Commit 5f737816 authored by Robbert Krebbers's avatar Robbert Krebbers

Type punning for lookup/alter on values.

parent 5644d68f
......@@ -1972,6 +1972,15 @@ Section Forall_Exists.
Proof. intros H. apply Forall_proper. red; apply H. done. Qed.
Lemma Forall_not l : length l 0 Forall (not P) l ¬Forall P l.
Proof. by destruct 2; inversion 1. Qed.
Lemma Forall_and {Q} l : Forall (λ x, P x Q x) l Forall P l Forall Q l.
Proof.
split; [induction 1; constructor; naive_solver|].
intros [Hl Hl']; revert Hl'; induction Hl; inversion_clear 1; auto.
Qed.
Lemma Forall_and_l {Q} l : Forall (λ x, P x Q x) l Forall P l.
Proof. rewrite Forall_and; tauto. Qed.
Lemma Forall_and_r {Q} l : Forall (λ x, P x Q x) l Forall Q l.
Proof. rewrite Forall_and; tauto. Qed.
Lemma Forall_delete l i : Forall P l Forall P (delete i l).
Proof. intros H. revert i. by induction H; intros [|i]; try constructor. Qed.
Lemma Forall_lookup l : Forall P l i x, l !! i = Some x P x.
......@@ -2275,26 +2284,39 @@ Section Forall2.
intros. rewrite !resize_spec, (Forall2_length l k) by done.
auto using Forall2_app, Forall2_take, Forall2_replicate.
Qed.
Lemma Forall2_resize_ge_l l k x y n m :
P x y Forall (flip P y) l n m
Lemma Forall2_resize_l l k x y n m :
P x y Forall (flip P y) l
Forall2 P (resize n x l) k Forall2 P (resize m x l) (resize m y k).
Proof.
intros. assert (n = length k) as ->.
intros. destruct (decide (m n)).
{ rewrite <-(resize_resize l m n) by done. by apply Forall2_resize. }
intros. assert (n = length k); subst.
{ by rewrite <-(Forall2_length (resize n x l) k), resize_length. }
rewrite (le_plus_minus (length k) m), !resize_plus, resize_all,
drop_all, resize_nil by done; auto using Forall2_app, Forall2_replicate_r,
rewrite (le_plus_minus (length k) m), !resize_plus,
resize_all, drop_all, resize_nil by lia.
auto using Forall2_app, Forall2_replicate_r,
Forall_resize, Forall_drop, resize_length.
Qed.
Lemma Forall2_resize_ge_r l k x y n m :
P x y Forall (P x) k n m
Lemma Forall2_resize_r l k x y n m :
P x y Forall (P x) k
Forall2 P l (resize n y k) Forall2 P (resize m x l) (resize m y k).
Proof.
intros. assert (n = length l) as ->.
intros. destruct (decide (m n)).
{ rewrite <-(resize_resize k m n) by done. by apply Forall2_resize. }
assert (n = length l); subst.
{ by rewrite (Forall2_length l (resize n y k)), resize_length. }
rewrite (le_plus_minus (length l) m), !resize_plus, resize_all,
drop_all, resize_nil by done; auto using Forall2_app, Forall2_replicate_l,
rewrite (le_plus_minus (length l) m), !resize_plus,
resize_all, drop_all, resize_nil by lia.
auto using Forall2_app, Forall2_replicate_l,
Forall_resize, Forall_drop, resize_length.
Qed.
Lemma Forall2_resize_r_flip l k x y n m :
P x y Forall (P x) k
length k = m Forall2 P l (resize n y k) Forall2 P (resize m x l) k.
Proof.
intros ?? <- ?. rewrite <-(resize_all k y) at 2.
apply Forall2_resize_r with n; auto using Forall_true.
Qed.
Lemma Forall2_sublist_lookup_l l k n i l' :
Forall2 P l k sublist_lookup n i l = Some l'
k', sublist_lookup n i k = Some k' Forall2 P l' k'.
......@@ -3243,14 +3265,16 @@ Ltac decompose_Forall_hyps :=
let E := fresh in
assert (P x) as E by (apply (Forall_lookup_1 P _ _ _ H H1)); lazy beta in E
| H : Forall2 ?P ?l ?k |- _ =>
lazymatch goal with
match goal with
| H1 : l !! ?i = Some ?x, H2 : k !! ?i = Some ?y |- _ =>
unless (P x y) by done; let E := fresh in
assert (P x y) as E by (by apply (Forall2_lookup_lr P l k i x y));
lazy beta in E
| H1 : l !! _ = Some ?x |- _ =>
| H1 : l !! ?i = Some ?x |- _ =>
try (match goal with _ : k !! i = Some _ |- _ => fail 2 end);
destruct (Forall2_lookup_l P _ _ _ _ H H1) as (?&?&?)
| H2 : k !! _ = Some ?y |- _ =>
| H2 : k !! ?i = Some ?y |- _ =>
try (match goal with _ : l !! i = Some _ |- _ => fail 2 end);
destruct (Forall2_lookup_r P _ _ _ _ H H2) as (?&?&?)
end
| H : Forall3 ?P ?l ?l' ?k |- _ =>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment