diff --git a/algebra/upred.v b/algebra/upred.v index c44d093186b32c3caa509646b7822fc0b6f26cc1..2a974d2be07004f07f8a60ca36320dff72fb9881 100644 --- a/algebra/upred.v +++ b/algebra/upred.v @@ -300,8 +300,16 @@ Infix "≡" := uPred_eq : uPred_scope. Notation "✓ x" := (uPred_valid x) (at level 20) : uPred_scope. Definition uPred_iff {M} (P Q : uPred M) : uPred M := ((P → Q) ∧ (Q → P))%I. +Instance: Params (@uPred_iff) 1. Infix "↔" := uPred_iff : uPred_scope. +Definition uPred_always_if {M} (p : bool) (P : uPred M) : uPred M := + (if p then □ P else P)%I. +Instance: Params (@uPred_always_if) 2. +Arguments uPred_always_if _ !_ _/. +Notation "□? p P" := (uPred_always_if p P) + (at level 20, p at level 0, P at level 20, format "□? p P"). + Class TimelessP {M} (P : uPred M) := timelessP : ▷ P ⊢ (P ∨ ▷ False). Arguments timelessP {_} _ {_}. @@ -935,6 +943,28 @@ Proof. intros; rewrite -always_and_sep_l'; auto. Qed. Lemma always_entails_r' P Q : (P ⊢ □ Q) → P ⊢ (P ★ □ Q). Proof. intros; rewrite -always_and_sep_r'; auto. Qed. +Global Instance always_if_ne n p : Proper (dist n ==> dist n) (@uPred_always_if M p). +Proof. solve_proper. Qed. +Global Instance always_if_proper p : Proper ((⊣⊢) ==> (⊣⊢)) (@uPred_always_if M p). +Proof. solve_proper. Qed. +Global Instance always_if_mono p : Proper ((⊢) ==> (⊢)) (@uPred_always_if M p). +Proof. solve_proper. Qed. + +Lemma always_if_elim p P : □?p P ⊢ P. +Proof. destruct p; simpl; auto using always_elim. Qed. +Lemma always_elim_if p P : □ P ⊢ □?p P. +Proof. destruct p; simpl; auto using always_elim. Qed. +Lemma always_if_and p P Q : □?p (P ∧ Q) ⊣⊢ (□?p P ∧ □?p Q). +Proof. destruct p; simpl; auto using always_and. Qed. +Lemma always_if_or p P Q : □?p (P ∨ Q) ⊣⊢ (□?p P ∨ □?p Q). +Proof. destruct p; simpl; auto using always_or. Qed. +Lemma always_if_exist {A} p (Ψ : A → uPred M) : (□?p ∃ a, Ψ a) ⊣⊢ (∃ a, □?p Ψ a). +Proof. destruct p; simpl; auto using always_exist. Qed. +Lemma always_if_sep p P Q : □?p (P ★ Q) ⊣⊢ (□?p P ★ □?p Q). +Proof. destruct p; simpl; auto using always_sep. Qed. +Lemma always_if_later p P : (□?p ▷ P) ⊣⊢ (▷ □?p P). +Proof. destruct p; simpl; auto using always_later. Qed. + (* Later *) Lemma later_mono P Q : P ⊢ Q → ▷ P ⊢ ▷ Q. Proof. @@ -1117,6 +1147,8 @@ Proof. intros ?; rewrite /TimelessP. by rewrite -always_const -!always_later -always_or; apply always_mono. Qed. +Global Instance always_if_timeless p P : TimelessP P → TimelessP (□?p P). +Proof. destruct p; apply _. Qed. Global Instance eq_timeless {A : cofeT} (a b : A) : Timeless a → TimelessP (a ≡ b : uPred M)%I. Proof. @@ -1165,6 +1197,8 @@ Proof. destruct mx; apply _. Qed. (* Derived lemmas for persistence *) Lemma always_always P `{!PersistentP P} : (□ P) ⊣⊢ P. Proof. apply (anti_symm (⊢)); auto using always_elim. Qed. +Lemma always_if_always p P `{!PersistentP P} : □?p P ⊣⊢ P. +Proof. destruct p; simpl; auto using always_always. Qed. Lemma always_intro P Q `{!PersistentP P} : P ⊢ Q → P ⊢ □ Q. Proof. rewrite -(always_always P); apply always_intro'. Qed. Lemma always_and_sep_l P Q `{!PersistentP P} : (P ∧ Q) ⊣⊢ (P ★ Q). diff --git a/proofmode/coq_tactics.v b/proofmode/coq_tactics.v index 17a8778f9650d440b73c7453f224fcd48aaf0586..4bf9450852b1e88c18359f15dc0a24ba40e490b2 100644 --- a/proofmode/coq_tactics.v +++ b/proofmode/coq_tactics.v @@ -77,8 +77,8 @@ Definition envs_replace {M} (i : string) (p q : bool) (Γ : env (uPred M)) if eqb p q then envs_simple_replace i p Γ Δ else envs_app q Γ (envs_delete i p Δ). -(* if [lr = false] then [result = (hyps named js,remainding hyps)], - if [lr = true] then [result = (remainding hyps,hyps named js)] *) +(* if [lr = false] then [result = (hyps named js, remaining hyps)], + if [lr = true] then [result = (remaining hyps, hyps named js)] *) Definition envs_split {M} (lr : bool) (js : list string) (Δ : envs M) : option (envs M * envs M) := let (Γp,Γs) := Δ in @@ -115,8 +115,7 @@ Proof. Qed. Lemma envs_lookup_sound Δ i p P : - envs_lookup i Δ = Some (p,P) → - Δ ⊢ ((if p then □ P else P) ★ envs_delete i p Δ). + envs_lookup i Δ = Some (p,P) → Δ ⊢ (□?p P ★ envs_delete i p Δ). Proof. rewrite /envs_lookup /envs_delete /of_envs=>?; apply const_elim_sep_l=> Hwf. destruct Δ as [Γp Γs], (Γp !! i) eqn:?; simplify_eq/=. @@ -132,9 +131,7 @@ Proof. Qed. Lemma envs_lookup_sound' Δ i p P : envs_lookup i Δ = Some (p,P) → Δ ⊢ (P ★ envs_delete i p Δ). -Proof. - intros. rewrite envs_lookup_sound //. by destruct p; rewrite ?always_elim. -Qed. +Proof. intros. rewrite envs_lookup_sound //. by rewrite always_if_elim. Qed. Lemma envs_lookup_persistent_sound Δ i P : envs_lookup i Δ = Some (true,P) → Δ ⊢ (□ P ★ Δ). Proof. @@ -142,8 +139,7 @@ Proof. Qed. Lemma envs_lookup_split Δ i p P : - envs_lookup i Δ = Some (p,P) → - Δ ⊢ ((if p then □ P else P) ★ ((if p then □ P else P) -★ Δ)). + envs_lookup i Δ = Some (p,P) → Δ ⊢ (□?p P ★ (□?p P -★ Δ)). Proof. rewrite /envs_lookup /of_envs=>?; apply const_elim_sep_l=> Hwf. destruct Δ as [Γp Γs], (Γp !! i) eqn:?; simplify_eq/=. @@ -156,14 +152,13 @@ Proof. Qed. Lemma envs_lookup_delete_sound Δ Δ' i p P : - envs_lookup_delete i Δ = Some (p,P,Δ') → Δ ⊢ ((if p then □ P else P) ★ Δ')%I. + envs_lookup_delete i Δ = Some (p,P,Δ') → Δ ⊢ (□?p P ★ Δ')%I. Proof. intros [? ->]%envs_lookup_delete_Some. by apply envs_lookup_sound. Qed. Lemma envs_lookup_delete_sound' Δ Δ' i p P : envs_lookup_delete i Δ = Some (p,P,Δ') → Δ ⊢ (P ★ Δ')%I. Proof. intros [? ->]%envs_lookup_delete_Some. by apply envs_lookup_sound'. Qed. -Lemma envs_app_sound Δ Δ' p Γ : - envs_app p Γ Δ = Some Δ' → Δ ⊢ ((if p then □ Π∧ Γ else Π★ Γ) -★ Δ'). +Lemma envs_app_sound Δ Δ' p Γ : envs_app p Γ Δ = Some Δ' → Δ ⊢ (□?p Π★ Γ -★ Δ'). Proof. rewrite /of_envs /envs_app=> ?; apply const_elim_sep_l=> Hwf. destruct Δ as [Γp Γs], p; simplify_eq/=. @@ -174,7 +169,8 @@ Proof. intros j. apply (env_app_disjoint _ _ _ j) in Happ. naive_solver eauto using env_app_fresh. + rewrite (env_app_perm _ _ Γp') //. - rewrite big_and_app always_and_sep always_sep; solve_sep_entails. + rewrite big_and_app always_and_sep always_sep (big_sep_and Γ). + solve_sep_entails. - destruct (env_app Γ Γp) eqn:Happ, (env_app Γ Γs) as [Γs'|] eqn:?; simplify_eq/=. apply wand_intro_l, sep_intro_True_l; [apply const_intro|]. @@ -186,7 +182,7 @@ Qed. Lemma envs_simple_replace_sound' Δ Δ' i p Γ : envs_simple_replace i p Γ Δ = Some Δ' → - envs_delete i p Δ ⊢ ((if p then □ Π∧ Γ else Π★ Γ) -★ Δ')%I. + envs_delete i p Δ ⊢ (□?p Π★ Γ -★ Δ')%I. Proof. rewrite /envs_simple_replace /envs_delete /of_envs=> ?. apply const_elim_sep_l=> Hwf. destruct Δ as [Γp Γs], p; simplify_eq/=. @@ -197,7 +193,8 @@ Proof. intros j. apply (env_app_disjoint _ _ _ j) in Happ. destruct (decide (i = j)); try naive_solver eauto using env_replace_fresh. + rewrite (env_replace_perm _ _ Γp') //. - rewrite big_and_app always_and_sep always_sep; solve_sep_entails. + rewrite big_and_app always_and_sep always_sep (big_sep_and Γ). + solve_sep_entails. - destruct (env_app Γ Γp) eqn:Happ, (env_replace i Γ Γs) as [Γs'|] eqn:?; simplify_eq/=. apply wand_intro_l, sep_intro_True_l; [apply const_intro|]. @@ -209,13 +206,11 @@ Qed. Lemma envs_simple_replace_sound Δ Δ' i p P Γ : envs_lookup i Δ = Some (p,P) → envs_simple_replace i p Γ Δ = Some Δ' → - Δ ⊢ ((if p then □ P else P) ★ - ((if p then □ Π∧ Γ else Π★ Γ) -★ Δ'))%I. + Δ ⊢ (□?p P ★ (□?p Π★ Γ -★ Δ'))%I. Proof. intros. by rewrite envs_lookup_sound// envs_simple_replace_sound'//. Qed. Lemma envs_replace_sound' Δ Δ' i p q Γ : - envs_replace i p q Γ Δ = Some Δ' → - envs_delete i p Δ ⊢ ((if q then □ Π∧ Γ else Π★ Γ) -★ Δ')%I. + envs_replace i p q Γ Δ = Some Δ' → envs_delete i p Δ ⊢ (□?q Π★ Γ -★ Δ')%I. Proof. rewrite /envs_replace; destruct (eqb _ _) eqn:Hpq. - apply eqb_prop in Hpq as ->. apply envs_simple_replace_sound'. @@ -224,8 +219,7 @@ Qed. Lemma envs_replace_sound Δ Δ' i p q P Γ : envs_lookup i Δ = Some (p,P) → envs_replace i p q Γ Δ = Some Δ' → - Δ ⊢ ((if p then □ P else P) ★ - ((if q then □ Π∧ Γ else Π★ Γ) -★ Δ'))%I. + Δ ⊢ (□?p P ★ (□?q Π★ Γ -★ Δ'))%I. Proof. intros. by rewrite envs_lookup_sound// envs_replace_sound'//. Qed. Lemma envs_split_sound Δ lr js Δ1 Δ2 : @@ -299,10 +293,9 @@ Proof. Qed. (** * Basic rules *) -Class ToAssumption (p : bool) (P Q : uPred M) := - to_assumption : (if p then □ P else P) ⊢ Q. +Class ToAssumption (p : bool) (P Q : uPred M) := to_assumption : □?p P ⊢ Q. Global Instance to_assumption_exact p P : ToAssumption p P P. -Proof. destruct p; by rewrite /ToAssumption ?always_elim. Qed. +Proof. destruct p; by rewrite /ToAssumption /= ?always_elim. Qed. Global Instance to_assumption_always P Q : ToAssumption true P Q → ToAssumption true P (□ Q). Proof. rewrite /ToAssumption=><-. by rewrite always_always. Qed. @@ -418,9 +411,8 @@ Lemma tac_persistent Δ Δ' i p P P' Q : envs_replace i p true (Esnoc Enil i P') Δ = Some Δ' → Δ' ⊢ Q → Δ ⊢ Q. Proof. - intros ??? <-. rewrite envs_replace_sound //; simpl. destruct p. - - by rewrite right_id (to_persistentP P) always_always wand_elim_r. - - by rewrite right_id (to_persistentP P) wand_elim_r. + intros ??? <-. rewrite envs_replace_sound //; simpl. + by rewrite right_id (to_persistentP P) always_if_always wand_elim_r. Qed. (** * Implication and wand *) @@ -448,8 +440,7 @@ Qed. Lemma tac_wand_intro Δ Δ' i P Q : envs_app false (Esnoc Enil i P) Δ = Some Δ' → Δ' ⊢ Q → Δ ⊢ (P -★ Q). Proof. - intros. rewrite envs_app_sound //; simpl. - rewrite right_id. by apply wand_mono. + intros ? HQ. rewrite envs_app_sound //; simpl. by rewrite right_id HQ. Qed. Lemma tac_wand_intro_persistent Δ Δ' i P P' Q : ToPersistentP P P' → @@ -490,14 +481,11 @@ Lemma tac_specialize Δ Δ' Δ'' i p j q P1 P2 R Q : Proof. intros [? ->]%envs_lookup_delete_Some ??? <-. destruct p. - rewrite envs_lookup_persistent_sound // envs_simple_replace_sound //; simpl. - destruct q. - + by rewrite assoc (to_wand R) always_wand wand_elim_r right_id wand_elim_r. - + by rewrite assoc (to_wand R) always_elim wand_elim_r right_id wand_elim_r. + rewrite assoc (to_wand R) (always_elim_if q) -always_if_sep wand_elim_r. + by rewrite right_id wand_elim_r. - rewrite envs_lookup_sound //; simpl. rewrite envs_lookup_sound // (envs_replace_sound' _ Δ'') //; simpl. - destruct q. - + by rewrite right_id assoc (to_wand R) always_elim wand_elim_r wand_elim_r. - + by rewrite assoc (to_wand R) wand_elim_r right_id wand_elim_r. + by rewrite right_id assoc (to_wand R) always_if_elim wand_elim_r wand_elim_r. Qed. Lemma tac_specialize_assert Δ Δ' Δ1 Δ2' j q lr js P1 P2 R Q : @@ -513,12 +501,11 @@ Proof. destruct (envs_app _ _ _) eqn:?; simplify_eq/=. rewrite envs_lookup_sound // envs_split_sound //. rewrite (envs_app_sound Δ2) //; simpl. - destruct q, (envs_persistent Δ1) eqn:?; simplify_eq/=. + destruct (envs_persistent Δ1) eqn:?; simplify_eq/=. - rewrite right_id (to_wand R) (persistentP Δ1) HP1. - by rewrite assoc -always_sep wand_elim_l wand_elim_r. - - by rewrite right_id (to_wand R) always_elim assoc HP1 wand_elim_l wand_elim_r. - - by rewrite right_id (to_wand R) assoc HP1 wand_elim_l wand_elim_r. - - by rewrite right_id (to_wand R) assoc HP1 wand_elim_l wand_elim_r. + by rewrite assoc (always_elim_if q) -always_if_sep wand_elim_l wand_elim_r. + - rewrite right_id (to_wand R). + by rewrite always_if_elim assoc HP1 wand_elim_l wand_elim_r. Qed. Lemma tac_specialize_range_persistent Δ Δ' Δ'' j q P1 P2 R Q : @@ -531,9 +518,9 @@ Proof. rewrite envs_lookup_sound //. rewrite -(idemp uPred_and (envs_delete _ _ _)). rewrite {1}HP1 (persistentP P1) always_and_sep_l assoc. - rewrite envs_simple_replace_sound' //; simpl. destruct q. - - by rewrite right_id (to_wand R) -always_sep wand_elim_l wand_elim_r. - - by rewrite right_id (to_wand R) always_elim wand_elim_l wand_elim_r. + rewrite envs_simple_replace_sound' //; simpl. + rewrite right_id (to_wand R) (always_elim_if q) -always_if_sep wand_elim_l. + by rewrite wand_elim_r. Qed. Lemma tac_specialize_domain_persistent Δ Δ' Δ'' j q P1 P2 P2' R Q : @@ -545,11 +532,8 @@ Proof. intros [? ->]%envs_lookup_delete_Some ??? HP1 <-. rewrite -(idemp uPred_and Δ) {1}envs_lookup_sound //; simpl; rewrite HP1. rewrite envs_replace_sound //; simpl. - rewrite (sep_elim_r _ (_ -★ _)) right_id. destruct q. - - rewrite (to_wand R) always_elim wand_elim_l. - by rewrite (to_persistentP P2) always_and_sep_l' wand_elim_r. - - rewrite (to_wand R) wand_elim_l. - by rewrite (to_persistentP P2) always_and_sep_l' wand_elim_r. + rewrite (sep_elim_r _ (_ -★ _)) right_id (to_wand R) always_if_elim. + by rewrite wand_elim_l (to_persistentP P2) always_and_sep_l' wand_elim_r. Qed. Lemma tac_revert Δ Δ' i p P Q : @@ -655,15 +639,11 @@ Proof. intros ?? A Δ' x y Φ HPxy HP ?? <-. rewrite -(idemp uPred_and Δ) {2}(envs_lookup_sound' _ i) //. rewrite sep_elim_l HPxy always_and_sep_r. - rewrite (envs_simple_replace_sound _ _ j) //; simpl. destruct q. - - rewrite HP right_id -assoc; apply wand_elim_r'. destruct lr. - + apply (eq_rewrite x y (λ y, □ Φ y -★ Δ')%I); eauto with I. solve_proper. - + apply (eq_rewrite y x (λ y, □ Φ y -★ Δ')%I); eauto using eq_sym with I. - solve_proper. - - rewrite HP right_id -assoc; apply wand_elim_r'. destruct lr. - + apply (eq_rewrite x y (λ y, Φ y -★ Δ')%I); eauto with I. solve_proper. - + apply (eq_rewrite y x (λ y, Φ y -★ Δ')%I); eauto using eq_sym with I. - solve_proper. + rewrite (envs_simple_replace_sound _ _ j) //; simpl. + rewrite HP right_id -assoc; apply wand_elim_r'. destruct lr. + - apply (eq_rewrite x y (λ y, □?q Φ y -★ Δ')%I); eauto with I. solve_proper. + - apply (eq_rewrite y x (λ y, □?q Φ y -★ Δ')%I); eauto using eq_sym with I. + solve_proper. Qed. (** * Conjunction splitting *) @@ -725,10 +705,10 @@ Qed. (** * Conjunction/separating conjunction elimination *) Class SepDestruct (p : bool) (P Q1 Q2 : uPred M) := - sep_destruct : if p then □ P ⊢ □ (Q1 ∧ Q2) else P ⊢ (Q1 ★ Q2). + sep_destruct : □?p P ⊢ □?p (Q1 ★ Q2). Arguments sep_destruct : clear implicits. Lemma sep_destruct_spatial p P Q1 Q2 : P ⊢ (Q1 ★ Q2) → SepDestruct p P Q1 Q2. -Proof. destruct p; simpl=>->; by rewrite ?sep_and. Qed. +Proof. rewrite /SepDestruct=> ->. by rewrite always_if_sep. Qed. Global Instance sep_destruct_sep p P Q : SepDestruct p (P ★ Q) P Q. Proof. by apply sep_destruct_spatial. Qed. @@ -737,30 +717,25 @@ Global Instance sep_destruct_ownM p (a b : M) : Proof. apply sep_destruct_spatial. by rewrite ownM_op. Qed. Global Instance sep_destruct_and P Q : SepDestruct true (P ∧ Q) P Q. -Proof. done. Qed. +Proof. by rewrite /SepDestruct /= always_and_sep. Qed. Global Instance sep_destruct_and_persistent_l P Q : PersistentP P → SepDestruct false (P ∧ Q) P Q. -Proof. intros; red. by rewrite always_and_sep_l. Qed. +Proof. intros; by rewrite /SepDestruct /= always_and_sep_l. Qed. Global Instance sep_destruct_and_persistent_r P Q : PersistentP Q → SepDestruct false (P ∧ Q) P Q. -Proof. intros; red. by rewrite always_and_sep_r. Qed. +Proof. intros; by rewrite /SepDestruct /= always_and_sep_r. Qed. Global Instance sep_destruct_later p P Q1 Q2 : SepDestruct p P Q1 Q2 → SepDestruct p (▷ P) (▷ Q1) (▷ Q2). -Proof. - destruct p=> /= HP. - - by rewrite -later_and !always_later HP. - - by rewrite -later_sep HP. -Qed. +Proof. by rewrite /SepDestruct -later_sep !always_if_later=> ->. Qed. Lemma tac_sep_destruct Δ Δ' i p j1 j2 P P1 P2 Q : envs_lookup i Δ = Some (p, P)%I → SepDestruct p P P1 P2 → envs_simple_replace i p (Esnoc (Esnoc Enil j1 P1) j2 P2) Δ = Some Δ' → Δ' ⊢ Q → Δ ⊢ Q. Proof. - intros. rewrite envs_simple_replace_sound //; simpl. destruct p. - - by rewrite (sep_destruct true P) right_id (comm uPred_and) wand_elim_r. - - by rewrite (sep_destruct false P) right_id (comm uPred_sep P1) wand_elim_r. + intros. rewrite envs_simple_replace_sound //; simpl. + by rewrite (sep_destruct p P) right_id (comm uPred_sep P1) wand_elim_r. Qed. (** * Framing *) @@ -850,17 +825,12 @@ Lemma tac_or_destruct Δ Δ1 Δ2 i p j1 j2 P P1 P2 Q : envs_simple_replace i p (Esnoc Enil j2 P2) Δ = Some Δ2 → Δ1 ⊢ Q → Δ2 ⊢ Q → Δ ⊢ Q. Proof. - intros ???? HP1 HP2. rewrite envs_lookup_sound //. destruct p. - - rewrite (or_destruct P) always_or sep_or_r; apply or_elim. simpl. - + rewrite (envs_simple_replace_sound' _ Δ1) //. - by rewrite /= right_id wand_elim_r. - + rewrite (envs_simple_replace_sound' _ Δ2) //. - by rewrite /= right_id wand_elim_r. - - rewrite (or_destruct P) sep_or_r; apply or_elim. - + rewrite (envs_simple_replace_sound' _ Δ1) //. - by rewrite /= right_id wand_elim_r. - + rewrite (envs_simple_replace_sound' _ Δ2) //. - by rewrite /= right_id wand_elim_r. + intros ???? HP1 HP2. rewrite envs_lookup_sound //. + rewrite (or_destruct P) always_if_or sep_or_r; apply or_elim. + - rewrite (envs_simple_replace_sound' _ Δ1) //. + by rewrite /= right_id wand_elim_r. + - rewrite (envs_simple_replace_sound' _ Δ2) //. + by rewrite /= right_id wand_elim_r. Qed. (** * Forall *) @@ -884,9 +854,8 @@ Lemma tac_forall_specialize {As} Δ Δ' i p P (Φ : himpl As (uPred M)) Q xs : envs_simple_replace i p (Esnoc Enil i (happly Φ xs)) Δ = Some Δ' → Δ' ⊢ Q → Δ ⊢ Q. Proof. - intros. rewrite envs_simple_replace_sound //; simpl. destruct p. - - by rewrite right_id (forall_specialize _ P) wand_elim_r. - - by rewrite right_id (forall_specialize _ P) wand_elim_r. + intros. rewrite envs_simple_replace_sound //; simpl. + by rewrite right_id (forall_specialize _ P) wand_elim_r. Qed. Lemma tac_forall_revert {A} Δ (Φ : A → uPred M) : @@ -920,15 +889,10 @@ Lemma tac_exist_destruct {A} Δ i p j P (Φ : A → uPred M) Q : envs_simple_replace i p (Esnoc Enil j (Φ a)) Δ = Some Δ' ∧ Δ' ⊢ Q) → Δ ⊢ Q. Proof. - intros ?? HΦ. rewrite envs_lookup_sound //. destruct p. - - rewrite (exist_destruct P) always_exist sep_exist_r. - apply exist_elim=> a; destruct (HΦ a) as (Δ'&?&?). - rewrite envs_simple_replace_sound' //; simpl. - by rewrite right_id wand_elim_r. - - rewrite (exist_destruct P) sep_exist_r. - apply exist_elim=> a; destruct (HΦ a) as (Δ'&?&?). - rewrite envs_simple_replace_sound' //; simpl. - by rewrite right_id wand_elim_r. + intros ?? HΦ. rewrite envs_lookup_sound //. + rewrite (exist_destruct P) always_if_exist sep_exist_r. + apply exist_elim=> a; destruct (HΦ a) as (Δ'&?&?). + rewrite envs_simple_replace_sound' //; simpl. by rewrite right_id wand_elim_r. Qed. End tactics. diff --git a/proofmode/pviewshifts.v b/proofmode/pviewshifts.v index 5989ed41998b8632e8d0084747a12ce7a269c155..f18d41fcb1994a95760c63e522e12e1e04cd9216 100644 --- a/proofmode/pviewshifts.v +++ b/proofmode/pviewshifts.v @@ -51,9 +51,8 @@ Lemma tac_pvs_elim Δ Δ' E1 E2 E3 i p P' P Q : E2 ⊆ E1 ∪ E3 → Δ' ⊢ (|={E2,E3}=> Q) → Δ ⊢ |={E1,E3}=> Q. Proof. - intros ? -> ?? HQ. rewrite envs_replace_sound //; simpl. destruct p. - - by rewrite always_elim right_id pvs_frame_r wand_elim_r HQ pvs_trans. - - by rewrite right_id pvs_frame_r wand_elim_r HQ pvs_trans. + intros ? -> ?? HQ. rewrite envs_replace_sound //; simpl. + by rewrite always_if_elim right_id pvs_frame_r wand_elim_r HQ pvs_trans. Qed. Lemma tac_pvs_elim_fsa {A} (fsa : FSA Λ Σ A) fsaV Δ Δ' E i p P' P Q Φ : @@ -72,11 +71,8 @@ Lemma tac_pvs_timeless Δ Δ' E1 E2 i p P Q : Δ' ⊢ (|={E1,E2}=> Q) → Δ ⊢ (|={E1,E2}=> Q). Proof. intros ??? HQ. rewrite envs_simple_replace_sound //; simpl. - destruct p. - - rewrite always_later (pvs_timeless E1 (□ P)%I) pvs_frame_r. - by rewrite right_id wand_elim_r HQ pvs_trans; last set_solver. - - rewrite (pvs_timeless E1 P) pvs_frame_r right_id wand_elim_r HQ. - by rewrite pvs_trans; last set_solver. + rewrite always_if_later (pvs_timeless E1 (□?_ P)%I) pvs_frame_r. + by rewrite right_id wand_elim_r HQ pvs_trans; last set_solver. Qed. Lemma tac_pvs_timeless_fsa {A} (fsa : FSA Λ Σ A) fsaV Δ Δ' E i p P Q Φ :