Commit ba69172b by Robbert Krebbers

### Notation `≡ₚ@{A}`.

parent ca6ea63a
 ... ... @@ -46,6 +46,10 @@ Notation "x ≢ₚ y":= (¬x ≡ₚ y) (at level 70, no associativity) : stdpp_s Notation "( x ≢ₚ)" := (λ y, x ≢ₚ y) (only parsing) : stdpp_scope. Notation "(≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : stdpp_scope. Infix "≡ₚ@{ A }" := (@Permutation A) (at level 70, no associativity, only parsing) : stdpp_scope. Notation "(≡ₚ@{ A } )" := (@Permutation A) (only parsing) : stdpp_scope. Instance maybe_cons {A} : Maybe2 (@cons A) := λ l, match l with x :: l => Some (x,l) | _ => None end. ... ... @@ -2115,7 +2119,7 @@ Section submseteq_dec. refine (λ l1 l2, cast_if (decide (is_Some (list_remove_list l1 l2)))); abstract (rewrite list_remove_list_submseteq; tauto). Defined. Global Instance Permutation_dec : RelDecision (Permutation : relation (list A)). Global Instance Permutation_dec : RelDecision (≡ₚ@{A}). Proof. refine (λ l1 l2, cast_if_and (decide (length l1 = length l2)) (decide (l1 ⊆+ l2))); ... ... @@ -3110,8 +3114,7 @@ Section ret_join. Lemma list_join_bind (ls : list (list A)) : mjoin ls = ls ≫= id. Proof. by induction ls; f_equal/=. Qed. Global Instance mjoin_Permutation: Proper (@Permutation (list A) ==> (≡ₚ)) mjoin. Global Instance mjoin_Permutation : Proper ((≡ₚ@{list A}) ==> (≡ₚ)) mjoin. Proof. intros ?? E. by rewrite !list_join_bind, E. Qed. Lemma elem_of_list_ret (x y : A) : x ∈ @mret list _ A y ↔ x = y. Proof. apply elem_of_list_singleton. Qed. ... ...
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!