list.v 167 KB
Newer Older
1
(* Copyright (c) 2012-2017, Coq-std++ developers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
5
From Coq Require Export Permutation.
6
From stdpp Require Export numbers base option.
7
Set Default Proof Using "Type*".
Robbert Krebbers's avatar
Robbert Krebbers committed
8

9 10 11
Arguments length {_} _ : assert.
Arguments cons {_} _ _ : assert.
Arguments app {_} _ _ : assert.
12 13 14 15

Instance: Params (@length) 1.
Instance: Params (@cons) 1.
Instance: Params (@app) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
16

17 18 19
Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.
20

21 22 23
Arguments tail {_} _ : assert.
Arguments take {_} !_ !_ / : assert.
Arguments drop {_} !_ !_ / : assert.
24

25 26 27 28
Instance: Params (@tail) 1.
Instance: Params (@take) 1.
Instance: Params (@drop) 1.

29 30
Arguments Permutation {_} _ _ : assert.
Arguments Forall_cons {_} _ _ _ _ _ : assert.
31
Remove Hints Permutation_cons : typeclass_instances.
32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Notation "(::)" := cons (only parsing) : stdpp_scope.
Notation "( x ::)" := (cons x) (only parsing) : stdpp_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : stdpp_scope.
Notation "(++)" := app (only parsing) : stdpp_scope.
Notation "( l ++)" := (app l) (only parsing) : stdpp_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : stdpp_scope.

Infix "≡ₚ" := Permutation (at level 70, no associativity) : stdpp_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : stdpp_scope.
Notation "( x ≡ₚ)" := (Permutation x) (only parsing) : stdpp_scope.
Notation "(≡ₚ x )" := (λ y, y ≡ₚ x) (only parsing) : stdpp_scope.
Notation "(≢ₚ)" := (λ x y, ¬x ≡ₚ y) (only parsing) : stdpp_scope.
Notation "x ≢ₚ y":= (¬x ≡ₚ y) (at level 70, no associativity) : stdpp_scope.
Notation "( x ≢ₚ)" := (λ y, x ≢ₚ y) (only parsing) : stdpp_scope.
Notation "(≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : stdpp_scope.
48

Robbert Krebbers's avatar
Robbert Krebbers committed
49 50 51 52
Infix "≡ₚ@{ A }" :=
  (@Permutation A) (at level 70, no associativity, only parsing) : stdpp_scope.
Notation "(≡ₚ@{ A } )" := (@Permutation A) (only parsing) : stdpp_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
53 54 55
Instance maybe_cons {A} : Maybe2 (@cons A) := λ l,
  match l with x :: l => Some (x,l) | _ => None end.

56
(** * Definitions *)
57 58 59 60 61 62
(** Setoid equality lifted to lists *)
Inductive list_equiv `{Equiv A} : Equiv (list A) :=
  | nil_equiv : [] ≡ []
  | cons_equiv x y l k : x ≡ y → l ≡ k → x :: l ≡ y :: k.
Existing Instance list_equiv.

63 64
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
65 66
Instance list_lookup {A} : Lookup nat A (list A) :=
  fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
67
  match l with
68
  | [] => None | x :: l => match i with 0 => Some x | S i => l !! i end
69
  end.
70 71 72

(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
73
Instance list_alter {A} : Alter nat A (list A) := λ f,
74
  fix go i l {struct l} :=
75 76
  match l with
  | [] => []
77
  | x :: l => match i with 0 => f x :: l | S i => x :: go i l end
78
  end.
79

80 81
(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
82 83
Instance list_insert {A} : Insert nat A (list A) :=
  fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
84 85 86 87
  match l with
  | [] => []
  | x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end
  end.
88 89 90 91 92
Fixpoint list_inserts {A} (i : nat) (k l : list A) : list A :=
  match k with
  | [] => l
  | y :: k => <[i:=y]>(list_inserts (S i) k l)
  end.
93
Instance: Params (@list_inserts) 1.
94

95 96 97
(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
98 99
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
100 101
  match l with
  | [] => []
102
  | x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end
103
  end.
104 105 106

(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
107
Definition option_list {A} : option A → list A := option_rect _ (λ x, [x]) [].
108 109
Instance: Params (@option_list) 1.
Instance maybe_list_singleton {A} : Maybe (λ x : A, [x]) := λ l,
110
  match l with [x] => Some x | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
111 112 113 114

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
115
  fix go P _ l := let _ : Filter _ _ := @go in
Robbert Krebbers's avatar
Robbert Krebbers committed
116 117
  match l with
  | [] => []
118
  | x :: l => if decide (P x) then x :: filter P l else filter P l
119 120 121 122
  end.

(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
123
Definition list_find {A} P `{∀ x, Decision (P x)} : list A → option (nat * A) :=
124 125
  fix go l :=
  match l with
126 127
  | [] => None
  | x :: l => if decide (P x) then Some (0,x) else prod_map S id <$> go l
128
  end.
129
Instance: Params (@list_find) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
130 131 132 133

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
134
  match n with 0 => [] | S n => x :: replicate n x end.
135
Instance: Params (@replicate) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
136 137 138

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].
139
Instance: Params (@reverse) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
140

141 142 143 144
(** The function [last l] returns the last element of the list [l], or [None]
if the list [l] is empty. *)
Fixpoint last {A} (l : list A) : option A :=
  match l with [] => None | [x] => Some x | _ :: l => last l end.
145
Instance: Params (@last) 1.
146

Robbert Krebbers's avatar
Robbert Krebbers committed
147 148 149 150 151 152
(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
153
  | x :: l => match n with 0 => [] | S n => x :: resize n y l end
Robbert Krebbers's avatar
Robbert Krebbers committed
154
  end.
155
Arguments resize {_} !_ _ !_ : assert.
156
Instance: Params (@resize) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
157

158 159 160
(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
161 162
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
163
  | [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
164
  end.
165
Instance: Params (@reshape) 2.
166

167
Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
168 169 170 171
  guard (i + n ≤ length l); Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A → list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.
172

173 174 175 176
(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.
Definition foldl {A B} (f : A → B → A) : A → list B → A :=
177
  fix go a l := match l with [] => a | x :: l => go (f a x) l end.
178 179 180

(** The monadic operations. *)
Instance list_ret: MRet list := λ A x, x :: @nil A.
181 182
Instance list_fmap : FMap list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x :: go l end.
183 184 185 186 187 188
Instance list_omap : OMap list := λ A B f,
  fix go (l : list A) :=
  match l with
  | [] => []
  | x :: l => match f x with Some y => y :: go l | None => go l end
  end.
189 190
Instance list_bind : MBind list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x ++ go l end.
191 192
Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
193
  match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.
194
Definition mapM `{MBind M, MRet M} {A B} (f : A → M B) : list A → M (list B) :=
195
  fix go l :=
196
  match l with [] => mret [] | x :: l => y ← f x; k ← go l; mret (y :: k) end.
197 198 199

(** We define stronger variants of map and fold that allow the mapped
function to use the index of the elements. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
200 201 202 203 204
Fixpoint imap {A B} (f : nat → A → B) (l : list A) : list B :=
  match l with
  | [] => []
  | x :: l => f 0 x :: imap (f ∘ S) l
  end.
205

206
Definition zipped_map {A B} (f : list A → list A → A → B) :
Robbert Krebbers's avatar
Robbert Krebbers committed
207 208 209 210 211
    list A → list A → list B := fix go l k :=
  match k with
  | [] => []
  | x :: k => f l k x :: go (x :: l) k
  end.
212

Robbert Krebbers's avatar
Robbert Krebbers committed
213
Fixpoint imap2 {A B C} (f : nat → A → B → C) (l : list A) (k : list B) : list C :=
Robbert Krebbers's avatar
Robbert Krebbers committed
214
  match l, k with
Robbert Krebbers's avatar
Robbert Krebbers committed
215 216
  | [], _ | _, [] => []
  | x :: l, y :: k => f 0 x y :: imap2 (f ∘ S) l k
Robbert Krebbers's avatar
Robbert Krebbers committed
217 218
  end.

219 220 221 222 223
Inductive zipped_Forall {A} (P : list A → list A → A → Prop) :
    list A → list A → Prop :=
  | zipped_Forall_nil l : zipped_Forall P l []
  | zipped_Forall_cons l k x :
     P l k x → zipped_Forall P (x :: l) k → zipped_Forall P l (x :: k).
224 225
Arguments zipped_Forall_nil {_ _} _ : assert.
Arguments zipped_Forall_cons {_ _} _ _ _ _ _ : assert.
226

227 228 229 230 231 232 233
(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A → A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l => (if β then f x else x) :: mask f βs l
  | _, _ => l
  end.
234 235 236 237

(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
238
  | [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::) <$> interleave x l)
239 240
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
241
  match l with [] => [[]] | x :: l => permutations l ≫= interleave x end.
242

Robbert Krebbers's avatar
Robbert Krebbers committed
243 244 245 246
(** The predicate [suffix] holds if the first list is a suffix of the second.
The predicate [prefix] holds if the first list is a prefix of the second. *)
Definition suffix {A} : relation (list A) := λ l1 l2, ∃ k, l2 = k ++ l1.
Definition prefix {A} : relation (list A) := λ l1 l2, ∃ k, l2 = l1 ++ k.
247 248
Infix "`suffix_of`" := suffix (at level 70) : stdpp_scope.
Infix "`prefix_of`" := prefix (at level 70) : stdpp_scope.
Tej Chajed's avatar
Tej Chajed committed
249 250
Hint Extern 0 (_ `prefix_of` _) => reflexivity : core.
Hint Extern 0 (_ `suffix_of` _) => reflexivity : core.
Robbert Krebbers's avatar
Robbert Krebbers committed
251

252
Section prefix_suffix_ops.
253 254
  Context `{EqDecision A}.

Robbert Krebbers's avatar
Robbert Krebbers committed
255
  Definition max_prefix : list A → list A → list A * list A * list A :=
256 257 258 259 260
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
261
      if decide_rel (=) x1 x2
262
      then prod_map id (x1 ::) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
263
    end.
Robbert Krebbers's avatar
Robbert Krebbers committed
264 265
  Definition max_suffix (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix (reverse l1) (reverse l2) with
266 267
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.
Robbert Krebbers's avatar
Robbert Krebbers committed
268 269
  Definition strip_prefix (l1 l2 : list A) := (max_prefix l1 l2).1.2.
  Definition strip_suffix (l1 l2 : list A) := (max_suffix l1 l2).1.2.
270
End prefix_suffix_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
271

272
(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
273 274 275
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
276
  | sublist_skip x l1 l2 : sublist l1 l2 → sublist (x :: l1) (x :: l2)
277
  | sublist_cons x l1 l2 : sublist l1 l2 → sublist l1 (x :: l2).
278
Infix "`sublist_of`" := sublist (at level 70) : stdpp_scope.
Tej Chajed's avatar
Tej Chajed committed
279
Hint Extern 0 (_ `sublist_of` _) => reflexivity : core.
280

Robbert Krebbers's avatar
Robbert Krebbers committed
281
(** A list [l2] submseteq a list [l1] if [l2] is obtained by removing elements
282
from [l1] while possiblity changing the order. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
283 284 285 286 287 288
Inductive submseteq {A} : relation (list A) :=
  | submseteq_nil : submseteq [] []
  | submseteq_skip x l1 l2 : submseteq l1 l2 → submseteq (x :: l1) (x :: l2)
  | submseteq_swap x y l : submseteq (y :: x :: l) (x :: y :: l)
  | submseteq_cons x l1 l2 : submseteq l1 l2 → submseteq l1 (x :: l2)
  | submseteq_trans l1 l2 l3 : submseteq l1 l2 → submseteq l2 l3 → submseteq l1 l3.
289
Infix "⊆+" := submseteq (at level 70) : stdpp_scope.
Tej Chajed's avatar
Tej Chajed committed
290
Hint Extern 0 (_ ⊆+ _) => reflexivity : core.
291

292 293 294 295 296 297 298 299 300 301 302 303 304 305
(** Removes [x] from the list [l]. The function returns a [Some] when the
+removal succeeds and [None] when [x] is not in [l]. *)
Fixpoint list_remove `{EqDecision A} (x : A) (l : list A) : option (list A) :=
  match l with
  | [] => None
  | y :: l => if decide (x = y) then Some l else (y ::) <$> list_remove x l
  end.

(** Removes all elements in the list [k] from the list [l]. The function returns
a [Some] when the removal succeeds and [None] some element of [k] is not in [l]. *)
Fixpoint list_remove_list `{EqDecision A} (k : list A) (l : list A) : option (list A) :=
  match k with
  | [] => Some l | x :: k => list_remove x l ≫= list_remove_list k
  end.
306

307 308 309 310 311
Inductive Forall3 {A B C} (P : A → B → C → Prop) :
     list A → list B → list C → Prop :=
  | Forall3_nil : Forall3 P [] [] []
  | Forall3_cons x y z l k k' :
     P x y z → Forall3 P l k k' → Forall3 P (x :: l) (y :: k) (z :: k').
312

313 314
(** Set operations on lists *)
Instance list_subseteq {A} : SubsetEq (list A) := λ l1 l2, ∀ x, x ∈ l1 → x ∈ l2.
315

316
Section list_set.
317
  Context `{dec : EqDecision A}.
Robbert Krebbers's avatar
Robbert Krebbers committed
318
  Global Instance elem_of_list_dec : RelDecision (∈@{list A}).
319 320
  Proof.
   refine (
321
    fix go x l :=
322 323
    match l return Decision (x ∈ l) with
    | [] => right _
324
    | y :: l => cast_if_or (decide (x = y)) (go x l)
325 326 327 328 329 330 331 332 333 334 335 336 337
    end); clear go dec; subst; try (by constructor); abstract by inversion 1.
  Defined.
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel (∈) x l then remove_dups l else x :: remove_dups l
    end.
  Fixpoint list_difference (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel (∈) x k
338
      then list_difference l k else x :: list_difference l k
339
    end.
340
  Definition list_union (l k : list A) : list A := list_difference l k ++ k.
341 342 343 344 345
  Fixpoint list_intersection (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel (∈) x k
346
      then x :: list_intersection l k else list_intersection l k
347 348 349 350 351 352 353 354 355
    end.
  Definition list_intersection_with (f : A → A → option A) :
    list A → list A → list A := fix go l k :=
    match l with
    | [] => []
    | x :: l => foldr (λ y,
        match f x y with None => id | Some z => (z ::) end) (go l k) k
    end.
End list_set.
356 357

(** * Basic tactics on lists *)
Robbert Krebbers's avatar
Robbert Krebbers committed
358
(** The tactic [discriminate_list] discharges a goal if it submseteq
359 360
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
361
Tactic Notation "discriminate_list" hyp(H) :=
362
  apply (f_equal length) in H;
363
  repeat (csimpl in H || rewrite app_length in H); exfalso; lia.
364
Tactic Notation "discriminate_list" :=
365
  match goal with H : _ =@{list _} _ |- _ => discriminate_list H end.
366

367
(** The tactic [simplify_list_eq] simplifies hypotheses involving
368 369
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
370
Lemma app_inj_1 {A} (l1 k1 l2 k2 : list A) :
371 372
  length l1 = length k1 → l1 ++ l2 = k1 ++ k2 → l1 = k1 ∧ l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
373
Lemma app_inj_2 {A} (l1 k1 l2 k2 : list A) :
374 375
  length l2 = length k2 → l1 ++ l2 = k1 ++ k2 → l1 = k1 ∧ l2 = k2.
Proof.
376
  intros ? Hl. apply app_inj_1; auto.
377 378
  apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
Qed.
379
Ltac simplify_list_eq :=
380
  repeat match goal with
381
  | _ => progress simplify_eq/=
382
  | H : _ ++ _ = _ ++ _ |- _ => first
383
    [ apply app_inv_head in H | apply app_inv_tail in H
384 385
    | apply app_inj_1 in H; [destruct H|done]
    | apply app_inj_2 in H; [destruct H|done] ]
Robbert Krebbers's avatar
Robbert Krebbers committed
386
  | H : [?x] !! ?i = Some ?y |- _ =>
387
    destruct i; [change (Some x = Some y) in H | discriminate]
388
  end.
389

390 391
(** * General theorems *)
Section general_properties.
Robbert Krebbers's avatar
Robbert Krebbers committed
392
Context {A : Type}.
393 394
Implicit Types x y z : A.
Implicit Types l k : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
395

396
Global Instance: Inj2 (=) (=) (=) (@cons A).
397
Proof. by injection 1. Qed.
398
Global Instance: ∀ k, Inj (=) (=) (k ++).
399
Proof. intros ???. apply app_inv_head. Qed.
400
Global Instance: ∀ k, Inj (=) (=) (++ k).
401
Proof. intros ???. apply app_inv_tail. Qed.
402
Global Instance: Assoc (=) (@app A).
403 404 405 406 407
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.
408

409
Lemma app_nil l1 l2 : l1 ++ l2 = [] ↔ l1 = [] ∧ l2 = [].
410
Proof. split. apply app_eq_nil. by intros [-> ->]. Qed.
411 412
Lemma app_singleton l1 l2 x :
  l1 ++ l2 = [x] ↔ l1 = [] ∧ l2 = [x] ∨ l1 = [x] ∧ l2 = [].
413
Proof. split. apply app_eq_unit. by intros [[-> ->]|[-> ->]]. Qed.
414 415 416
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : (∀ i, l1 !! i = l2 !! i) → l1 = l2.
417
Proof.
418
  revert l2. induction l1 as [|x l1 IH]; intros [|y l2] H.
419 420 421
  - done.
  - discriminate (H 0).
  - discriminate (H 0).
422
  - f_equal; [by injection (H 0)|]. apply (IH _ $ λ i, H (S i)).
423
Qed.
424 425
Global Instance list_eq_dec {dec : EqDecision A} : EqDecision (list A) :=
  list_eq_dec dec.
426 427 428
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with [] => left _ | _ => right _ end. Defined.
Lemma list_singleton_reflect l :
429
  option_reflect (λ x, l = [x]) (length l ≠ 1) (maybe (λ x, [x]) l).
430 431 432 433
Proof. by destruct l as [|? []]; constructor. Defined.

Definition nil_length : length (@nil A) = 0 := eq_refl.
Definition cons_length x l : length (x :: l) = S (length l) := eq_refl.
434
Lemma nil_or_length_pos l : l = [] ∨ length l ≠ 0.
435
Proof. destruct l; simpl; auto with lia. Qed.
436
Lemma nil_length_inv l : length l = 0 → l = [].
437 438
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
439
Proof. by destruct i. Qed.
440
Lemma lookup_tail l i : tail l !! i = l !! S i.
441
Proof. by destruct l. Qed.
442
Lemma lookup_lt_Some l i x : l !! i = Some x → i < length l.
443
Proof. revert i. induction l; intros [|?] ?; naive_solver auto with arith. Qed.
444 445 446
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i) → i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l → is_Some (l !! i).
447
Proof. revert i. induction l; intros [|?] ?; naive_solver eauto with lia. Qed.
448 449 450 451 452 453 454 455
Lemma lookup_lt_is_Some l i : is_Some (l !! i) ↔ i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None ↔ length l ≤ i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None → length l ≤ i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l ≤ i → l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
456 457 458
Lemma list_eq_same_length l1 l2 n :
  length l2 = n → length l1 = n →
  (∀ i x y, i < n → l1 !! i = Some x → l2 !! i = Some y → x = y) → l1 = l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
459
Proof.
460
  intros <- Hlen Hl; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
461
  - destruct (lookup_lt_is_Some_2 l1 i) as [y Hy].
462 463
    { rewrite Hlen; eauto using lookup_lt_Some. }
    rewrite Hy; f_equal; apply (Hl i); eauto using lookup_lt_Some.
464
  - by rewrite lookup_ge_None, Hlen, <-lookup_ge_None.
Robbert Krebbers's avatar
Robbert Krebbers committed
465
Qed.
466
Lemma lookup_app_l l1 l2 i : i < length l1 → (l1 ++ l2) !! i = l1 !! i.
467
Proof. revert i. induction l1; intros [|?]; naive_solver auto with lia. Qed.
468 469
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x → (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
470
Lemma lookup_app_r l1 l2 i :
471
  length l1 ≤ i → (l1 ++ l2) !! i = l2 !! (i - length l1).
472 473 474 475 476 477
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
Lemma lookup_app_Some l1 l2 i x :
  (l1 ++ l2) !! i = Some x ↔
    l1 !! i = Some x ∨ length l1 ≤ i ∧ l2 !! (i - length l1) = Some x.
Proof.
  split.
478
  - revert i. induction l1 as [|y l1 IH]; intros [|i] ?;
479
      simplify_eq/=; auto with lia.
480
    destruct (IH i) as [?|[??]]; auto with lia.
481
  - intros [?|[??]]; auto using lookup_app_l_Some. by rewrite lookup_app_r.
482
Qed.
483 484 485
Lemma list_lookup_middle l1 l2 x n :
  n = length l1 → (l1 ++ x :: l2) !! n = Some x.
Proof. intros ->. by induction l1. Qed.
486

487
Lemma nth_lookup l i d : nth i l d = default d (l !! i).
488 489 490 491
Proof. revert i. induction l as [|x l IH]; intros [|i]; simpl; auto. Qed.
Lemma nth_lookup_Some l i d x : l !! i = Some x → nth i l d = x.
Proof. rewrite nth_lookup. by intros ->. Qed.
Lemma nth_lookup_or_length l i d : {l !! i = Some (nth i l d)} + {length l ≤ i}.
Ralf Jung's avatar
Ralf Jung committed
492
Proof.
493
  rewrite nth_lookup. destruct (l !! i) eqn:?; eauto using lookup_ge_None_1.
Ralf Jung's avatar
Ralf Jung committed
494 495
Qed.

496
Lemma list_insert_alter l i x : <[i:=x]>l = alter (λ _, x) i l.
497
Proof. by revert i; induction l; intros []; intros; f_equal/=. Qed.
498
Lemma alter_length f l i : length (alter f i l) = length l.
499
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
500
Lemma insert_length l i x : length (<[i:=x]>l) = length l.
501
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
502
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
503
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
504
Lemma list_lookup_alter_ne f l i j : i ≠ j → alter f i l !! j = l !! j.
505
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
506
Lemma list_lookup_insert l i x : i < length l → <[i:=x]>l !! i = Some x.
507
Proof. revert i. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
508
Lemma list_lookup_insert_ne l i j x : i ≠ j → <[i:=x]>l !! j = l !! j.
509
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
510 511 512 513 514 515
Lemma list_lookup_insert_Some l i x j y :
  <[i:=x]>l !! j = Some y ↔
    i = j ∧ x = y ∧ j < length l ∨ i ≠ j ∧ l !! j = Some y.
Proof.
  destruct (decide (i = j)) as [->|];
    [split|rewrite list_lookup_insert_ne by done; tauto].
516
  - intros Hy. assert (j < length l).
517 518
    { rewrite <-(insert_length l j x); eauto using lookup_lt_Some. }
    rewrite list_lookup_insert in Hy by done; naive_solver.
519
  - intros [(?&?&?)|[??]]; rewrite ?list_lookup_insert; naive_solver.
520 521 522
Qed.
Lemma list_insert_commute l i j x y :
  i ≠ j → <[i:=x]>(<[j:=y]>l) = <[j:=y]>(<[i:=x]>l).
523
Proof. revert i j. by induction l; intros [|?] [|?] ?; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
524 525 526
Lemma list_insert_id l i x : l !! i = Some x → <[i:=x]>l = l.
Proof. revert i. induction l; intros [|i] [=]; f_equal/=; auto. Qed.

527 528
Lemma list_lookup_other l i x :
  length l ≠ 1 → l !! i = Some x → ∃ j y, j ≠ i ∧ l !! j = Some y.
Robbert Krebbers's avatar
Robbert Krebbers committed
529
Proof.
530
  intros. destruct i, l as [|x0 [|x1 l]]; simplify_eq/=.
531 532
  - by exists 1, x1.
  - by exists 0, x0.
Robbert Krebbers's avatar
Robbert Krebbers committed
533
Qed.
534 535
Lemma alter_app_l f l1 l2 i :
  i < length l1 → alter f i (l1 ++ l2) = alter f i l1 ++ l2.
536
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
537
Lemma alter_app_r f l1 l2 i :
538
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
539
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
540 541
Lemma alter_app_r_alt f l1 l2 i :
  length l1 ≤ i → alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
542 543 544 545
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
546
Lemma list_alter_id f l i : (∀ x, f x = x) → alter f i l = l.
547
Proof. intros ?. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
548 549
Lemma list_alter_ext f g l k i :
  (∀ x, l !! i = Some x → f x = g x) → l = k → alter f i l = alter g i k.
550
Proof. intros H ->. revert i H. induction k; intros [|?] ?; f_equal/=; auto. Qed.
551 552
Lemma list_alter_compose f g l i :
  alter (f ∘ g) i l = alter f i (alter g i l).
553
Proof. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
554 555
Lemma list_alter_commute f g l i j :
  i ≠ j → alter f i (alter g j l) = alter g j (alter f i l).
556
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal/=; auto with lia. Qed.
557 558
Lemma insert_app_l l1 l2 i x :
  i < length l1 → <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
559
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
560
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
561
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
562 563
Lemma insert_app_r_alt l1 l2 i x :
  length l1 ≤ i → <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
564 565 566 567
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply insert_app_r.
Qed.
568
Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
569
Proof. induction l1; f_equal/=; auto. Qed.
570

571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
Lemma inserts_length l i k : length (list_inserts i k l) = length l.
Proof.
  revert i. induction k; intros ?; csimpl; rewrite ?insert_length; auto.
Qed.
Lemma list_lookup_inserts l i k j :
  i ≤ j < i + length k → j < length l →
  list_inserts i k l !! j = k !! (j - i).
Proof.
  revert i j. induction k as [|y k IH]; csimpl; intros i j ??; [lia|].
  destruct (decide (i = j)) as [->|].
  { by rewrite list_lookup_insert, Nat.sub_diag
      by (rewrite inserts_length; lia). }
  rewrite list_lookup_insert_ne, IH by lia.
  by replace (j - i) with (S (j - S i)) by lia.
Qed.
Lemma list_lookup_inserts_lt l i k j :
  j < i → list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; intros i j ?; csimpl;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_ge l i k j :
  i + length k ≤ j → list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; csimpl; intros i j ?;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_Some l i k j y :
  list_inserts i k l !! j = Some y ↔
    (j < i ∨ i + length k ≤ j) ∧ l !! j = Some y ∨
    i ≤ j < i + length k ∧ j < length l ∧ k !! (j - i) = Some y.
Proof.
  destruct (decide (j < i)).
  { rewrite list_lookup_inserts_lt by done; intuition lia. }
  destruct (decide (i + length k ≤ j)).
  { rewrite list_lookup_inserts_ge by done; intuition lia. }
  split.
608
  - intros Hy. assert (j < length l).
609 610
    { rewrite <-(inserts_length l i k); eauto using lookup_lt_Some. }
    rewrite list_lookup_inserts in Hy by lia. intuition lia.
611
  - intuition. by rewrite list_lookup_inserts by lia.
612 613 614 615 616 617 618 619
Qed.
Lemma list_insert_inserts_lt l i j x k :
  i < j → <[i:=x]>(list_inserts j k l) = list_inserts j k (<[i:=x]>l).
Proof.
  revert i j. induction k; intros i j ?; simpl;
    rewrite 1?list_insert_commute by lia; auto with f_equal.
Qed.

620
(** ** Properties of the [elem_of] predicate *)
621
Lemma not_elem_of_nil x : x ∉ [].
622
Proof. by inversion 1. Qed.
623
Lemma elem_of_nil x : x ∈ [] ↔ False.
624
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
625
Lemma elem_of_nil_inv l : (∀ x, x ∉ l) → l = [].
626
Proof. destruct l. done. by edestruct 1; constructor. Qed.
627 628
Lemma elem_of_not_nil x l : x ∈ l → l ≠ [].
Proof. intros ? ->. by apply (elem_of_nil x). Qed.
629
Lemma elem_of_cons l x y : x ∈ y :: l ↔ x = y ∨ x ∈ l.
Robbert Krebbers's avatar
Robbert Krebbers committed
630
Proof. by split; [inversion 1; subst|intros [->|?]]; constructor. Qed.
631
Lemma not_elem_of_cons l x y : x ∉ y :: l ↔ x ≠ y ∧ x ∉ l.
Robbert Krebbers's avatar
Robbert Krebbers committed
632
Proof. rewrite elem_of_cons. tauto. Qed.
633
Lemma elem_of_app l1 l2 x : x ∈ l1 ++ l2 ↔ x ∈ l1 ∨ x ∈ l2.
634
Proof.
635
  induction l1.
636 637
  - split; [by right|]. intros [Hx|]; [|done]. by destruct (elem_of_nil x).
  - simpl. rewrite !elem_of_cons, IHl1. tauto.
638
Qed.
639
Lemma not_elem_of_app l1 l2 x : x ∉ l1 ++ l2 ↔ x ∉ l1 ∧ x ∉ l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
640
Proof. rewrite elem_of_app. tauto. Qed.
641
Lemma elem_of_list_singleton x y : x ∈ [y] ↔ x = y.
642
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
643
Global Instance elem_of_list_permutation_proper x : Proper ((≡ₚ) ==> iff) (x ∈).
644
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
645
Lemma elem_of_list_split l x : x ∈ l → ∃ l1 l2, l = l1 ++ x :: l2.
646
Proof.
647
  induction 1 as [x l|x y l ? [l1 [l2 ->]]]; [by eexists [], l|].
648
  by exists (y :: l1), l2.
649
Qed.
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
Lemma elem_of_list_split_l `{EqDecision A} l x :
  x ∈ l → ∃ l1 l2, l = l1 ++ x :: l2 ∧ x ∉ l1.
Proof.
  induction 1 as [x l|x y l ? IH].
  { exists [], l. rewrite elem_of_nil. naive_solver. }
  destruct (decide (x = y)) as [->|?].
  - exists [], l. rewrite elem_of_nil. naive_solver.
  - destruct IH as (l1 & l2 & -> & ?).
    exists (y :: l1), l2. rewrite elem_of_cons. naive_solver.
Qed.
Lemma elem_of_list_split_r `{EqDecision A} l x :
  x ∈ l → ∃ l1 l2, l = l1 ++ x :: l2 ∧ x ∉ l2.
Proof.
  induction l as [|y l IH] using rev_ind.
  { by rewrite elem_of_nil. }
  destruct (decide (x = y)) as [->|].
  - exists l, []. rewrite elem_of_nil. naive_solver.
  - rewrite elem_of_app, elem_of_list_singleton. intros [?| ->]; try done.
    destruct IH as (l1 & l2 & -> & ?); auto.
    exists l1, (l2 ++ [y]).
    rewrite elem_of_app, elem_of_list_singleton, <-(assoc_L (++)). naive_solver.
Qed.
672
Lemma elem_of_list_lookup_1 l x : x ∈ l → ∃ i, l !! i = Some x.
673
Proof.
674 675
  induction 1 as [|???? IH]; [by exists 0 |].
  destruct IH as [i ?]; auto. by exists (S i).
676
Qed.
677
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x → x ∈ l.
678
Proof.
679
  revert i. induction l; intros [|i] ?; simplify_eq/=; constructor; eauto.
680
Qed.
681 682
Lemma elem_of_list_lookup l x : x ∈ l ↔ ∃ i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.
683 684 685 686
Lemma elem_of_list_omap {B} (f : A → option B) l (y : B) :
  y ∈ omap f l ↔ ∃ x, x ∈ l ∧ f x = Some y.
Proof.
  split.
687
  - induction l as [|x l]; csimpl; repeat case_match; inversion 1; subst;
688
      setoid_rewrite elem_of_cons; naive_solver.
689
  - intros (x&Hx&?). by induction Hx; csimpl; repeat case_match;
690
      simplify_eq; try constructor; auto.
691
Qed.
692

693
(** ** Properties of the [NoDup] predicate *)
694 695
Lemma NoDup_nil : NoDup (@nil A) ↔ True.
Proof. split; constructor. Qed.
696
Lemma NoDup_cons x l : NoDup (x :: l) ↔ x ∉ l ∧ NoDup l.
697
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
698
Lemma NoDup_cons_11 x l : NoDup (x :: l) → x ∉ l.
699
Proof. rewrite NoDup_cons. by intros [??]. Qed.
700
Lemma NoDup_cons_12 x l : NoDup (x :: l) → NoDup l.
701
Proof. rewrite NoDup_cons. by intros [??]. Qed.
702
Lemma NoDup_singleton x : NoDup [x].
703
Proof. constructor. apply not_elem_of_nil. constructor. Qed.
704
Lemma NoDup_app l k : NoDup (l ++ k) ↔ NoDup l ∧ (∀ x, x ∈ l → x ∉ k) ∧ NoDup k.
Robbert Krebbers's avatar
Robbert Krebbers committed
705
Proof.
706
  induction l; simpl.
707 708
  - rewrite NoDup_nil. setoid_rewrite elem_of_nil. naive_solver.
  - rewrite !NoDup_cons.
Robbert Krebbers's avatar
Robbert Krebbers committed
709
    setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app. naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
710
Qed.
711
Global Instance NoDup_proper: Proper ((≡ₚ) ==> iff) (@NoDup A).
712 713
Proof.
  induction 1 as [|x l k Hlk IH | |].
714 715 716 717
  - by rewrite !NoDup_nil.
  - by rewrite !NoDup_cons, IH, Hlk.
  - rewrite !NoDup_cons, !elem_of_cons. intuition.
  - intuition.
718
Qed.
719 720
Lemma NoDup_lookup l i j x :
  NoDup l → l !! i = Some x → l !! j = Some x → i = j.
721 722
Proof.
  intros Hl. revert i j. induction Hl as [|x' l Hx Hl IH].
723 724
  { intros; simplify_eq. }
  intros [|i] [|j] ??; simplify_eq/=; eauto with f_equal;
725 726
    exfalso; eauto using elem_of_list_lookup_2.
Qed.
727 728
Lemma NoDup_alt l :
  NoDup l ↔ ∀ i j x, l !! i = Some x → l !! j = Some x → i = j.
729
Proof.
730 731
  split; eauto using NoDup_lookup.
  induction l as [|x l IH]; intros Hl; constructor.
732
  - rewrite elem_of_list_lookup. intros [i ?].
733
    by feed pose proof (Hl (S i) 0 x); auto.
734
  - apply IH. intros i j x' ??. by apply (inj S), (Hl (S i) (S j) x').
735
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
736

737
Section no_dup_dec.
738
  Context `{!EqDecision A}.
739 740 741 742
  Global Instance NoDup_dec: ∀ l, Decision (NoDup l) :=
    fix NoDup_dec l :=
    match l return Decision (NoDup l) with
    | [] => left NoDup_nil_2
743
    | x :: l =>
744 745 746 747 748 749 750 751
      match decide_rel (∈) x l with
      | left Hin => right (λ H, NoDup_cons_11 _ _ H Hin)
      | right Hin =>
        match NoDup_dec l with
        | left H => left (NoDup_cons_2 _ _ Hin H)
        | right H => right (H ∘ NoDup_cons_12 _ _)
        end
      end
752
    end.
753
  Lemma elem_of_remove_dups l x : x ∈ remove_dups l ↔ x ∈ l.
754 755
  Proof.
    split; induction l; simpl; repeat case_decide;
756
      rewrite ?elem_of_cons; intuition (simplify_eq; auto).
757
  Qed.
758
  Lemma NoDup_remove_dups l : NoDup (remove_dups l).
759 760 761 762
  Proof.
    induction l; simpl; repeat case_decide; try constructor; auto.
    by rewrite elem_of_remove_dups.
  Qed.
763
End no_dup_dec.
764

765 766
(** ** Set operations on lists *)
Section list_set.
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
  Lemma elem_of_list_intersection_with f l k x :
    x ∈ list_intersection_with f l k ↔ ∃ x1 x2,
        x1 ∈ l ∧ x2 ∈ k ∧ f x1 x2 = Some x.
  Proof.
    split.
    - induction l as [|x1 l IH]; simpl; [by rewrite elem_of_nil|].
      intros Hx. setoid_rewrite elem_of_cons.
      cut ((∃ x2, x2 ∈ k ∧ f x1 x2 = Some x)
           ∨ x ∈ list_intersection_with f l k); [naive_solver|].
      clear IH. revert Hx. generalize (list_intersection_with f l k).
      induction k; simpl; [by auto|].
      case_match; setoid_rewrite elem_of_cons; naive_solver.
    - intros (x1&x2&Hx1&Hx2&Hx). induction Hx1 as [x1|x1 ? l ? IH]; simpl.
      + generalize (list_intersection_with f l k).
        induction Hx2; simpl; [by rewrite Hx; left |].
        case_match; simpl; try setoid_rewrite elem_of_cons; auto.
      + generalize (IH Hx). clear Hx IH Hx2.
        generalize (list_intersection_with f l k).
        induction k; simpl; intros; [done|].
        case_match; simpl; rewrite ?elem_of_cons; auto.
  Qed.

789
  Context `{!EqDecision A}.
790 791 792 793 794 795 796 797
  Lemma elem_of_list_difference l k x : x ∈ list_difference l k ↔ x ∈ l ∧ x ∉ k.
  Proof.
    split; induction l; simpl; try case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_difference l k : NoDup l → NoDup (list_difference l k).
  Proof.
    induction 1; simpl; try case_decide.
798 799 800
    - constructor.
    - done.
    - constructor. rewrite elem_of_list_difference; intuition. done.
801 802 803 804 805 806 807 808 809
  Qed.
  Lemma elem_of_list_union l k x : x ∈ list_union l k ↔ x ∈ l ∨ x ∈ k.
  Proof.
    unfold list_union. rewrite elem_of_app, elem_of_list_difference.
    intuition. case (decide (x ∈ k)); intuition.
  Qed.
  Lemma NoDup_list_union l k : NoDup l → NoDup k → NoDup (list_union l k).
  Proof.
    intros. apply NoDup_app. repeat split.
810 811 812
    - by apply NoDup_list_difference.
    - intro. rewrite elem_of_list_difference. intuition.
    - done.
813 814 815 816 817 818 819 820 821 822
  Qed.
  Lemma elem_of_list_intersection l k x :
    x ∈ list_intersection l k ↔ x ∈ l ∧ x ∈ k.
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_intersection l k : NoDup l → NoDup (list_intersection l k).
  Proof.
    induction 1; simpl; try case_decide.
823 824 825
    - constructor.
    - constructor. rewrite elem_of_list_intersection; intuition. done.
    - done.
826 827 828
  Qed.
End list_set.

829
(** ** Properties of the [filter] function *)
830 831 832 833 834 835 836
Section filter.
  Context (P : A → Prop) `{∀ x, Decision (P x)}.
  Lemma elem_of_list_filter l x : x ∈ filter P l ↔ P x ∧ x ∈ l.
  Proof.
    unfold filter. induction l; simpl; repeat case_decide;
       rewrite ?elem_of_nil, ?elem_of_cons; naive_solver.
  Qed.
837
  Lemma NoDup_filter l : NoDup l → NoDup (filter P l).
838 839 840 841 842
  Proof.
    unfold filter. induction 1; simpl; repeat case_decide;
      rewrite ?NoDup_nil, ?NoDup_cons, ?elem_of_list_filter; tauto.
  Qed.
End filter.
Robbert Krebbers's avatar
Robbert Krebbers committed
843

844 845 846
(** ** Properties of the [find] function *)
Section find.
  Context (P : A → Prop) `{∀ x, Decision (P x)}.
847 848
  Lemma list_find_Some l i x :
    list_find P l = Some (i,x) → l !! i = Some x ∧ P x.
849
  Proof.
850 851 852
    revert i; induction l; intros [] ?; repeat first
      [ match goal with x : prod _ _ |- _ => destruct x end
      | simplify_option_eq ]; eauto.
853
  Qed.
854
  Lemma list_find_elem_of l x : x ∈ l → P x → is_Some (list_find P l).
855
  Proof.
856
    induction 1 as [|x y l ? IH]; intros; simplify_option_eq; eauto.
857
    by destruct IH as [[i x'] ->]; [|exists (S i, x')].
858 859 860
  Qed.
End find.

861
(** ** Properties of the [reverse] function *)
862
Lemma reverse_nil : reverse [] =@{list A} [].
863
Proof. done. Qed.
864
Lemma reverse_singleton x : reverse [x] = [x].
865
Proof. done. Qed.
866
Lemma reverse_cons l x : reverse (x :: l) = reverse l ++ [x].
867
Proof. unfold reverse. by rewrite <-!rev_alt. Qed.
868
Lemma reverse_snoc l x : reverse (l ++ [x]) = x :: reverse l.
869
Proof. unfold reverse. by rewrite <-!rev_alt, rev_unit. Qed.
870
Lemma reverse_app l1 l2 : reverse (l1 ++ l2) = reverse l2 ++ reverse l1.
871
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_app_distr. Qed.
872
Lemma reverse_length l : length (reverse l) = length l.
873
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_length. Qed.
874
Lemma reverse_involutive l : reverse (reverse l) = l.
875
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_involutive. Qed.
876 877 878 879 880 881 882 883 884 885
Lemma elem_of_reverse_2 x l : x ∈ l → x ∈ reverse l.
Proof.
  induction 1; rewrite reverse_cons, elem_of_app,
    ?elem_of_list_singleton; intuition.
Qed.
Lemma elem_of_reverse x l : x ∈ reverse l ↔ x ∈ l.
Proof.
  split; auto using elem_of_reverse_2.
  intros. rewrite <-(reverse_involutive l). by apply elem_of_reverse_2.
Qed.
886
Global Instance: Inj (=) (=) (@reverse A).
887 888 889 890
Proof.
  intros l1 l2 Hl.
  by rewrite <-(reverse_involutive l1), <-(reverse_involutive l2), Hl.
Qed.
891 892 893 894 895 896 897 898
Lemma sum_list_with_app (f : A → nat) l k :
  sum_list_with f (l ++ k) = sum_list_with f l + sum_list_with f k.
Proof. induction l; simpl; lia. Qed.
Lemma sum_list_with_reverse (f : A → nat) l :
  sum_list_with f (reverse l) = sum_list_with f l.
Proof.
  induction l; simpl; rewrite ?reverse_cons, ?sum_list_with_app; simpl; lia.
Qed.
899

900 901 902
(** ** Properties of the [last] function *)
Lemma last_snoc x l : last (l ++ [x]) = Some x.
Proof. induction l as [|? []]; simpl; auto. Qed.
903 904 905 906
Lemma last_reverse l : last (reverse l) = head l.
Proof. by destruct l as [|x l]; rewrite ?reverse_cons, ?last_snoc. Qed.
Lemma head_reverse l : head (reverse l) = last l.
Proof. by rewrite <-last_reverse, reverse_involutive. Qed.
907

908 909 910 911 912
(** ** Properties of the [take] function *)
Definition take_drop i l : take i l ++ drop i l = l := firstn_skipn i l.
Lemma take_drop_middle l i x :
  l !! i = Some x → take i l ++ x :: drop (S i) l = l.
Proof.
913
  revert i x. induction l; intros [|?] ??; simplify_eq/=; f_equal; auto.
914
Qed.
915
Lemma take_nil n : take n [] =@{list A} [].
Robbert Krebbers's avatar
Robbert Krebbers committed
916
Proof. by destruct n. Qed.
917
Lemma take_app l k : take (length l) (l ++ k) = l.
918
Proof. induction l; f_equal/=; auto. Qed.
919
Lemma take_app_alt l k n : n = length l → take n (l ++ k) = l.
920 921
Proof. intros ->. by apply take_app. Qed.
Lemma take_app3_alt l1 l2 l3 n : n = length l1 → take n ((l1 ++ l2) ++ l3) = l1.
922
Proof. intros ->. by rewrite <-(assoc_L (++)), take_app. Qed.
923
Lemma take_app_le l k n : n ≤ length l → take n (l ++ k) = take n l.
924
Proof. revert n. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
925 926
Lemma take_plus_app l k n m :
  length l = n → take (n + m) (l ++ k) = l ++ take m k.
927
Proof. intros <-. induction l; f_equal/=; auto. Qed.
928 929
Lemma take_app_ge l k n :
  length l ≤ n → take n (l ++ k) = l ++ take (n - length l) k.
930
Proof. revert n. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
931
Lemma take_ge l n : length l ≤ n → take n l = l.
932
Proof. revert n. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
933
Lemma take_take l n m : take n (take m l) = take (min n m) l.
934
Proof. revert n m. induction l; intros [|?] [|?]; f_equal/=; auto. Qed.
935