diff --git a/program_logic/saved_one_shot.v b/program_logic/saved_one_shot.v index 846b4956589900e43c41cdeebe18e6770b69a642..c8a9a27f06d791d0fb6a985f7f34bef7197399ee 100644 --- a/program_logic/saved_one_shot.v +++ b/program_logic/saved_one_shot.v @@ -25,26 +25,24 @@ Section one_shot. Global Instance ne_shot_own_persistent γ x : PersistentP (one_shot_own γ x). Proof. rewrite /one_shot_own; apply _. Qed. - Lemma one_shot_alloc_strong N (G : gset gname) : - True ⊢ pvs N N (∃ γ, ■(γ ∉ G) ∧ one_shot_pending γ). + Lemma one_shot_alloc_strong E (G : gset gname) : + True ⊢ |={E}=> ∃ γ, ■(γ ∉ G) ∧ one_shot_pending γ. Proof. by apply own_alloc_strong. Qed. - Lemma one_shot_alloc N : True ⊢ pvs N N (∃ γ, one_shot_pending γ). + Lemma one_shot_alloc E : True ⊢ |={E}=> ∃ γ, one_shot_pending γ. Proof. by apply own_alloc. Qed. - Lemma one_shot_init N γ x : - one_shot_pending γ ⊢ pvs N N (one_shot_own γ x). + Lemma one_shot_init E γ x : one_shot_pending γ ⊢ |={E}=> one_shot_own γ x. Proof. by apply own_update, one_shot_update_shoot. Qed. - Lemma one_shot_alloc_init N x : True ⊢ pvs N N (∃ γ, one_shot_own γ x). + Lemma one_shot_alloc_init E x : True ⊢ |={E}=> ∃ γ, one_shot_own γ x. Proof. - rewrite (one_shot_alloc N). apply pvs_strip_pvs. + rewrite (one_shot_alloc E). apply pvs_strip_pvs. apply exist_elim=>γ. rewrite -(exist_intro γ). apply one_shot_init. Qed. - Lemma one_shot_agree γ x y : - (one_shot_own γ x ★ one_shot_own γ y) ⊢ ▷(x ≡ y). + Lemma one_shot_agree γ x y : (one_shot_own γ x ★ one_shot_own γ y) ⊢ ▷(x ≡ y). Proof. rewrite -own_op own_valid one_shot_validI /= agree_validI. rewrite agree_equivI later_equivI. diff --git a/program_logic/saved_prop.v b/program_logic/saved_prop.v index 43755f2c6a48b47a98d2f32309fdf00f4bb135fb..2a4016cb3e9a51a8bdb0e0c034d5c31c8e081de0 100644 --- a/program_logic/saved_prop.v +++ b/program_logic/saved_prop.v @@ -23,11 +23,11 @@ Section saved_prop. Global Instance saved_prop_persistent γ x : PersistentP (saved_prop_own γ x). Proof. rewrite /saved_prop_own; apply _. Qed. - Lemma saved_prop_alloc_strong N x (G : gset gname) : - True ⊢ pvs N N (∃ γ, ■(γ ∉ G) ∧ saved_prop_own γ x). + Lemma saved_prop_alloc_strong E x (G : gset gname) : + True ⊢ |={E}=> ∃ γ, ■(γ ∉ G) ∧ saved_prop_own γ x. Proof. by apply own_alloc_strong. Qed. - Lemma saved_prop_alloc N x : True ⊢ pvs N N (∃ γ, saved_prop_own γ x). + Lemma saved_prop_alloc E x : True ⊢ |={E}=> ∃ γ, saved_prop_own γ x. Proof. by apply own_alloc. Qed. Lemma saved_prop_agree γ x y :