diff --git a/iris/proofmode/class_instances_frame.v b/iris/proofmode/class_instances_frame.v index e3c78d51eb4e9a5c49f7c7cfc3e908d52a2d014a..0af320b676116158e34d75a6e80f25fbf3d2239b 100644 --- a/iris/proofmode/class_instances_frame.v +++ b/iris/proofmode/class_instances_frame.v @@ -14,10 +14,14 @@ Implicit Types P Q R : PROP. goal. Otherwise we leave [emp] via [frame_here]. Only if all those options fail, we start decomposing [R], via instances like [frame_exist]. To ensure that, all other instances must have cost > 1. *) -Global Instance frame_here_absorbing p R : Absorbing R → Frame p R R True | 0. +Lemma frame_here_absorbing p R : Absorbing R → Frame p R R True. Proof. intros. by rewrite /Frame intuitionistically_if_elim sep_elim_l. Qed. -Global Instance frame_here p R : Frame p R R emp | 1. +Lemma frame_here p R : Frame p R R emp. Proof. intros. by rewrite /Frame intuitionistically_if_elim sep_elim_l. Qed. +Global Instance frame_here_maybe_absorbing p R O : + TCIf (Absorbing R) (TCEq O True)%I (TCEq O emp)%I → + Frame p R R O | 0. +Proof. case => [+->|->]; [apply frame_here_absorbing | apply frame_here]. Qed. Global Instance frame_affinely_here_absorbing p R : Absorbing R → Frame p (<affine> R) R True | 0. Proof. @@ -59,20 +63,20 @@ Global Instance frame_pure_embed `{!BiEmbed PROP PROP'} p P Q (Q' : PROP') φ : Proof. rewrite /Frame /MakeEmbed -embed_pure. apply (frame_embed p P Q). Qed. Global Instance frame_sep_persistent_l progress R P1 P2 Q1 Q2 Q' : - Frame true R P1 Q1 → MaybeFrame true R P2 Q2 progress → MakeSep Q1 Q2 Q' → + Frame true R P1 Q1 → MaybeFrame true R P2 Q2 progress → TCNoBackTrack (MakeSep Q1 Q2 Q') → Frame true R (P1 ∗ P2) Q' | 9. Proof. - rewrite /Frame /MaybeFrame /MakeSep /= => <- <- <-. + rewrite /Frame /MaybeFrame /MakeSep /= => <- <- [<-]. rewrite {1}(intuitionistically_sep_dup R). by rewrite !assoc -(assoc _ _ _ Q1) -(comm _ Q1) assoc -(comm _ Q1). Qed. Global Instance frame_sep_l R P1 P2 Q Q' : - Frame false R P1 Q → MakeSep Q P2 Q' → Frame false R (P1 ∗ P2) Q' | 9. -Proof. rewrite /Frame /MakeSep => <- <-. by rewrite assoc. Qed. + Frame false R P1 Q → TCNoBackTrack (MakeSep Q P2 Q') → Frame false R (P1 ∗ P2) Q' | 9. +Proof. rewrite /Frame /MakeSep => <- [<-]. by rewrite assoc. Qed. Global Instance frame_sep_r p R P1 P2 Q Q' : - Frame p R P2 Q → MakeSep P1 Q Q' → Frame p R (P1 ∗ P2) Q' | 10. + Frame p R P2 Q → TCNoBackTrack (MakeSep P1 Q Q') → Frame p R (P1 ∗ P2) Q' | 10. Proof. - rewrite /Frame /MakeSep => <- <-. by rewrite assoc -(comm _ P1) assoc. + rewrite /Frame /MakeSep => <- [<-]. by rewrite assoc -(comm _ P1) assoc. Qed. Global Instance frame_big_sepL_cons {A} p (Φ : nat → A → PROP) R Q l x l' : diff --git a/iris/proofmode/classes.v b/iris/proofmode/classes.v index 94558ae4ba5fdd0b3cecc1663a689c1f8297de01..92b9b13a15ebd887fe6e6085e97e22defa3a6d74 100644 --- a/iris/proofmode/classes.v +++ b/iris/proofmode/classes.v @@ -386,8 +386,8 @@ Global Instance maybe_frame_default_persistent {PROP : bi} (R P : PROP) : MaybeFrame true R P P false | 100. Proof. intros. rewrite /MaybeFrame /=. by rewrite sep_elim_r. Qed. Global Instance maybe_frame_default {PROP : bi} (R P : PROP) : - TCOr (Affine R) (Absorbing P) → MaybeFrame false R P P false | 100. -Proof. intros. rewrite /MaybeFrame /=. apply: sep_elim_r. Qed. + TCNoBackTrack (TCOr (Affine R) (Absorbing P)) → MaybeFrame false R P P false | 100. +Proof. intros [?]. rewrite /MaybeFrame /=. apply: sep_elim_r. Qed. Class IntoExcept0 {PROP : bi} (P Q : PROP) := into_except_0 : P ⊢ ◇ Q. Global Arguments IntoExcept0 {_} _%I _%I : simpl never. diff --git a/tests/proofmode.v b/tests/proofmode.v index e9f7005e0db6e44cce68360668dd5f0532003135..05bb0d23aecd731866af765d9ec8494906b784ce 100644 --- a/tests/proofmode.v +++ b/tests/proofmode.v @@ -651,6 +651,21 @@ Lemma test_iFrame_disjunction_1 P1 P2 Q1 Q2 : Proof. intros ?. iIntros "#HP1 HQ2 HP2". iFrame "HP1 HQ2 HP2". Qed. Lemma test_iFrame_disjunction_2 P : P -∗ (True ∨ True) ∗ P. Proof. iIntros "HP". iFrame "HP". auto. Qed. +Lemma test_iFrame_disjunction_3_evars `(Φ : nat → PROP) P1 P2 P3 P4 : + BiAffine PROP → + let n := 5 in + let R := fun a => Nat.iter n (fun P => (P1 ∗ P2 ∗ P3 ∗ P4 ∗ Φ a) ∨ P)%I (Φ a) in + P1 ⊢ ∃ a, R a. +Proof. + intros ?. cbn. iIntros "HP1". iExists _. + Timeout 2 iFrame. +Abort. +Lemma test_iFrame_disjunction_4_evars `(Φ : nat → nat → PROP) P : + Φ 0 1 ∗ Φ 1 0 ⊢ ∃ n m, (Φ n m ∗ Φ 0 1) ∨ (P ∗ Φ m n). +Proof. + iIntros "(HΦ1 & HΦ2)". iExists _, _. + iFrame "HΦ1". by iLeft. +Qed. Lemma test_iFrame_conjunction_1 P Q : P -∗ Q -∗ (P ∗ Q) ∧ (P ∗ Q). @@ -667,6 +682,15 @@ Proof. (* [iFrame] should simplify [False ∧ Q] to just [False]. *) Show. Abort. +Lemma test_iFrame_conjunction_4_evars `(Φ : nat → PROP) P1 P2 P3 P4 P5 : + BiAffine PROP → + let n := 5 in + let R := fun a => Nat.iter n (fun P => (P1 ∗ P2 ∗ P3 ∗ P4 ∗ Φ a) ∧ P)%I (P1 ∗ P2 ∗ P3 ∗ P4 ∗ Φ a)%I in + P5 ⊢ ∃ a, R a. +Proof. + intros ?. cbn. iIntros "HP1". iExists _. + Timeout 1 iFrame. +Abort. Lemma test_iFrame_later `{!BiAffine PROP} P Q : P -∗ Q -∗ ▷ P ∗ Q. Proof. iIntros "H1 H2". by iFrame "H1". Qed.