Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
R
rtproofs
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Environments
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Sophie Quinton
rtproofs
Commits
d9829b6d
Commit
d9829b6d
authored
Sep 20, 2018
by
Sergey Bozhko
Committed by
Sergey Bozhko
Apr 05, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Add notion of Request Bound Function
parent
9bb1010d
Changes
1
Hide whitespace changes
Inline
Sidebyside
Showing
1 changed file
with
105 additions
and
0 deletions
+105
0
model/schedule/uni/limited/rbf.v
model/schedule/uni/limited/rbf.v
+105
0
No files found.
model/schedule/uni/limited/rbf.v
0 → 100644
View file @
d9829b6d
Require
Import
rt
.
util
.
all
.
Require
Import
rt
.
model
.
time
rt
.
model
.
arrival
.
basic
.
job
rt
.
model
.
arrival
.
basic
.
task_arrival
rt
.
model
.
priority
rt
.
model
.
arrival
.
basic
.
arrival_sequence
.
Require
Import
rt
.
model
.
schedule
.
uni
.
schedule
.
Require
Import
rt
.
model
.
arrival
.
curves
.
bounds
.
Require
Import
rt
.
analysis
.
uni
.
arrival_curves
.
workload_bound
.
From
mathcomp
Require
Import
ssreflect
ssrbool
eqtype
ssrnat
seq
path
fintype
bigop
.
Module
RBF
.
Import
Job
Time
ArrivalSequence
ArrivalCurves
TaskArrival
Priority
MaxArrivalsWorkloadBound
.
(* In this section, we prove some properties of Request Bound Functions (RBF). *)
Section
RBFProperties
.
Context
{
Task
:
eqType
}.
Variable
task_cost
:
Task
>
time
.
Context
{
Job
:
eqType
}.
Variable
job_arrival
:
Job
>
time
.
Variable
job_task
:
Job
>
Task
.
(* Consider any arrival sequence. *)
Variable
arr_seq
:
arrival_sequence
Job
.
Hypothesis
H_arrival_times_are_consistent
:
arrival_times_are_consistent
job_arrival
arr_seq
.
(* Consider an FP policy that indicates a higherorequal priority relation,
and assume that the relation is reflexive and transitive. *)
Variable
higher_eq_priority
:
FP_policy
Task
.
Hypothesis
H_priority_is_reflexive
:
FP_is_reflexive
higher_eq_priority
.
Hypothesis
H_priority_is_transitive
:
FP_is_transitive
higher_eq_priority
.
(* Let tsk be any task. *)
Variable
tsk
:
Task
.
(* Let max_arrivals be a proper arrival curve for task tsk, i.e.,
[max_arrival tsk] is (1) an arrival bound of tsk, and (2) it is
a monotonic function that equals 0 for the empty interval delta = 0. *)
Variable
max_arrivals
:
Task
>
time
>
nat
.
Hypothesis
H_proper_arrival_curve
:
proper_arrival_curve
job_task
arr_seq
max_arrivals
tsk
.
(* Let's define some local names for clarity. *)
Let
task_rbf
:
=
task_request_bound_function
task_cost
max_arrivals
tsk
.
(* We prove that [task_rbf 0] is equal to 0. *)
Lemma
task_rbf_0_zero
:
task_rbf
0
=
0
.
Proof
.
rewrite
/
task_rbf
/
task_request_bound_function
.
apply
/
eqP
;
rewrite
muln_eq0
;
apply
/
orP
;
right
;
apply
/
eqP
.
by
move
:
H_proper_arrival_curve
=>
[
_
[
T
_
]]
;
apply
T
.
Qed
.
(* We prove that task_rbf is monotone. *)
Lemma
task_rbf_monotone
:
monotone
task_rbf
leq
.
Proof
.
rewrite
/
monotone
;
intros
.
rewrite
/
task_rbf
/
task_request_bound_function
leq_mul2l
.
apply
/
orP
;
right
.
by
move
:
H_proper_arrival_curve
=>
[
_
T
]
;
apply
T
.
Qed
.
(* Consider any job j of tsk. *)
Variable
j
:
Job
.
Hypothesis
H_j_arrives
:
arrives_in
arr_seq
j
.
Hypothesis
H_job_of_tsk
:
job_task
j
=
tsk
.
(* Then we prove that task_rbf 1 is greater than or equal to task cost. *)
Lemma
task_rbf_1_ge_task_cost
:
task_rbf
1
>=
task_cost
tsk
.
Proof
.
have
ALT
:
forall
n
,
n
=
0
\/
n
>
0
.
{
by
clear
;
intros
n
;
destruct
n
;
[
left

right
].
}
specialize
(
ALT
(
task_cost
tsk
))
;
destruct
ALT
as
[
Z

POS
]
;
first
by
rewrite
Z
.
rewrite
leqNgt
;
apply
/
negP
;
intros
CONTR
.
move
:
H_proper_arrival_curve
=>
[
ARRB
_
].
specialize
(
ARRB
(
job_arrival
j
)
(
job_arrival
j
+
1
)).
feed
ARRB
;
first
by
rewrite
leq_addr
.
rewrite
addKn
in
ARRB
.
move
:
CONTR
;
rewrite
/
task_rbf
/
task_request_bound_function
;
move
=>
CONTR
.
move
:
CONTR
;
rewrite
{
2
}[
task_cost
tsk
]
muln1
ltn_mul2l
;
move
=>
/
andP
[
_
CONTR
].
move
:
CONTR
;
rewrite

addn1
{
3
}[
1
]
add0n
leq_add2r
leqn0
;
move
=>
/
eqP
CONTR
.
move
:
ARRB
;
rewrite
CONTR
leqn0
eqn0Ngt
;
move
=>
/
negP
T
;
apply
:
T
.
rewrite
/
num_arrivals_of_task

has_predT
.
rewrite
/
arrivals_of_task_between
/
is_job_of_task
.
apply
/
hasP
;
exists
j
;
last
by
done
.
rewrite
/
jobs_arrived_between
addn1
big_nat_recl
;
last
by
done
.
rewrite
big_geq
?cats0
;
last
by
done
.
rewrite
mem_filter
.
apply
/
andP
;
split
.

by
apply
/
eqP
.

move
:
H_j_arrives
=>
[
t
ARR
].
move
:
(
ARR
)
=>
CONS
.
apply
H_arrival_times_are_consistent
in
CONS
.
by
rewrite
CONS
.
Qed
.
End
RBFProperties
.
End
RBF
.
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment