Commit 02687b13 authored by Robbert's avatar Robbert

Merge branch 'ralf/bool_decide' into 'master'

add invserses of bool_decide_{true,false}

See merge request !81
parents 3b8eed3c 3db8e2f7
......@@ -112,14 +112,29 @@ Proof. rewrite bool_decide_spec; trivial. Qed.
Lemma bool_decide_pack (P : Prop) {dec : Decision P} : P bool_decide P.
Proof. rewrite bool_decide_spec; trivial. Qed.
Hint Resolve bool_decide_pack : core.
Lemma bool_decide_true (P : Prop) `{Decision P} : P bool_decide P = true.
Proof. case_bool_decide; tauto. Qed.
Lemma bool_decide_false (P : Prop) `{Decision P} : ¬P bool_decide P = false.
Proof. case_bool_decide; tauto. Qed.
Lemma bool_decide_eq_true (P : Prop) `{Decision P} : bool_decide P = true P.
Proof. case_bool_decide; intuition discriminate. Qed.
Lemma bool_decide_eq_false (P : Prop) `{Decision P} : bool_decide P = false ¬P.
Proof. case_bool_decide; intuition discriminate. Qed.
Lemma bool_decide_iff (P Q : Prop) `{Decision P, Decision Q} :
(P Q) bool_decide P = bool_decide Q.
Proof. repeat case_bool_decide; tauto. Qed.
Lemma bool_decide_eq_true_1 P `{!Decision P}: bool_decide P = true P.
Proof. apply bool_decide_eq_true. Qed.
Lemma bool_decide_eq_true_2 P `{!Decision P}: P bool_decide P = true.
Proof. apply bool_decide_eq_true. Qed.
Lemma bool_decide_eq_false_1 P `{!Decision P}: bool_decide P = false ¬P.
Proof. apply bool_decide_eq_false. Qed.
Lemma bool_decide_eq_false_2 P `{!Decision P}: ¬P bool_decide P = false.
Proof. apply bool_decide_eq_false. Qed.
(** Backwards compatibility notations. *)
Notation bool_decide_true := bool_decide_eq_true_2.
Notation bool_decide_false := bool_decide_eq_false_2.
(** * Decidable Sigma types *)
(** Leibniz equality on Sigma types requires the equipped proofs to be
equal as Coq does not support proof irrelevance. For decidable we
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment