diff --git a/docs/derived.tex b/docs/derived.tex index 55a0c06fef6b30fb87e521ffab457bf3aa5fbe73..29d2b230faac707ed0cd49714ad2d5efaaf3a42e 100644 --- a/docs/derived.tex +++ b/docs/derived.tex @@ -274,25 +274,25 @@ In other words, $\ownGhost{\gname}{\melt : M_i}$ asserts that in the current sta From~\ruleref{pvs-update}, \ruleref{vs-update} and the frame-preserving updates in~\Sref{sec:prodm} and~\Sref{sec:fpfnm}, we have the following derived rules. \begin{mathparpagebreakable} - \inferH{NewGhostStrong}{\text{$G$ infinite}} + \inferH{ghost-alloc-strong}{\text{$G$ infinite}} { \TRUE \vs \Exists\gname\in G. \ownGhost\gname{\melt : M_i} } \and - \axiomH{NewGhost}{ + \axiomH{ghost-alloc}{ \TRUE \vs \Exists\gname. \ownGhost\gname{\melt : M_i} } \and - \inferH{GhostUpd} + \inferH{ghost-update} {\melt \mupd_{M_i} B} {\ownGhost\gname{\melt : M_i} \vs \Exists \meltB\in B. \ownGhost\gname{\meltB : M_i}} \and - \axiomH{GhostEq} + \axiomH{ghost-op} {\ownGhost\gname{\melt : M_i} * \ownGhost\gname{\meltB : M_i} \Lra \ownGhost\gname{\melt\mtimes\meltB : M_i}} - \axiomH{GhostVal} + \axiomH{ghost-valid} {\ownGhost\gname{\melt : M_i} \Ra \mval_{M_i}(\melt)} - \inferH{GhostTimeless} + \inferH{ghost-timeless} {\text{$\melt$ is a discrete COFE element}} {\timeless{\ownGhost\gname{\melt : M_i}}} \end{mathparpagebreakable}