list.v 174 KB
Newer Older
1
(* Copyright (c) 2012-2019, Coq-std++ developers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
5
From Coq Require Export Permutation.
6
From stdpp Require Export numbers base option.
7
Set Default Proof Using "Type*".
Robbert Krebbers's avatar
Robbert Krebbers committed
8

9 10 11
Arguments length {_} _ : assert.
Arguments cons {_} _ _ : assert.
Arguments app {_} _ _ : assert.
12

13 14 15
Instance: Params (@length) 1 := {}.
Instance: Params (@cons) 1 := {}.
Instance: Params (@app) 1 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
16

17 18 19
Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.
20

21 22 23
Arguments tail {_} _ : assert.
Arguments take {_} !_ !_ / : assert.
Arguments drop {_} !_ !_ / : assert.
24

25 26 27
Instance: Params (@tail) 1 := {}.
Instance: Params (@take) 1 := {}.
Instance: Params (@drop) 1 := {}.
28

29 30
Arguments Permutation {_} _ _ : assert.
Arguments Forall_cons {_} _ _ _ _ _ : assert.
31
Remove Hints Permutation_cons : typeclass_instances.
32

33 34 35 36 37 38
Notation "(::)" := cons (only parsing) : list_scope.
Notation "( x ::)" := (cons x) (only parsing) : list_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : list_scope.
Notation "(++)" := app (only parsing) : list_scope.
Notation "( l ++)" := (app l) (only parsing) : list_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : list_scope.
39 40 41 42 43 44 45 46 47

Infix "≡ₚ" := Permutation (at level 70, no associativity) : stdpp_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : stdpp_scope.
Notation "( x ≡ₚ)" := (Permutation x) (only parsing) : stdpp_scope.
Notation "(≡ₚ x )" := (λ y, y  x) (only parsing) : stdpp_scope.
Notation "(≢ₚ)" := (λ x y, ¬x  y) (only parsing) : stdpp_scope.
Notation "x ≢ₚ y":= (¬x  y) (at level 70, no associativity) : stdpp_scope.
Notation "( x ≢ₚ)" := (λ y, x ≢ₚ y) (only parsing) : stdpp_scope.
Notation "(≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : stdpp_scope.
48

Robbert Krebbers's avatar
Robbert Krebbers committed
49 50 51 52
Infix "≡ₚ@{ A }" :=
  (@Permutation A) (at level 70, no associativity, only parsing) : stdpp_scope.
Notation "(≡ₚ@{ A } )" := (@Permutation A) (only parsing) : stdpp_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
53 54 55
Instance maybe_cons {A} : Maybe2 (@cons A) := λ l,
  match l with x :: l => Some (x,l) | _ => None end.

56
(** * Definitions *)
57 58 59 60 61 62
(** Setoid equality lifted to lists *)
Inductive list_equiv `{Equiv A} : Equiv (list A) :=
  | nil_equiv : []  []
  | cons_equiv x y l k : x  y  l  k  x :: l  y :: k.
Existing Instance list_equiv.

63 64
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
65 66
Instance list_lookup {A} : Lookup nat A (list A) :=
  fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
67
  match l with
68
  | [] => None | x :: l => match i with 0 => Some x | S i => l !! i end
69
  end.
70 71 72

(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
73
Instance list_alter {A} : Alter nat A (list A) := λ f,
74
  fix go i l {struct l} :=
75 76
  match l with
  | [] => []
77
  | x :: l => match i with 0 => f x :: l | S i => x :: go i l end
78
  end.
79

80 81
(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
82 83
Instance list_insert {A} : Insert nat A (list A) :=
  fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
84 85 86 87
  match l with
  | [] => []
  | x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end
  end.
88 89 90 91 92
Fixpoint list_inserts {A} (i : nat) (k l : list A) : list A :=
  match k with
  | [] => l
  | y :: k => <[i:=y]>(list_inserts (S i) k l)
  end.
93
Instance: Params (@list_inserts) 1 := {}.
94

95 96 97
(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
98 99
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
100 101
  match l with
  | [] => []
102
  | x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end
103
  end.
104 105 106

(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
107
Definition option_list {A} : option A  list A := option_rect _ (λ x, [x]) [].
108
Instance: Params (@option_list) 1 := {}.
109
Instance maybe_list_singleton {A} : Maybe (λ x : A, [x]) := λ l,
110
  match l with [x] => Some x | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
111 112 113 114

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
115
  fix go P _ l := let _ : Filter _ _ := @go in
Robbert Krebbers's avatar
Robbert Krebbers committed
116 117
  match l with
  | [] => []
118
  | x :: l => if decide (P x) then x :: filter P l else filter P l
119 120 121 122
  end.

(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
123
Definition list_find {A} P `{ x, Decision (P x)} : list A  option (nat * A) :=
124 125
  fix go l :=
  match l with
126 127
  | [] => None
  | x :: l => if decide (P x) then Some (0,x) else prod_map S id <$> go l
128
  end.
129
Instance: Params (@list_find) 3 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
130 131 132 133

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
134
  match n with 0 => [] | S n => x :: replicate n x end.
135
Instance: Params (@replicate) 2 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
136 137 138

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].
139
Instance: Params (@reverse) 1 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
140

141 142 143 144
(** The function [last l] returns the last element of the list [l], or [None]
if the list [l] is empty. *)
Fixpoint last {A} (l : list A) : option A :=
  match l with [] => None | [x] => Some x | _ :: l => last l end.
145
Instance: Params (@last) 1 := {}.
146

Robbert Krebbers's avatar
Robbert Krebbers committed
147 148 149 150 151 152
(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
153
  | x :: l => match n with 0 => [] | S n => x :: resize n y l end
Robbert Krebbers's avatar
Robbert Krebbers committed
154
  end.
155
Arguments resize {_} !_ _ !_ : assert.
156
Instance: Params (@resize) 2 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
157

158 159 160
(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
161 162
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
163
  | [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
164
  end.
165
Instance: Params (@reshape) 2 := {}.
166

167
Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
168 169 170 171
  guard (i + n  length l); Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A  list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.
172

173 174 175 176
(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.
Definition foldl {A B} (f : A  B  A) : A  list B  A :=
177
  fix go a l := match l with [] => a | x :: l => go (f a x) l end.
178 179 180

(** The monadic operations. *)
Instance list_ret: MRet list := λ A x, x :: @nil A.
181 182
Instance list_fmap : FMap list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x :: go l end.
183 184 185 186 187 188
Instance list_omap : OMap list := λ A B f,
  fix go (l : list A) :=
  match l with
  | [] => []
  | x :: l => match f x with Some y => y :: go l | None => go l end
  end.
189 190
Instance list_bind : MBind list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x ++ go l end.
191 192
Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
193
  match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.
194
Definition mapM `{MBind M, MRet M} {A B} (f : A  M B) : list A  M (list B) :=
195
  fix go l :=
196
  match l with [] => mret [] | x :: l => y  f x; k  go l; mret (y :: k) end.
197 198 199

(** We define stronger variants of map and fold that allow the mapped
function to use the index of the elements. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
200 201 202 203 204
Fixpoint imap {A B} (f : nat  A  B) (l : list A) : list B :=
  match l with
  | [] => []
  | x :: l => f 0 x :: imap (f  S) l
  end.
205

206
Definition zipped_map {A B} (f : list A  list A  A  B) :
Robbert Krebbers's avatar
Robbert Krebbers committed
207 208 209 210 211
    list A  list A  list B := fix go l k :=
  match k with
  | [] => []
  | x :: k => f l k x :: go (x :: l) k
  end.
212

Robbert Krebbers's avatar
Robbert Krebbers committed
213
Fixpoint imap2 {A B C} (f : nat  A  B  C) (l : list A) (k : list B) : list C :=
Robbert Krebbers's avatar
Robbert Krebbers committed
214
  match l, k with
Robbert Krebbers's avatar
Robbert Krebbers committed
215 216
  | [], _ | _, [] => []
  | x :: l, y :: k => f 0 x y :: imap2 (f  S) l k
Robbert Krebbers's avatar
Robbert Krebbers committed
217 218
  end.

219 220 221 222 223
Inductive zipped_Forall {A} (P : list A  list A  A  Prop) :
    list A  list A  Prop :=
  | zipped_Forall_nil l : zipped_Forall P l []
  | zipped_Forall_cons l k x :
     P l k x  zipped_Forall P (x :: l) k  zipped_Forall P l (x :: k).
224 225
Arguments zipped_Forall_nil {_ _} _ : assert.
Arguments zipped_Forall_cons {_ _} _ _ _ _ _ : assert.
226

227 228 229 230 231 232 233
(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A  A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l => (if β then f x else x) :: mask f βs l
  | _, _ => l
  end.
234 235 236 237

(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
238
  | [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::) <$> interleave x l)
239 240
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
241
  match l with [] => [[]] | x :: l => permutations l = interleave x end.
242

Robbert Krebbers's avatar
Robbert Krebbers committed
243 244 245 246
(** The predicate [suffix] holds if the first list is a suffix of the second.
The predicate [prefix] holds if the first list is a prefix of the second. *)
Definition suffix {A} : relation (list A) := λ l1 l2,  k, l2 = k ++ l1.
Definition prefix {A} : relation (list A) := λ l1 l2,  k, l2 = l1 ++ k.
247 248
Infix "`suffix_of`" := suffix (at level 70) : stdpp_scope.
Infix "`prefix_of`" := prefix (at level 70) : stdpp_scope.
249 250
Hint Extern 0 (_ `prefix_of` _) => reflexivity : core.
Hint Extern 0 (_ `suffix_of` _) => reflexivity : core.
Robbert Krebbers's avatar
Robbert Krebbers committed
251

252
Section prefix_suffix_ops.
253 254
  Context `{EqDecision A}.

Robbert Krebbers's avatar
Robbert Krebbers committed
255
  Definition max_prefix : list A  list A  list A * list A * list A :=
256 257 258 259 260
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
261
      if decide_rel (=) x1 x2
262
      then prod_map id (x1 ::) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
263
    end.
Robbert Krebbers's avatar
Robbert Krebbers committed
264 265
  Definition max_suffix (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix (reverse l1) (reverse l2) with
266 267
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.
Robbert Krebbers's avatar
Robbert Krebbers committed
268 269
  Definition strip_prefix (l1 l2 : list A) := (max_prefix l1 l2).1.2.
  Definition strip_suffix (l1 l2 : list A) := (max_suffix l1 l2).1.2.
270
End prefix_suffix_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
271

272
(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
273 274 275
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
276
  | sublist_skip x l1 l2 : sublist l1 l2  sublist (x :: l1) (x :: l2)
277
  | sublist_cons x l1 l2 : sublist l1 l2  sublist l1 (x :: l2).
278
Infix "`sublist_of`" := sublist (at level 70) : stdpp_scope.
279
Hint Extern 0 (_ `sublist_of` _) => reflexivity : core.
280

Robbert Krebbers's avatar
Robbert Krebbers committed
281
(** A list [l2] submseteq a list [l1] if [l2] is obtained by removing elements
282
from [l1] while possiblity changing the order. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
283 284 285 286 287 288
Inductive submseteq {A} : relation (list A) :=
  | submseteq_nil : submseteq [] []
  | submseteq_skip x l1 l2 : submseteq l1 l2  submseteq (x :: l1) (x :: l2)
  | submseteq_swap x y l : submseteq (y :: x :: l) (x :: y :: l)
  | submseteq_cons x l1 l2 : submseteq l1 l2  submseteq l1 (x :: l2)
  | submseteq_trans l1 l2 l3 : submseteq l1 l2  submseteq l2 l3  submseteq l1 l3.
289
Infix "⊆+" := submseteq (at level 70) : stdpp_scope.
290
Hint Extern 0 (_ + _) => reflexivity : core.
291

292 293 294 295 296 297 298 299 300 301 302 303 304 305
(** Removes [x] from the list [l]. The function returns a [Some] when the
+removal succeeds and [None] when [x] is not in [l]. *)
Fixpoint list_remove `{EqDecision A} (x : A) (l : list A) : option (list A) :=
  match l with
  | [] => None
  | y :: l => if decide (x = y) then Some l else (y ::) <$> list_remove x l
  end.

(** Removes all elements in the list [k] from the list [l]. The function returns
a [Some] when the removal succeeds and [None] some element of [k] is not in [l]. *)
Fixpoint list_remove_list `{EqDecision A} (k : list A) (l : list A) : option (list A) :=
  match k with
  | [] => Some l | x :: k => list_remove x l = list_remove_list k
  end.
306

307 308 309 310 311
Inductive Forall3 {A B C} (P : A  B  C  Prop) :
     list A  list B  list C  Prop :=
  | Forall3_nil : Forall3 P [] [] []
  | Forall3_cons x y z l k k' :
     P x y z  Forall3 P l k k'  Forall3 P (x :: l) (y :: k) (z :: k').
312

313 314
(** Set operations on lists *)
Instance list_subseteq {A} : SubsetEq (list A) := λ l1 l2,  x, x  l1  x  l2.
315

316
Section list_set.
317
  Context `{dec : EqDecision A}.
Robbert Krebbers's avatar
Robbert Krebbers committed
318
  Global Instance elem_of_list_dec : RelDecision (@{list A}).
319 320
  Proof.
   refine (
321
    fix go x l :=
322 323
    match l return Decision (x  l) with
    | [] => right _
324
    | y :: l => cast_if_or (decide (x = y)) (go x l)
325 326 327 328 329 330 331 332 333 334 335 336 337
    end); clear go dec; subst; try (by constructor); abstract by inversion 1.
  Defined.
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x l then remove_dups l else x :: remove_dups l
    end.
  Fixpoint list_difference (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
338
      then list_difference l k else x :: list_difference l k
339
    end.
340
  Definition list_union (l k : list A) : list A := list_difference l k ++ k.
341 342 343 344 345
  Fixpoint list_intersection (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
346
      then x :: list_intersection l k else list_intersection l k
347 348 349 350 351 352 353 354 355
    end.
  Definition list_intersection_with (f : A  A  option A) :
    list A  list A  list A := fix go l k :=
    match l with
    | [] => []
    | x :: l => foldr (λ y,
        match f x y with None => id | Some z => (z ::) end) (go l k) k
    end.
End list_set.
356

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
(* These next functions allow to efficiently encode lists of positives (bit strings)
   into a single positive and go in the other direction as well. This is for
   example used for the countable instance of lists and in namespaces.
   The main functions are positives_flatten and positives_unflatten. *)
Fixpoint positives_flatten_go (xs : list positive) (acc : positive) : positive :=
  match xs with
  | [] => acc
  | x :: xs => positives_flatten_go xs (acc~1~0 ++ Preverse (Pdup x))
  end.

(** Flatten a list of positives into a single positive by
    duplicating the bits of each element, so that
    * 0 -> 00
    * 1 -> 11
    and then separating each element with 10. *)
Definition positives_flatten (xs : list positive) : positive :=
  positives_flatten_go xs 1.

Fixpoint positives_unflatten_go
        (p : positive)
        (acc_xs : list positive)
        (acc_elm : positive)
  : option (list positive) :=
  match p with
  | 1 => Some acc_xs
  | p'~0~0 => positives_unflatten_go p' acc_xs (acc_elm~0)
  | p'~1~1 => positives_unflatten_go p' acc_xs (acc_elm~1)
  | p'~1~0 => positives_unflatten_go p' (acc_elm :: acc_xs) 1
  | _ => None
  end%positive.

(** Unflatten a positive into a list of positives, assuming the encoding
    used by positives_flatten. *)
Definition positives_unflatten (p : positive) : option (list positive) :=
  positives_unflatten_go p [] 1.

393
(** * Basic tactics on lists *)
Robbert Krebbers's avatar
Robbert Krebbers committed
394
(** The tactic [discriminate_list] discharges a goal if it submseteq
395 396
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
397
Tactic Notation "discriminate_list" hyp(H) :=
398
  apply (f_equal length) in H;
399
  repeat (csimpl in H || rewrite app_length in H); exfalso; lia.
400
Tactic Notation "discriminate_list" :=
401
  match goal with H : _ =@{list _} _ |- _ => discriminate_list H end.
402

403
(** The tactic [simplify_list_eq] simplifies hypotheses involving
404 405
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
406
Lemma app_inj_1 {A} (l1 k1 l2 k2 : list A) :
407 408
  length l1 = length k1  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
409
Lemma app_inj_2 {A} (l1 k1 l2 k2 : list A) :
410 411
  length l2 = length k2  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof.
412
  intros ? Hl. apply app_inj_1; auto.
413 414
  apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
Qed.
415
Ltac simplify_list_eq :=
416
  repeat match goal with
417
  | _ => progress simplify_eq/=
418
  | H : _ ++ _ = _ ++ _ |- _ => first
419
    [ apply app_inv_head in H | apply app_inv_tail in H
420 421
    | apply app_inj_1 in H; [destruct H|done]
    | apply app_inj_2 in H; [destruct H|done] ]
Robbert Krebbers's avatar
Robbert Krebbers committed
422
  | H : [?x] !! ?i = Some ?y |- _ =>
423
    destruct i; [change (Some x = Some y) in H | discriminate]
424
  end.
425

426 427
(** * General theorems *)
Section general_properties.
Robbert Krebbers's avatar
Robbert Krebbers committed
428
Context {A : Type}.
429 430
Implicit Types x y z : A.
Implicit Types l k : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
431

432
Global Instance: Inj2 (=) (=) (=) (@cons A).
433
Proof. by injection 1. Qed.
434
Global Instance:  k, Inj (=) (=) (k ++).
435
Proof. intros ???. apply app_inv_head. Qed.
436
Global Instance:  k, Inj (=) (=) (++ k).
437
Proof. intros ???. apply app_inv_tail. Qed.
438
Global Instance: Assoc (=) (@app A).
439 440 441 442 443
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.
444

445
Lemma app_nil l1 l2 : l1 ++ l2 = []  l1 = []  l2 = [].
446
Proof. split. apply app_eq_nil. by intros [-> ->]. Qed.
447 448
Lemma app_singleton l1 l2 x :
  l1 ++ l2 = [x]  l1 = []  l2 = [x]  l1 = [x]  l2 = [].
449
Proof. split. apply app_eq_unit. by intros [[-> ->]|[-> ->]]. Qed.
450 451 452
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : ( i, l1 !! i = l2 !! i)  l1 = l2.
453
Proof.
454
  revert l2. induction l1 as [|x l1 IH]; intros [|y l2] H.
455 456 457
  - done.
  - discriminate (H 0).
  - discriminate (H 0).
458
  - f_equal; [by injection (H 0)|]. apply (IH _ $ λ i, H (S i)).
459
Qed.
460 461
Global Instance list_eq_dec {dec : EqDecision A} : EqDecision (list A) :=
  list_eq_dec dec.
462 463 464
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with [] => left _ | _ => right _ end. Defined.
Lemma list_singleton_reflect l :
465
  option_reflect (λ x, l = [x]) (length l  1) (maybe (λ x, [x]) l).
466 467 468 469
Proof. by destruct l as [|? []]; constructor. Defined.

Definition nil_length : length (@nil A) = 0 := eq_refl.
Definition cons_length x l : length (x :: l) = S (length l) := eq_refl.
470
Lemma nil_or_length_pos l : l = []  length l  0.
471
Proof. destruct l; simpl; auto with lia. Qed.
472
Lemma nil_length_inv l : length l = 0  l = [].
473 474
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
475
Proof. by destruct i. Qed.
476
Lemma lookup_tail l i : tail l !! i = l !! S i.
477
Proof. by destruct l. Qed.
478
Lemma lookup_lt_Some l i x : l !! i = Some x  i < length l.
479
Proof. revert i. induction l; intros [|?] ?; naive_solver auto with arith. Qed.
480 481 482
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i)  i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l  is_Some (l !! i).
483
Proof. revert i. induction l; intros [|?] ?; naive_solver eauto with lia. Qed.
484 485 486 487 488 489 490 491
Lemma lookup_lt_is_Some l i : is_Some (l !! i)  i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None  length l  i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None  length l  i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l  i  l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
492 493 494
Lemma list_eq_same_length l1 l2 n :
  length l2 = n  length l1 = n 
  ( i x y, i < n  l1 !! i = Some x  l2 !! i = Some y  x = y)  l1 = l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
495
Proof.
496
  intros <- Hlen Hl; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
497
  - destruct (lookup_lt_is_Some_2 l1 i) as [y Hy].
498 499
    { rewrite Hlen; eauto using lookup_lt_Some. }
    rewrite Hy; f_equal; apply (Hl i); eauto using lookup_lt_Some.
500
  - by rewrite lookup_ge_None, Hlen, <-lookup_ge_None.
Robbert Krebbers's avatar
Robbert Krebbers committed
501
Qed.
502
Lemma lookup_app_l l1 l2 i : i < length l1  (l1 ++ l2) !! i = l1 !! i.
503
Proof. revert i. induction l1; intros [|?]; naive_solver auto with lia. Qed.
504 505
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x  (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
506
Lemma lookup_app_r l1 l2 i :
507
  length l1  i  (l1 ++ l2) !! i = l2 !! (i - length l1).
508 509 510 511 512 513
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
Lemma lookup_app_Some l1 l2 i x :
  (l1 ++ l2) !! i = Some x 
    l1 !! i = Some x  length l1  i  l2 !! (i - length l1) = Some x.
Proof.
  split.
514
  - revert i. induction l1 as [|y l1 IH]; intros [|i] ?;
515
      simplify_eq/=; auto with lia.
516
    destruct (IH i) as [?|[??]]; auto with lia.
517
  - intros [?|[??]]; auto using lookup_app_l_Some. by rewrite lookup_app_r.
518
Qed.
519 520 521
Lemma list_lookup_middle l1 l2 x n :
  n = length l1  (l1 ++ x :: l2) !! n = Some x.
Proof. intros ->. by induction l1. Qed.
522

523
Lemma nth_lookup l i d : nth i l d = default d (l !! i).
524 525 526 527
Proof. revert i. induction l as [|x l IH]; intros [|i]; simpl; auto. Qed.
Lemma nth_lookup_Some l i d x : l !! i = Some x  nth i l d = x.
Proof. rewrite nth_lookup. by intros ->. Qed.
Lemma nth_lookup_or_length l i d : {l !! i = Some (nth i l d)} + {length l  i}.
Ralf Jung's avatar
Ralf Jung committed
528
Proof.
529
  rewrite nth_lookup. destruct (l !! i) eqn:?; eauto using lookup_ge_None_1.
Ralf Jung's avatar
Ralf Jung committed
530 531
Qed.

532
Lemma list_insert_alter l i x : <[i:=x]>l = alter (λ _, x) i l.
533
Proof. by revert i; induction l; intros []; intros; f_equal/=. Qed.
534
Lemma alter_length f l i : length (alter f i l) = length l.
535
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
536
Lemma insert_length l i x : length (<[i:=x]>l) = length l.
537
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
538
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
539
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
540
Lemma list_lookup_alter_ne f l i j : i  j  alter f i l !! j = l !! j.
541
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
542
Lemma list_lookup_insert l i x : i < length l  <[i:=x]>l !! i = Some x.
543
Proof. revert i. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
544
Lemma list_lookup_insert_ne l i j x : i  j  <[i:=x]>l !! j = l !! j.
545
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
546 547 548 549 550 551
Lemma list_lookup_insert_Some l i x j y :
  <[i:=x]>l !! j = Some y 
    i = j  x = y  j < length l  i  j  l !! j = Some y.
Proof.
  destruct (decide (i = j)) as [->|];
    [split|rewrite list_lookup_insert_ne by done; tauto].
552
  - intros Hy. assert (j < length l).
553 554
    { rewrite <-(insert_length l j x); eauto using lookup_lt_Some. }
    rewrite list_lookup_insert in Hy by done; naive_solver.
555
  - intros [(?&?&?)|[??]]; rewrite ?list_lookup_insert; naive_solver.
556 557 558
Qed.
Lemma list_insert_commute l i j x y :
  i  j  <[i:=x]>(<[j:=y]>l) = <[j:=y]>(<[i:=x]>l).
559
Proof. revert i j. by induction l; intros [|?] [|?] ?; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
560 561
Lemma list_insert_id l i x : l !! i = Some x  <[i:=x]>l = l.
Proof. revert i. induction l; intros [|i] [=]; f_equal/=; auto. Qed.
562 563
Lemma list_insert_ge l i x : length l  i  <[i:=x]>l = l.
Proof. revert i. induction l; intros [|i] ?; f_equal/=; auto with lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
564

565 566
Lemma list_lookup_other l i x :
  length l  1  l !! i = Some x   j y, j  i  l !! j = Some y.
Robbert Krebbers's avatar
Robbert Krebbers committed
567
Proof.
568
  intros. destruct i, l as [|x0 [|x1 l]]; simplify_eq/=.
569 570
  - by exists 1, x1.
  - by exists 0, x0.
Robbert Krebbers's avatar
Robbert Krebbers committed
571
Qed.
572 573
Lemma alter_app_l f l1 l2 i :
  i < length l1  alter f i (l1 ++ l2) = alter f i l1 ++ l2.
574
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
575
Lemma alter_app_r f l1 l2 i :
576
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
577
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
578 579
Lemma alter_app_r_alt f l1 l2 i :
  length l1  i  alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
580 581 582 583
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
584
Lemma list_alter_id f l i : ( x, f x = x)  alter f i l = l.
585
Proof. intros ?. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
586 587
Lemma list_alter_ext f g l k i :
  ( x, l !! i = Some x  f x = g x)  l = k  alter f i l = alter g i k.
588
Proof. intros H ->. revert i H. induction k; intros [|?] ?; f_equal/=; auto. Qed.
589 590
Lemma list_alter_compose f g l i :
  alter (f  g) i l = alter f i (alter g i l).
591
Proof. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
592 593
Lemma list_alter_commute f g l i j :
  i  j  alter f i (alter g j l) = alter g j (alter f i l).
594
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal/=; auto with lia. Qed.
595 596
Lemma insert_app_l l1 l2 i x :
  i < length l1  <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
597
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
598
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
599
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
600 601
Lemma insert_app_r_alt l1 l2 i x :
  length l1  i  <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
602 603 604 605
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply insert_app_r.
Qed.
606
Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
607
Proof. induction l1; f_equal/=; auto. Qed.
608

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
Lemma inserts_length l i k : length (list_inserts i k l) = length l.
Proof.
  revert i. induction k; intros ?; csimpl; rewrite ?insert_length; auto.
Qed.
Lemma list_lookup_inserts l i k j :
  i  j < i + length k  j < length l 
  list_inserts i k l !! j = k !! (j - i).
Proof.
  revert i j. induction k as [|y k IH]; csimpl; intros i j ??; [lia|].
  destruct (decide (i = j)) as [->|].
  { by rewrite list_lookup_insert, Nat.sub_diag
      by (rewrite inserts_length; lia). }
  rewrite list_lookup_insert_ne, IH by lia.
  by replace (j - i) with (S (j - S i)) by lia.
Qed.
Lemma list_lookup_inserts_lt l i k j :
  j < i  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; intros i j ?; csimpl;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_ge l i k j :
  i + length k  j  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; csimpl; intros i j ?;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_Some l i k j y :
  list_inserts i k l !! j = Some y 
    (j < i  i + length k  j)  l !! j = Some y 
    i  j < i + length k  j < length l  k !! (j - i) = Some y.
Proof.
  destruct (decide (j < i)).
  { rewrite list_lookup_inserts_lt by done; intuition lia. }
  destruct (decide (i + length k  j)).
  { rewrite list_lookup_inserts_ge by done; intuition lia. }
  split.
646
  - intros Hy. assert (j < length l).
647 648
    { rewrite <-(inserts_length l i k); eauto using lookup_lt_Some. }
    rewrite list_lookup_inserts in Hy by lia. intuition lia.
649
  - intuition. by rewrite list_lookup_inserts by lia.
650 651 652 653 654 655 656 657
Qed.
Lemma list_insert_inserts_lt l i j x k :
  i < j  <[i:=x]>(list_inserts j k l) = list_inserts j k (<[i:=x]>l).
Proof.
  revert i j. induction k; intros i j ?; simpl;
    rewrite 1?list_insert_commute by lia; auto with f_equal.
Qed.

658
(** ** Properties of the [elem_of] predicate *)
659
Lemma not_elem_of_nil x : x  [].
660
Proof. by inversion 1. Qed.
661
Lemma elem_of_nil x : x  []  False.
662
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
663
Lemma elem_of_nil_inv l : ( x, x  l)  l = [].
664
Proof. destruct l. done. by edestruct 1; constructor. Qed.
665 666
Lemma elem_of_not_nil x l : x  l  l  [].
Proof. intros ? ->. by apply (elem_of_nil x). Qed.
667
Lemma elem_of_cons l x y : x  y :: l  x = y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
668
Proof. by split; [inversion 1; subst|intros [->|?]]; constructor. Qed.
669
Lemma not_elem_of_cons l x y : x  y :: l  x  y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
670
Proof. rewrite elem_of_cons. tauto. Qed.
671
Lemma elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
672
Proof.
673
  induction l1.
674 675
  - split; [by right|]. intros [Hx|]; [|done]. by destruct (elem_of_nil x).
  - simpl. rewrite !elem_of_cons, IHl1. tauto.
676
Qed.
677
Lemma not_elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
678
Proof. rewrite elem_of_app. tauto. Qed.
679
Lemma elem_of_list_singleton x y : x  [y]  x = y.
680
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
681
Global Instance elem_of_list_permutation_proper x : Proper (() ==> iff) (x ).
682
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
683
Lemma elem_of_list_split l x : x  l   l1 l2, l = l1 ++ x :: l2.
684
Proof.
685
  induction 1 as [x l|x y l ? [l1 [l2 ->]]]; [by eexists [], l|].
686
  by exists (y :: l1), l2.
687
Qed.
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
Lemma elem_of_list_split_l `{EqDecision A} l x :
  x  l   l1 l2, l = l1 ++ x :: l2  x  l1.
Proof.
  induction 1 as [x l|x y l ? IH].
  { exists [], l. rewrite elem_of_nil. naive_solver. }
  destruct (decide (x = y)) as [->|?].
  - exists [], l. rewrite elem_of_nil. naive_solver.
  - destruct IH as (l1 & l2 & -> & ?).
    exists (y :: l1), l2. rewrite elem_of_cons. naive_solver.
Qed.
Lemma elem_of_list_split_r `{EqDecision A} l x :
  x  l   l1 l2, l = l1 ++ x :: l2  x  l2.
Proof.
  induction l as [|y l IH] using rev_ind.
  { by rewrite elem_of_nil. }
  destruct (decide (x = y)) as [->|].
  - exists l, []. rewrite elem_of_nil. naive_solver.
  - rewrite elem_of_app, elem_of_list_singleton. intros [?| ->]; try done.
    destruct IH as (l1 & l2 & -> & ?); auto.
    exists l1, (l2 ++ [y]).
    rewrite elem_of_app, elem_of_list_singleton, <-(assoc_L (++)). naive_solver.
Qed.
710
Lemma elem_of_list_lookup_1 l x : x  l   i, l !! i = Some x.
711
Proof.
712 713
  induction 1 as [|???? IH]; [by exists 0 |].
  destruct IH as [i ?]; auto. by exists (S i).
714
Qed.
715
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x  x  l.
716
Proof.
717
  revert i. induction l; intros [|i] ?; simplify_eq/=; constructor; eauto.
718
Qed.
719 720
Lemma elem_of_list_lookup l x : x  l   i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.
721 722 723 724
Lemma elem_of_list_omap {B} (f : A  option B) l (y : B) :
  y  omap f l   x, x  l  f x = Some y.
Proof.
  split.
725
  - induction l as [|x l]; csimpl; repeat case_match; inversion 1; subst;
726
      setoid_rewrite elem_of_cons; naive_solver.
727
  - intros (x&Hx&?). by induction Hx; csimpl; repeat case_match;
728
      simplify_eq; try constructor; auto.
729
Qed.
730 731 732 733 734 735 736
Lemma list_elem_of_insert l i x : i < length l  x  <[i:=x]>l.
Proof. intros. by eapply elem_of_list_lookup_2, list_lookup_insert. Qed.
Lemma nth_elem_of l i d : i < length l  nth i l d  l.
Proof.
  intros; eapply elem_of_list_lookup_2.
  destruct (nth_lookup_or_length l i d); [done | by lia].
Qed.
737

738
(** ** Properties of the [NoDup] predicate *)
739 740
Lemma NoDup_nil : NoDup (@nil A)  True.
Proof. split; constructor. Qed.
741
Lemma NoDup_cons x l : NoDup (x :: l)  x  l  NoDup l.
742
Proof. split. by inversion 1. intros [??]. by constructor. Qed.