & Hf) HΦ". rewrite /spawn /=.
   wp_let. wp_alloc l as "Hl". wp_let.
   iMod (own_alloc (Excl ())) as (γ) "Hγ"; first done.
   iMod (inv_alloc N _ (spawn_inv γ l Ψ) with "[Hl]") as "#?".
   { iNext. iExists NONEV. iFrame; eauto. }
   wp_apply wp_fork; simpl. iSplitR "Hf".
-  - iModIntro. wp_seq. iModIntro. iApply "HΦ". rewrite /join_handle. eauto.
+  - wp_seq. iApply "HΦ". rewrite /join_handle. eauto.
   - wp_bind (f _). iApply (wp_wand_r with "[ $Hf]"); iIntros (v) "Hv".
     iInv N as (v') "[Hl _]" "Hclose".
     wp_store. iApply "Hclose". iNext. iExists (SOMEV v). iFrame. eauto.
 Qed.
 
 Lemma join_spec (Ψ : val → iProp Σ) l :
-  {{{ join_handle l Ψ }}} join #l {{{ v; v, Ψ v }}}.
+  {{{ join_handle l Ψ }}} join #l {{{ v, RET v; Ψ v }}}.
 Proof.
-  rewrite /join_handle; iIntros (Φ) "[[% H] Hv]". iDestruct "H" as (γ) "(#?&Hγ&#?)".
+  rewrite /join_handle; iIntros (Φ) "[% H] HΦ". iDestruct "H" as (γ) "(#?&Hγ&#?)".
   iLöb as "IH". wp_rec. wp_bind (! _)%E. iInv N as (v) "[Hl Hinv]" "Hclose".
   wp_load. iDestruct "Hinv" as "[%|Hinv]"; subst.
   - iMod ("Hclose" with "[Hl]"); [iNext; iExists _; iFrame; eauto|].
-    iModIntro. wp_match. iApply ("IH" with "Hγ [Hv]"). auto.
+    iModIntro. wp_match. iApply ("IH" with "Hγ [HΦ]"). auto.
   - iDestruct "Hinv" as (v') "[% [HΨ|Hγ']]"; simplify_eq/=.
     + iMod ("Hclose" with "[Hl Hγ]"); [iNext; iExists _; iFrame; eauto|].
-      iModIntro. wp_match. by iApply "Hv".
+      iModIntro. wp_match. by iApply "HΦ".
     + iCombine "Hγ" "Hγ'" as "Hγ". iDestruct (own_valid with "Hγ") as %[].
 Qed.
 End proof.
diff --git a/heap_lang/lib/spin_lock.v b/heap_lang/lib/spin_lock.v
index 34b5b22c352803a5a7fda785a797b86184f3b7fa..44443f4f66b634ddfa680dfbd231b61e67be6317 100644
--- a/heap_lang/lib/spin_lock.v
+++ b/heap_lang/lib/spin_lock.v
@@ -47,9 +47,9 @@ Section proof.
 
   Lemma newlock_spec (R : iProp Σ):
     heapN ⊥ N →
-    {{{ heap_ctx ★ R }}} newlock #() {{{ lk γ; lk, is_lock γ lk R }}}.
+    {{{ heap_ctx ★ R }}} newlock #() {{{ lk γ, RET lk; is_lock γ lk R }}}.
   Proof.
-    iIntros (? Φ) "[[#Hh HR] HΦ]". rewrite /newlock /=.
+    iIntros (? Φ) "[#Hh HR] HΦ". rewrite -wp_fupd /newlock /=.
     wp_seq. wp_alloc l as "Hl".
     iMod (own_alloc (Excl ())) as (γ) "Hγ"; first done.
     iMod (inv_alloc N _ (lock_inv γ l R) with "[-HΦ]") as "#?".
@@ -59,9 +59,9 @@ Section proof.
 
   Lemma try_acquire_spec γ lk R :
     {{{ is_lock γ lk R }}} try_acquire lk
-    {{{b; #b, if b is true then locked γ ★ R else True }}}.
+    {{{ b, RET #b; if b is true then locked γ ★ R else True }}}.
   Proof.
-    iIntros (Φ) "[#Hl HΦ]". iDestruct "Hl" as (l) "(% & #? & % & #?)". subst.
+    iIntros (Φ) "#Hl HΦ". iDestruct "Hl" as (l) "(% & #? & % & #?)". subst.
     wp_rec. iInv N as ([]) "[Hl HR]" "Hclose".
     - wp_cas_fail. iMod ("Hclose" with "[Hl]"); first (iNext; iExists true; eauto).
       iModIntro. iApply ("HΦ" $! false). done.
@@ -71,18 +71,18 @@ Section proof.
   Qed.
 
   Lemma acquire_spec γ lk R :
-    {{{ is_lock γ lk R }}} acquire lk {{{; #(), locked γ ★ R }}}.
+    {{{ is_lock γ lk R }}} acquire lk {{{ RET #(); locked γ ★ R }}}.
   Proof.
-    iIntros (Φ) "[#Hl HΦ]". iLöb as "IH". wp_rec.
-    wp_apply (try_acquire_spec with "[- $Hl]"). iIntros ([]).
-    - iIntros "[Hlked HR]". wp_if. iModIntro. iApply "HΦ"; iFrame.
+    iIntros (Φ) "#Hl HΦ". iLöb as "IH". wp_rec.
+    wp_apply (try_acquire_spec with "Hl"). iIntros ([]).
+    - iIntros "[Hlked HR]". wp_if. iApply "HΦ"; iFrame.
     - iIntros "_". wp_if. iApply ("IH" with "[HΦ]"). auto.
   Qed.
 
   Lemma release_spec γ lk R :
-    {{{ is_lock γ lk R ★ locked γ ★ R }}} release lk {{{; #(), True }}}.
+    {{{ is_lock γ lk R ★ locked γ ★ R }}} release lk {{{ RET #(); True }}}.
   Proof.
-    iIntros (Φ) "((Hlock & Hlocked & HR) & HΦ)".
+    iIntros (Φ) "(Hlock & Hlocked & HR) HΦ".
     iDestruct "Hlock" as (l) "(% & #? & % & #?)". subst.
     rewrite /release /=. wp_let. iInv N as (b) "[Hl _]" "Hclose".
     wp_store. iApply "HΦ". iApply "Hclose". iNext. iExists false. by iFrame.
diff --git a/heap_lang/lib/ticket_lock.v b/heap_lang/lib/ticket_lock.v
index 3846ddebefa8f41ff6bab1ada82abb1c695bb7d7..5300485fcc6ef81e7e75f321a8451c104c8321ff 100644
--- a/heap_lang/lib/ticket_lock.v
+++ b/heap_lang/lib/ticket_lock.v
@@ -76,9 +76,9 @@ Section proof.
 
   Lemma newlock_spec (R : iProp Σ) :
     heapN ⊥ N →
-    {{{ heap_ctx ★ R }}} newlock #() {{{ lk γ; lk, is_lock γ lk R }}}.
+    {{{ heap_ctx ★ R }}} newlock #() {{{ lk γ, RET lk; is_lock γ lk R }}}.
   Proof.
-    iIntros (HN Φ) "((#Hh & HR) & HΦ)". rewrite /newlock /=.
+    iIntros (HN Φ) "(#Hh & HR) HΦ". rewrite -wp_fupd /newlock /=.
     wp_seq. wp_alloc lo as "Hlo". wp_alloc ln as "Hln".
     iMod (own_alloc (● (Excl' 0%nat, ∅) ⋅ ◯ (Excl' 0%nat, ∅))) as (γ) "[Hγ Hγ']".
     { by rewrite -auth_both_op. }
@@ -89,9 +89,9 @@ Section proof.
   Qed.
 
   Lemma wait_loop_spec γ lk x R :
-    {{{ issued γ lk x R }}} wait_loop #x lk {{{; #(), locked γ ★ R }}}.
+    {{{ issued γ lk x R }}} wait_loop #x lk {{{ RET #(); locked γ ★ R }}}.
   Proof.
-    iIntros (Φ) "[Hl HΦ]". iDestruct "Hl" as (lo ln) "(% & #? & % & #? & Ht)".
+    iIntros (Φ) "Hl HΦ". iDestruct "Hl" as (lo ln) "(% & #? & % & #? & Ht)".
     iLöb as "IH". wp_rec. subst. wp_let. wp_proj. wp_bind (! _)%E.
     iInv N as (o n) "(Hlo & Hln & Ha)" "Hclose".
     wp_load. destruct (decide (x = o)) as [->|Hneq].
@@ -99,7 +99,7 @@ Section proof.
       + iMod ("Hclose" with "[Hlo Hln Hainv Ht]") as "_".
         { iNext. iExists o, n. iFrame. eauto. }
         iModIntro. wp_let. wp_op=>[_|[]] //.
-        wp_if. iModIntro.
+        wp_if. 
         iApply ("HΦ" with "[-]"). rewrite /locked. iFrame. eauto.
       + iDestruct (own_valid_2 with "[$Ht $Haown]") as % [_ ?%gset_disj_valid_op].
         set_solver.
@@ -110,9 +110,9 @@ Section proof.
   Qed.
 
   Lemma acquire_spec γ lk R :
-    {{{ is_lock γ lk R }}} acquire lk {{{; #(), locked γ ★ R }}}.
+    {{{ is_lock γ lk R }}} acquire lk {{{ RET #(); locked γ ★ R }}}.
   Proof.
-    iIntros (ϕ) "[Hl HΦ]". iDestruct "Hl" as (lo ln) "(% & #? & % & #?)".
+    iIntros (ϕ) "Hl HΦ". iDestruct "Hl" as (lo ln) "(% & #? & % & #?)".
     iLöb as "IH". wp_rec. wp_bind (! _)%E. subst. wp_proj.
     iInv N as (o n) "[Hlo [Hln Ha]]" "Hclose".
     wp_load. iMod ("Hclose" with "[Hlo Hln Ha]") as "_".
@@ -131,8 +131,9 @@ Section proof.
       { iNext. iExists o', (S n).
         rewrite Nat2Z.inj_succ -Z.add_1_r. by iFrame. }
       iModIntro. wp_if.
-      iApply (wait_loop_spec γ (#lo, #ln)).
-      iFrame "HΦ". rewrite /issued; eauto 10.
+      iApply (wait_loop_spec γ (#lo, #ln) with "[-HΦ]").
+      + rewrite /issued; eauto 10.
+      + by iNext. 
     - wp_cas_fail.
       iMod ("Hclose" with "[Hlo' Hln' Hauth Haown]") as "_".
       { iNext. iExists o', n'. by iFrame. }
@@ -140,9 +141,9 @@ Section proof.
   Qed.
 
   Lemma release_spec γ lk R :
-    {{{ is_lock γ lk R ★ locked γ ★ R }}} release lk {{{; #(), True }}}.
+    {{{ is_lock γ lk R ★ locked γ ★ R }}} release lk {{{ RET #(); True }}}.
   Proof.
-    iIntros (Φ) "((Hl & Hγ & HR) & HΦ)".
+    iIntros (Φ) "(Hl & Hγ & HR) HΦ".
     iDestruct "Hl" as (lo ln) "(% & #? & % & #?)"; subst.
     iDestruct "Hγ" as (o) "Hγo".
     rewrite /release. wp_let. wp_proj. wp_proj. wp_bind (! _)%E.
diff --git a/heap_lang/lifting.v b/heap_lang/lifting.v
index 2d2e5be870f440c0c6c28cf9719b6546ee6e2a1a..71ce9d61655dd367d747d5f57388522078ca6c3c 100644
--- a/heap_lang/lifting.v
+++ b/heap_lang/lifting.v
@@ -46,59 +46,59 @@ Lemma wp_bind_ctxi {E e} Ki Φ :
 Proof. exact: weakestpre.wp_bind. Qed.
 
 (** Base axioms for core primitives of the language: Stateful reductions. *)
-Lemma wp_alloc_pst E σ v Φ :
-  ▷ ownP σ ★ ▷ (∀ l, σ !! l = None ∧ ownP (<[l:=v]>σ) ={E}=★ Φ (LitV (LitLoc l)))
-  ⊢ WP Alloc (of_val v) @ E {{ Φ }}.
+Lemma wp_alloc_pst E σ v :
+  {{{ ▷ ownP σ }}} Alloc (of_val v) @ E
+  {{{ l, RET LitV (LitLoc l); σ !! l = None ∧ ownP (<[l:=v]>σ) }}}.
 Proof.
-  iIntros "[HP HΦ]".
+  iIntros (Φ) "HP HΦ".
   iApply (wp_lift_atomic_head_step (Alloc (of_val v)) σ); eauto.
   iFrame "HP". iNext. iIntros (v2 σ2 ef) "[% HP]". inv_head_step.
   match goal with H: _ = of_val v2 |- _ => apply (inj of_val (LitV _)) in H end.
   subst v2. iSplit. iApply "HΦ"; by iSplit. by iApply big_sepL_nil.
 Qed.
 
-Lemma wp_load_pst E σ l v Φ :
+Lemma wp_load_pst E σ l v :
   σ !! l = Some v →
-  ▷ ownP σ ★ ▷ (ownP σ ={E}=★ Φ v) ⊢ WP Load (Lit (LitLoc l)) @ E {{ Φ }}.
+  {{{ ▷ ownP σ }}} Load (Lit (LitLoc l)) @ E {{{ RET v; ownP σ }}}.
 Proof.
-  intros. rewrite -(wp_lift_atomic_det_head_step' σ v σ); eauto.
+  intros ? Φ. apply (wp_lift_atomic_det_head_step' σ v σ); eauto.
   intros; inv_head_step; eauto.
 Qed.
 
-Lemma wp_store_pst E σ l v v' Φ :
+Lemma wp_store_pst E σ l v v' :
   σ !! l = Some v' →
-  ▷ ownP σ ★ ▷ (ownP (<[l:=v]>σ) ={E}=★ Φ (LitV LitUnit))
-  ⊢ WP Store (Lit (LitLoc l)) (of_val v) @ E {{ Φ }}.
+  {{{ ▷ ownP σ }}} Store (Lit (LitLoc l)) (of_val v) @ E
+  {{{ RET LitV LitUnit; ownP (<[l:=v]>σ) }}}.
 Proof.
-  intros. rewrite-(wp_lift_atomic_det_head_step' σ (LitV LitUnit) (<[l:=v]>σ)); eauto.
+  intros. apply (wp_lift_atomic_det_head_step' σ (LitV LitUnit) (<[l:=v]>σ)); eauto.
   intros; inv_head_step; eauto.
 Qed.
 
-Lemma wp_cas_fail_pst E σ l v1 v2 v' Φ :
+Lemma wp_cas_fail_pst E σ l v1 v2 v' :
   σ !! l = Some v' → v' ≠ v1 →
-  ▷ ownP σ ★ ▷ (ownP σ ={E}=★ Φ (LitV $ LitBool false))
-  ⊢ WP CAS (Lit (LitLoc l)) (of_val v1) (of_val v2) @ E {{ Φ }}.
+  {{{ ▷ ownP σ }}} CAS (Lit (LitLoc l)) (of_val v1) (of_val v2) @ E
+  {{{ RET LitV $ LitBool false; ownP σ }}}.
 Proof.
-  intros. rewrite -(wp_lift_atomic_det_head_step' σ (LitV $ LitBool false) σ); eauto.
+  intros. apply (wp_lift_atomic_det_head_step' σ (LitV $ LitBool false) σ); eauto.
   intros; inv_head_step; eauto.
 Qed.
 
-Lemma wp_cas_suc_pst E σ l v1 v2 Φ :
+Lemma wp_cas_suc_pst E σ l v1 v2 :
   σ !! l = Some v1 →
-  ▷ ownP σ ★ ▷ (ownP (<[l:=v2]>σ) ={E}=★ Φ (LitV $ LitBool true))
-  ⊢ WP CAS (Lit (LitLoc l)) (of_val v1) (of_val v2) @ E {{ Φ }}.
+  {{{ ▷ ownP σ }}} CAS (Lit (LitLoc l)) (of_val v1) (of_val v2) @ E
+  {{{ RET LitV $ LitBool true; ownP (<[l:=v2]>σ) }}}.
 Proof.
-  intros. rewrite -(wp_lift_atomic_det_head_step' σ (LitV $ LitBool true)
+  intros. apply (wp_lift_atomic_det_head_step' σ (LitV $ LitBool true)
     (<[l:=v2]>σ)); eauto.
   intros; inv_head_step; eauto.
 Qed.
 
 (** Base axioms for core primitives of the language: Stateless reductions *)
 Lemma wp_fork E e Φ :
-  ▷ (|={E}=> Φ (LitV LitUnit)) ★ ▷ WP e {{ _, True }} ⊢ WP Fork e @ E {{ Φ }}.
+  ▷ Φ (LitV LitUnit) ★ ▷ WP e {{ _, True }} ⊢ WP Fork e @ E {{ Φ }}.
 Proof.
   rewrite -(wp_lift_pure_det_head_step (Fork e) (Lit LitUnit) [e]) //=; eauto.
-  - by rewrite later_sep -(wp_value_fupd _ _ (Lit _)) // big_sepL_singleton.
+  - by rewrite later_sep -(wp_value _ _ (Lit _)) // big_sepL_singleton.
   - intros; inv_head_step; eauto.
 Qed.
 
@@ -116,20 +116,20 @@ Qed.
 Lemma wp_un_op E op e v v' Φ :
   to_val e = Some v →
   un_op_eval op v = Some v' →
-  ▷ (|={E}=> Φ v') ⊢ WP UnOp op e @ E {{ Φ }}.
+  ▷ Φ v' ⊢ WP UnOp op e @ E {{ Φ }}.
 Proof.
   intros. rewrite -(wp_lift_pure_det_head_step' (UnOp op _) (of_val v'))
-    -?wp_value_fupd'; eauto.
+    -?wp_value'; eauto.
   intros; inv_head_step; eauto.
 Qed.
 
 Lemma wp_bin_op E op e1 e2 v1 v2 v' Φ :
   to_val e1 = Some v1 → to_val e2 = Some v2 →
   bin_op_eval op v1 v2 = Some v' →
-  ▷ (|={E}=> Φ v') ⊢ WP BinOp op e1 e2 @ E {{ Φ }}.
+  ▷ (Φ v') ⊢ WP BinOp op e1 e2 @ E {{ Φ }}.
 Proof.
   intros. rewrite -(wp_lift_pure_det_head_step' (BinOp op _ _) (of_val v'))
-    -?wp_value_fupd'; eauto.
+    -?wp_value'; eauto.
   intros; inv_head_step; eauto.
 Qed.
 
@@ -149,19 +149,19 @@ Qed.
 
 Lemma wp_fst E e1 v1 e2 Φ :
   to_val e1 = Some v1 → is_Some (to_val e2) →
-  ▷ (|={E}=> Φ v1) ⊢ WP Fst (Pair e1 e2) @ E {{ Φ }}.
+  ▷ Φ v1 ⊢ WP Fst (Pair e1 e2) @ E {{ Φ }}.
 Proof.
   intros ? [v2 ?].
-  rewrite -(wp_lift_pure_det_head_step' (Fst _) e1) -?wp_value_fupd; eauto.
+  rewrite -(wp_lift_pure_det_head_step' (Fst _) e1) -?wp_value; eauto.
   intros; inv_head_step; eauto.
 Qed.
 
 Lemma wp_snd E e1 e2 v2 Φ :
   is_Some (to_val e1) → to_val e2 = Some v2 →
-  ▷ (|={E}=> Φ v2) ⊢ WP Snd (Pair e1 e2) @ E {{ Φ }}.
+  ▷ Φ v2 ⊢ WP Snd (Pair e1 e2) @ E {{ Φ }}.
 Proof.
   intros [v1 ?] ?.
-  rewrite -(wp_lift_pure_det_head_step' (Snd _) e2) -?wp_value_fupd; eauto.
+  rewrite -(wp_lift_pure_det_head_step' (Snd _) e2) -?wp_value; eauto.
   intros; inv_head_step; eauto.
 Qed.
 
diff --git a/heap_lang/proofmode.v b/heap_lang/proofmode.v
index 83e5f27d00ba2390f98a71e38b4ac89dc6ccb3d6..e0fba481b36dda57309490ba0a88933cc8ab127b 100644
--- a/heap_lang/proofmode.v
+++ b/heap_lang/proofmode.v
@@ -22,10 +22,10 @@ Lemma tac_wp_alloc Δ Δ' E j e v Φ :
   IntoLaterEnvs Δ Δ' →
   (∀ l, ∃ Δ'',
     envs_app false (Esnoc Enil j (l ↦ v)) Δ' = Some Δ'' ∧
-    (Δ'' ⊢ |={E}=> Φ (LitV (LitLoc l)))) →
+    (Δ'' ⊢ Φ (LitV (LitLoc l)))) →
   Δ ⊢ WP Alloc e @ E {{ Φ }}.
 Proof.
-  intros ???? HΔ. rewrite -wp_fupd -wp_alloc // -always_and_sep_l.
+  intros ???? HΔ. eapply wand_apply; first exact:wp_alloc. rewrite -always_and_sep_l.
   apply and_intro; first done.
   rewrite into_later_env_sound; apply later_mono, forall_intro=> l.
   destruct (HΔ l) as (Δ''&?&HΔ'). rewrite envs_app_sound //; simpl.
@@ -36,10 +36,10 @@ Lemma tac_wp_load Δ Δ' E i l q v Φ :
   (Δ ⊢ heap_ctx) → nclose heapN ⊆ E →
   IntoLaterEnvs Δ Δ' →
   envs_lookup i Δ' = Some (false, l ↦{q} v)%I →
-  (Δ' ⊢ |={E}=> Φ v) →
+  (Δ' ⊢ Φ v) →
   Δ ⊢ WP Load (Lit (LitLoc l)) @ E {{ Φ }}.
 Proof.
-  intros. rewrite -wp_fupd -wp_load // -assoc -always_and_sep_l.
+  intros. eapply wand_apply; first exact:wp_load. rewrite -assoc -always_and_sep_l.
   apply and_intro; first done.
   rewrite into_later_env_sound -later_sep envs_lookup_split //; simpl.
   by apply later_mono, sep_mono_r, wand_mono.
@@ -51,10 +51,10 @@ Lemma tac_wp_store Δ Δ' Δ'' E i l v e v' Φ :
   IntoLaterEnvs Δ Δ' →
   envs_lookup i Δ' = Some (false, l ↦ v)%I →
   envs_simple_replace i false (Esnoc Enil i (l ↦ v')) Δ' = Some Δ'' →
-  (Δ'' ⊢ |={E}=> Φ (LitV LitUnit)) →
+  (Δ'' ⊢ Φ (LitV LitUnit)) →
   Δ ⊢ WP Store (Lit (LitLoc l)) e @ E {{ Φ }}.
 Proof.
-  intros. rewrite -wp_fupd -wp_store // -assoc -always_and_sep_l.
+  intros. eapply wand_apply; first by eapply wp_store. rewrite -assoc -always_and_sep_l.
   apply and_intro; first done.
   rewrite into_later_env_sound -later_sep envs_simple_replace_sound //; simpl.
   rewrite right_id. by apply later_mono, sep_mono_r, wand_mono.
@@ -65,10 +65,10 @@ Lemma tac_wp_cas_fail Δ Δ' E i l q v e1 v1 e2 v2 Φ :
   (Δ ⊢ heap_ctx) → nclose heapN ⊆ E →
   IntoLaterEnvs Δ Δ' →
   envs_lookup i Δ' = Some (false, l ↦{q} v)%I → v ≠ v1 →
-  (Δ' ⊢ |={E}=> Φ (LitV (LitBool false))) →
+  (Δ' ⊢ Φ (LitV (LitBool false))) →
   Δ ⊢ WP CAS (Lit (LitLoc l)) e1 e2 @ E {{ Φ }}.
 Proof.
-  intros. rewrite -wp_fupd -wp_cas_fail // -assoc -always_and_sep_l.
+  intros. eapply wand_apply; first exact:wp_cas_fail. rewrite -assoc -always_and_sep_l.
   apply and_intro; first done.
   rewrite into_later_env_sound -later_sep envs_lookup_split //; simpl.
   by apply later_mono, sep_mono_r, wand_mono.
@@ -80,10 +80,10 @@ Lemma tac_wp_cas_suc Δ Δ' Δ'' E i l v e1 v1 e2 v2 Φ :
   IntoLaterEnvs Δ Δ' →
   envs_lookup i Δ' = Some (false, l ↦ v)%I → v = v1 →
   envs_simple_replace i false (Esnoc Enil i (l ↦ v2)) Δ' = Some Δ'' →
-  (Δ'' ⊢ |={E}=> Φ (LitV (LitBool true))) →
+  (Δ'' ⊢ Φ (LitV (LitBool true))) →
   Δ ⊢ WP CAS (Lit (LitLoc l)) e1 e2 @ E {{ Φ }}.
 Proof.
-  intros; subst. rewrite -wp_fupd -wp_cas_suc // -assoc -always_and_sep_l.
+  intros; subst. eapply wand_apply; first exact:wp_cas_suc. rewrite -assoc -always_and_sep_l.
   apply and_intro; first done.
   rewrite into_later_env_sound -later_sep envs_simple_replace_sound //; simpl.
   rewrite right_id. by apply later_mono, sep_mono_r, wand_mono.
diff --git a/heap_lang/wp_tactics.v b/heap_lang/wp_tactics.v
index 4f7309555bbfc5606058cedeb1615d816dbdd867..26856a3a1c5bdf5314a02b82dbc404df9d86b90d 100644
--- a/heap_lang/wp_tactics.v
+++ b/heap_lang/wp_tactics.v
@@ -18,20 +18,7 @@ Ltac wp_done :=
   | _ => fast_done
   end.
 
-(* sometimes, we want to keep the update modality, so only apply [fupd_intro]
-if we obtain a consecutive wp *)
-Ltac wp_strip_fupd :=
-  lazymatch goal with
-  | |- _ ⊢ |={?E}=> _ =>
-    etrans; [|apply fupd_intro];
-    match goal with
-    | |- _ ⊢ wp E _ _ => simpl
-    | |- _ ⊢ |={E,_}=> _ => simpl
-    | _ => fail
-    end
-  end.
-
-Ltac wp_value_head := etrans; [|eapply wp_value_fupd; wp_done]; lazy beta.
+Ltac wp_value_head := etrans; [|eapply wp_value; wp_done]; lazy beta.
 
 Ltac wp_strip_later := idtac. (* a hook to be redefined later *)
 
@@ -48,7 +35,6 @@ Ltac wp_finish := intros_revert ltac:(
   | |- _ ⊢ wp ?E (Seq _ _) ?Q =>
      etrans; [|eapply wp_seq; wp_done]; wp_strip_later
   | |- _ ⊢ wp ?E _ ?Q => wp_value_head
-  | |- _ ⊢ |={_,_}=> _ => wp_strip_fupd
   end).
 
 Tactic Notation "wp_value" :=
diff --git a/program_logic/ectx_lifting.v b/program_logic/ectx_lifting.v
index 99df308b6349a696739113de8675c689a07faef9..28a3e76362232b50d58a109c386771279b0163cd 100644
--- a/program_logic/ectx_lifting.v
+++ b/program_logic/ectx_lifting.v
@@ -43,7 +43,7 @@ Lemma wp_lift_atomic_head_step {E Φ} e1 σ1 :
   head_reducible e1 σ1 →
   ▷ ownP σ1 ★ ▷ (∀ v2 σ2 efs,
   ■ head_step e1 σ1 (of_val v2) σ2 efs ∧ ownP σ2 -★
-    (|={E}=> Φ v2) ★ [★ list] ef ∈ efs, WP ef {{ _, True }})
+    Φ v2 ★ [★ list] ef ∈ efs, WP ef {{ _, True }})
   ⊢ WP e1 @ E {{ Φ }}.
 Proof.
   iIntros (??) "[? H]". iApply wp_lift_atomic_step; eauto. iFrame. iNext.
@@ -56,19 +56,19 @@ Lemma wp_lift_atomic_det_head_step {E Φ e1} σ1 v2 σ2 efs :
   (∀ e2' σ2' efs', head_step e1 σ1 e2' σ2' efs' →
     σ2 = σ2' ∧ to_val e2' = Some v2 ∧ efs = efs') →
   ▷ ownP σ1 ★ ▷ (ownP σ2 -★
-    (|={E}=> Φ v2) ★ [★ list] ef ∈ efs, WP ef {{ _, True }})
+    Φ v2 ★ [★ list] ef ∈ efs, WP ef {{ _, True }})
   ⊢ WP e1 @ E {{ Φ }}.
 Proof. eauto using wp_lift_atomic_det_step. Qed.
 
-Lemma wp_lift_atomic_det_head_step' {E Φ e1} σ1 v2 σ2 :
+Lemma wp_lift_atomic_det_head_step' {E e1} σ1 v2 σ2 :
   atomic e1 →
   head_reducible e1 σ1 →
   (∀ e2' σ2' efs', head_step e1 σ1 e2' σ2' efs' →
     σ2 = σ2' ∧ to_val e2' = Some v2 ∧ [] = efs') →
-  ▷ ownP σ1 ★ ▷ (ownP σ2 ={E}=★ Φ v2) ⊢ WP e1 @ E {{ Φ }}.
+  {{{ ▷ ownP σ1 }}} e1 @ E {{{ RET v2; ownP σ2 }}}.
 Proof.
-  intros. rewrite -(wp_lift_atomic_det_head_step σ1 v2 σ2 [])
-    ?big_sepL_nil ?right_id; eauto.
+  intros. rewrite -(wp_lift_atomic_det_head_step σ1 v2 σ2 []); [|done..].
+  rewrite big_sepL_nil right_id. by apply uPred.wand_intro_r.
 Qed.
 
 Lemma wp_lift_pure_det_head_step {E Φ} e1 e2 efs :
diff --git a/program_logic/lifting.v b/program_logic/lifting.v
index 8b05a82900fd167ef8c0e56d1d29d2fe362867e4..a3335b346e5a4aea35d697cf96decfc8b6e78206 100644
--- a/program_logic/lifting.v
+++ b/program_logic/lifting.v
@@ -48,7 +48,7 @@ Lemma wp_lift_atomic_step {E Φ} e1 σ1 :
   atomic e1 →
   reducible e1 σ1 →
   (▷ ownP σ1 ★ ▷ ∀ v2 σ2 efs, ■ prim_step e1 σ1 (of_val v2) σ2 efs ★ ownP σ2 -★
-    (|={E}=> Φ v2) ★ [★ list] ef ∈ efs, WP ef {{ _, True }})
+    Φ v2 ★ [★ list] ef ∈ efs, WP ef {{ _, True }})
   ⊢ WP e1 @ E {{ Φ }}.
 Proof.
   iIntros (Hatomic ?) "[Hσ H]". iApply (wp_lift_step E _ e1).
@@ -57,7 +57,7 @@ Proof.
   iNext; iIntros (e2 σ2 efs) "[% Hσ]".
   edestruct (Hatomic σ1 e2 σ2 efs) as [v2 <-%of_to_val]; eauto.
   iDestruct ("H" $! v2 σ2 efs with "[Hσ]") as "[HΦ $]"; first by eauto.
-  iMod "Hclose". iMod "HΦ". iApply wp_value; auto using to_of_val.
+  iMod "Hclose". iApply wp_value; auto using to_of_val.
 Qed.
 
 Lemma wp_lift_atomic_det_step {E Φ e1} σ1 v2 σ2 efs :
@@ -66,7 +66,7 @@ Lemma wp_lift_atomic_det_step {E Φ e1} σ1 v2 σ2 efs :
   (∀ e2' σ2' efs', prim_step e1 σ1 e2' σ2' efs' →
                    σ2 = σ2' ∧ to_val e2' = Some v2 ∧ efs = efs') →
   ▷ ownP σ1 ★ ▷ (ownP σ2 -★
-    (|={E}=> Φ v2) ★ [★ list] ef ∈ efs, WP ef {{ _, True }})
+    Φ v2 ★ [★ list] ef ∈ efs, WP ef {{ _, True }})
   ⊢ WP e1 @ E {{ Φ }}.
 Proof.
   iIntros (?? Hdet) "[Hσ1 Hσ2]". iApply (wp_lift_atomic_step _ σ1); try done.
diff --git a/program_logic/weakestpre.v b/program_logic/weakestpre.v
index 6b98efa4d050cbbc1f0b58d1f8b81a40dc897dcc..d5f94f1c4b34ddf051e6c31fc16143f02f5acc62 100644
--- a/program_logic/weakestpre.v
+++ b/program_logic/weakestpre.v
@@ -68,43 +68,43 @@ Notation "'WP' e {{ v , Q } }" := (wp ⊤ e%E (λ v, Q))
    format "'WP'  e  {{  v ,  Q  } }") : uPred_scope.
 
 (* Texan triples *)
-Notation "'{{{' P } } } e {{{ x .. y ; pat , Q } } }" :=
+Notation "'{{{' P } } } e {{{ x .. y , 'RET' pat ; Q } } }" :=
   (□ ∀ Φ,
-      P ★ ▷ (∀ x, .. (∀ y, Q -★ Φ pat%V) .. ) -★ WP e {{ Φ }})%I
+      P -★ ▷ (∀ x, .. (∀ y, Q -★ Φ pat%V) .. ) -★ WP e {{ Φ }})%I
     (at level 20, x closed binder, y closed binder,
-     format "{{{  P  } } }  e  {{{ x .. y ;  pat ,  Q } } }") : uPred_scope.
-Notation "'{{{' P } } } e @ E {{{ x .. y ; pat , Q } } }" :=
+     format "{{{  P  } } }  e  {{{  x .. y ,   RET  pat ;  Q } } }") : uPred_scope.
+Notation "'{{{' P } } } e @ E {{{ x .. y , 'RET' pat ; Q } } }" :=
   (□ ∀ Φ,
-      P ★ ▷ (∀ x, .. (∀ y, Q -★ Φ pat%V) .. ) -★ WP e @ E {{ Φ }})%I
+      P -★ ▷ (∀ x, .. (∀ y, Q -★ Φ pat%V) .. ) -★ WP e @ E {{ Φ }})%I
     (at level 20, x closed binder, y closed binder,
-     format "{{{  P  } } }  e  @  E  {{{ x .. y ;  pat ,  Q } } }") : uPred_scope.
-Notation "'{{{' P } } } e {{{ ; pat , Q } } }" :=
-  (□ ∀ Φ, P ★ ▷ (Q -★ Φ pat%V) -★ WP e {{ Φ }})%I
+     format "{{{  P  } } }  e  @  E  {{{  x .. y ,  RET  pat ;  Q } } }") : uPred_scope.
+Notation "'{{{' P } } } e {{{ 'RET' pat ; Q } } }" :=
+  (□ ∀ Φ, P -★ ▷ (Q -★ Φ pat%V) -★ WP e {{ Φ }})%I
     (at level 20,
-     format "{{{  P  } } }  e  {{{ ; pat ,  Q } } }") : uPred_scope.
-Notation "'{{{' P } } } e @ E {{{ ; pat , Q } } }" :=
-  (□ ∀ Φ, P ★ ▷ (Q -★ Φ pat%V) -★ WP e @ E {{ Φ }})%I
+     format "{{{  P  } } }  e  {{{  RET  pat ;  Q } } }") : uPred_scope.
+Notation "'{{{' P } } } e @ E {{{ 'RET' pat ; Q } } }" :=
+  (□ ∀ Φ, P -★ ▷ (Q -★ Φ pat%V) -★ WP e @ E {{ Φ }})%I
     (at level 20,
-     format "{{{  P  } } }  e  @  E  {{{ ; pat ,  Q } } }") : uPred_scope.
+     format "{{{  P  } } }  e  @  E  {{{  RET  pat ;  Q } } }") : uPred_scope.
 
-Notation "'{{{' P } } } e {{{ x .. y ; pat , Q } } }" :=
+Notation "'{{{' P } } } e {{{ x .. y , 'RET' pat ; Q } } }" :=
   (∀ Φ : _ → uPred _,
-      P ★ ▷ (∀ x, .. (∀ y, Q -★ Φ pat%V) .. ) ⊢ WP e {{ Φ }})
+      P ⊢ ▷ (∀ x, .. (∀ y, Q -★ Φ pat%V) .. ) -★ WP e {{ Φ }})
     (at level 20, x closed binder, y closed binder,
-     format "{{{  P  } } }  e  {{{ x .. y ;  pat ,  Q } } }") : C_scope.
-Notation "'{{{' P } } } e @ E {{{ x .. y ; pat , Q } } }" :=
+     format "{{{  P  } } }  e  {{{  x .. y ,  RET  pat ;  Q } } }") : C_scope.
+Notation "'{{{' P } } } e @ E {{{ x .. y , 'RET' pat ; Q } } }" :=
   (∀ Φ : _ → uPred _,
-      P ★ ▷ (∀ x, .. (∀ y, Q -★ Φ pat%V) .. ) ⊢ WP e @ E {{ Φ }})
+      P ⊢ ▷ (∀ x, .. (∀ y, Q -★ Φ pat%V) .. ) -★ WP e @ E {{ Φ }})
     (at level 20, x closed binder, y closed binder,
-     format "{{{  P  } } }  e  @  E  {{{ x .. y ;  pat ,  Q } } }") : C_scope.
-Notation "'{{{' P } } } e {{{ ; pat , Q } } }" :=
-  (∀ Φ : _ → uPred _, P ★ ▷ (Q -★ Φ pat%V) ⊢ WP e {{ Φ }})
+     format "{{{  P  } } }  e  @  E  {{{  x .. y ,  RET  pat ;  Q } } }") : C_scope.
+Notation "'{{{' P } } } e {{{ 'RET' pat ; Q } } }" :=
+  (∀ Φ : _ → uPred _, P ⊢ ▷ (Q -★ Φ pat%V) -★ WP e {{ Φ }})
     (at level 20,
-     format "{{{  P  } } }  e  {{{ ; pat ,  Q } } }") : C_scope.
-Notation "'{{{' P } } } e @ E {{{ ; pat , Q } } }" :=
-  (∀ Φ : _ → uPred _, P ★ ▷ (Q -★ Φ pat%V) ⊢ WP e @ E {{ Φ }})
+     format "{{{  P  } } }  e  {{{  RET  pat ;  Q } } }") : C_scope.
+Notation "'{{{' P } } } e @ E {{{ 'RET' pat ; Q } } }" :=
+  (∀ Φ : _ → uPred _, P ⊢ ▷ (Q -★ Φ pat%V) -★ WP e @ E {{ Φ }})
     (at level 20,
-     format "{{{  P  } } }  e  @  E  {{{ ; pat ,  Q } } }") : C_scope.
+     format "{{{  P  } } }  e  @  E  {{{  RET  pat ;  Q } } }") : C_scope.
 
 Section wp.
 Context `{irisG Λ Σ}.
diff --git a/tests/barrier_client.v b/tests/barrier_client.v
index 71071bc05d5319c5e3d7440e580f613c146939e7..e29e8cbb59ad1e391f54c422550a8c0d4b74f3b3 100644
--- a/tests/barrier_client.v
+++ b/tests/barrier_client.v
@@ -37,11 +37,12 @@ Section client.
   Lemma client_safe : heapN ⊥ N → heap_ctx ⊢ WP client {{ _, True }}.
   Proof.
     iIntros (?) "#Hh"; rewrite /client. wp_alloc y as "Hy". wp_let.
-    wp_apply (newbarrier_spec N (y_inv 1 y) with "[- $Hh]"); first done.
+    wp_apply (newbarrier_spec N (y_inv 1 y) with "Hh"); first done.
     iIntros (l) "[Hr Hs]". wp_let.
     iApply (wp_par (λ _, True%I) (λ _, True%I) with "[-$Hh]"). iSplitL "Hy Hs".
     - (* The original thread, the sender. *)
-      wp_store. iApply (signal_spec with "[- $Hs]"). iSplitL "Hy"; [|by eauto].
+      wp_store. iApply (signal_spec with "[-]"); last by iNext; auto.
+      iSplitR "Hy"; first by eauto.
       iExists _; iSplitL; [done|]. iAlways; iIntros (n). wp_let. by wp_op.
     - (* The two spawned threads, the waiters. *)
       iSplitL; [|by iIntros (_ _) "_ !>"].
diff --git a/tests/counter.v b/tests/counter.v
index 8986a132626462a7db31da9255fd4a2963d53c4b..7056e303ccc6b4ec6ecbc956399033ab881d68bd 100644
--- a/tests/counter.v
+++ b/tests/counter.v
@@ -95,7 +95,7 @@ Lemma newcounter_spec N :
   heapN ⊥ N →
   heap_ctx ⊢ {{ True }} newcounter #() {{ v, ∃ l, v = #l ∧ C l 0 }}.
 Proof.
-  iIntros (?) "#Hh !# _ /=". rewrite /newcounter /=. wp_seq. wp_alloc l as "Hl".
+  iIntros (?) "#Hh !# _ /=". rewrite -wp_fupd /newcounter /=. wp_seq. wp_alloc l as "Hl".
   iMod (own_alloc (Auth 0)) as (γ) "Hγ"; first done.
   rewrite (auth_frag_op 0 0) //; iDestruct "Hγ" as "[Hγ Hγf]".
   iMod (inv_alloc N _ (I γ l) with "[Hl Hγ]") as "#?".
@@ -119,7 +119,7 @@ Proof.
     rewrite (auth_frag_op (S n) (S c)); last lia; iDestruct "Hγ" as "[Hγ Hγf]".
     wp_cas_suc. iMod ("Hclose" with "[Hl Hγ]").
     { iNext. iExists (S c). rewrite Nat2Z.inj_succ Z.add_1_l. by iFrame. }
-    iModIntro. wp_if. iModIntro; rewrite {3}/C; eauto 10.
+    iModIntro. wp_if. rewrite {3}/C; eauto 10.
   - wp_cas_fail; first (intros [=]; abstract omega).
     iMod ("Hclose" with "[Hl Hγ]"); [iNext; iExists c'; by iFrame|].
     iModIntro. wp_if. iApply ("IH" with "[Hγf]"). rewrite {3}/C; eauto 10.
diff --git a/tests/heap_lang.v b/tests/heap_lang.v
index 5f05dd6f3f0bc60d80101eed65f9f1d9b464df96..4cd2dd065c4d698c85de78cea753d0904c4db8fa 100644
--- a/tests/heap_lang.v
+++ b/tests/heap_lang.v
@@ -46,7 +46,7 @@ Section LiftingTests.
     iIntros (Hn) "HΦ". iLöb as "IH" forall (n1 Hn).
     wp_rec. wp_let. wp_op. wp_let. wp_op=> ?; wp_if.
     - iApply ("IH" with "[%] HΦ"). omega.
-    - iApply fupd_intro. by assert (n1 = n2 - 1) as -> by omega.
+    - by assert (n1 = n2 - 1) as -> by omega.
   Qed.
 
   Lemma Pred_spec n E Φ : ▷ Φ #(n - 1) ⊢ WP Pred #n @ E {{ Φ }}.
diff --git a/tests/joining_existentials.v b/tests/joining_existentials.v
index b2351a1ab107d335f34f2f0ab1db0a16693034e1..2abc3576672b5ddb0a36598748fef86e839f4068 100644
--- a/tests/joining_existentials.v
+++ b/tests/joining_existentials.v
@@ -76,7 +76,7 @@ Lemma client_spec_new eM eW1 eW2 `{!Closed [] eM, !Closed [] eW1, !Closed [] eW2
 Proof.
   iIntros (HN) "/= (#Hh&HP&#He&#He1&#He2)"; rewrite /client.
   iMod (own_alloc (Pending : one_shotR Σ F)) as (γ) "Hγ"; first done.
-  wp_apply (newbarrier_spec N (barrier_res γ Φ) with "[- $Hh]"); auto.
+  wp_apply (newbarrier_spec N (barrier_res γ Φ) with "Hh"); auto.
   iIntros (l) "[Hr Hs]".
   set (workers_post (v : val) := (barrier_res γ Ψ1 ★ barrier_res γ Ψ2)%I).
   wp_let. wp_apply (wp_par  (λ _, True)%I workers_post with "[- $Hh]").
@@ -85,7 +85,7 @@ Proof.
     iIntros (v) "HP"; iDestruct "HP" as (x) "HP". wp_let.
     iMod (own_update with "Hγ") as "Hx".
     { by apply (cmra_update_exclusive (Shot x)). }
-    iApply (signal_spec with "[- $Hs]"). iSplitR ""; last auto.
+    iApply (signal_spec with "[- $Hs]"); last auto.
     iExists x; auto.
   - iDestruct (recv_weaken with "[] Hr") as "Hr"; first by iApply P_res_split.
     iMod (recv_split with "Hr") as "[H1 H2]"; first done.
diff --git a/tests/one_shot.v b/tests/one_shot.v
index aaeeaf2b20d2ae5b5136bfbfb8ab35b661abdd88..cfdaecc0d7d65d69725a09230f3fe2f357d05cc1 100644
--- a/tests/one_shot.v
+++ b/tests/one_shot.v
@@ -42,7 +42,7 @@ Lemma wp_one_shot (Φ : val → iProp Σ) :
   ⊢ WP one_shot_example #() {{ Φ }}.
 Proof.
   iIntros "[#? Hf] /=".
-  rewrite /one_shot_example /=. wp_seq. wp_alloc l as "Hl". wp_let.
+  rewrite -wp_fupd /one_shot_example /=. wp_seq. wp_alloc l as "Hl". wp_let.
   iMod (own_alloc Pending) as (γ) "Hγ"; first done.
   iMod (inv_alloc N _ (one_shot_inv γ l) with "[Hl Hγ]") as "#HN".
   { iNext. iLeft. by iSplitL "Hl". }
@@ -69,7 +69,7 @@ Proof.
       + iSplit. iLeft; by iSplitL "Hl". eauto.
       + iSplit. iRight; iExists m; by iSplitL "Hl". eauto. }
     iMod ("Hclose" with "[Hinv]") as "_"; eauto; iModIntro.
-    wp_let. iModIntro. iIntros "!#". wp_seq.
+    wp_let. iIntros "!#". wp_seq.
     iDestruct "Hv" as "[%|Hv]"; last iDestruct "Hv" as (m) "[% Hγ']"; subst.
     { by wp_match. }
     wp_match. wp_bind (! _)%E.