Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
10
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Simon Spies
stdpp
Commits
5f737816
Commit
5f737816
authored
Jan 30, 2015
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Type punning for lookup/alter on values.
parent
5644d68f
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
37 additions
and
13 deletions
+37
-13
theories/list.v
theories/list.v
+37
-13
No files found.
theories/list.v
View file @
5f737816
...
...
@@ -1972,6 +1972,15 @@ Section Forall_Exists.
Proof. intros H. apply Forall_proper. red; apply H. done. Qed.
Lemma Forall_not l : length l ≠ 0 → Forall (not ∘ P) l → ¬Forall P l.
Proof. by destruct 2; inversion 1. Qed.
Lemma Forall_and {Q} l : Forall (λ x, P x ∧ Q x) l ↔ Forall P l ∧ Forall Q l.
Proof.
split; [induction 1; constructor; naive_solver|].
intros [Hl Hl']; revert Hl'; induction Hl; inversion_clear 1; auto.
Qed.
Lemma Forall_and_l {Q} l : Forall (λ x, P x ∧ Q x) l → Forall P l.
Proof. rewrite Forall_and; tauto. Qed.
Lemma Forall_and_r {Q} l : Forall (λ x, P x ∧ Q x) l → Forall Q l.
Proof. rewrite Forall_and; tauto. Qed.
Lemma Forall_delete l i : Forall P l → Forall P (delete i l).
Proof. intros H. revert i. by induction H; intros [|i]; try constructor. Qed.
Lemma Forall_lookup l : Forall P l ↔ ∀ i x, l !! i = Some x → P x.
...
...
@@ -2275,26 +2284,39 @@ Section Forall2.
intros. rewrite !resize_spec, (Forall2_length l k) by done.
auto using Forall2_app, Forall2_take, Forall2_replicate.
Qed.
Lemma Forall2_resize_
ge_
l l k x y n m :
P x y → Forall (flip P y) l →
n ≤ m →
Lemma Forall2_resize_l l k x y n m :
P x y → Forall (flip P y) l →
Forall2 P (resize n x l) k → Forall2 P (resize m x l) (resize m y k).
Proof.
intros. assert (n = length k) as ->.
intros. destruct (decide (m ≤ n)).
{ rewrite <-(resize_resize l m n) by done. by apply Forall2_resize. }
intros. assert (n = length k); subst.
{ by rewrite <-(Forall2_length (resize n x l) k), resize_length. }
rewrite (le_plus_minus (length k) m), !resize_plus, resize_all,
drop_all, resize_nil by done; auto using Forall2_app, Forall2_replicate_r,
rewrite (le_plus_minus (length k) m), !resize_plus,
resize_all, drop_all, resize_nil by lia.
auto using Forall2_app, Forall2_replicate_r,
Forall_resize, Forall_drop, resize_length.
Qed.
Lemma Forall2_resize_
ge_
r l k x y n m :
P x y → Forall (P x) k →
n ≤ m →
Lemma Forall2_resize_r l k x y n m :
P x y → Forall (P x) k →
Forall2 P l (resize n y k) → Forall2 P (resize m x l) (resize m y k).
Proof.
intros. assert (n = length l) as ->.
intros. destruct (decide (m ≤ n)).
{ rewrite <-(resize_resize k m n) by done. by apply Forall2_resize. }
assert (n = length l); subst.
{ by rewrite (Forall2_length l (resize n y k)), resize_length. }
rewrite (le_plus_minus (length l) m), !resize_plus, resize_all,
drop_all, resize_nil by done; auto using Forall2_app, Forall2_replicate_l,
rewrite (le_plus_minus (length l) m), !resize_plus,
resize_all, drop_all, resize_nil by lia.
auto using Forall2_app, Forall2_replicate_l,
Forall_resize, Forall_drop, resize_length.
Qed.
Lemma Forall2_resize_r_flip l k x y n m :
P x y → Forall (P x) k →
length k = m → Forall2 P l (resize n y k) → Forall2 P (resize m x l) k.
Proof.
intros ?? <- ?. rewrite <-(resize_all k y) at 2.
apply Forall2_resize_r with n; auto using Forall_true.
Qed.
Lemma Forall2_sublist_lookup_l l k n i l' :
Forall2 P l k → sublist_lookup n i l = Some l' →
∃ k', sublist_lookup n i k = Some k' ∧ Forall2 P l' k'.
...
...
@@ -3243,14 +3265,16 @@ Ltac decompose_Forall_hyps :=
let E := fresh in
assert (P x) as E by (apply (Forall_lookup_1 P _ _ _ H H1)); lazy beta in E
| H : Forall2 ?P ?l ?k |- _ =>
lazy
match goal with
match goal with
| H1 : l !! ?i = Some ?x, H2 : k !! ?i = Some ?y |- _ =>
unless (P x y) by done; let E := fresh in
assert (P x y) as E by (by apply (Forall2_lookup_lr P l k i x y));
lazy beta in E
| H1 : l !! _ = Some ?x |- _ =>
| H1 : l !! ?i = Some ?x |- _ =>
try (match goal with _ : k !! i = Some _ |- _ => fail 2 end);
destruct (Forall2_lookup_l P _ _ _ _ H H1) as (?&?&?)
| H2 : k !! _ = Some ?y |- _ =>
| H2 : k !! ?i = Some ?y |- _ =>
try (match goal with _ : l !! i = Some _ |- _ => fail 2 end);
destruct (Forall2_lookup_r P _ _ _ _ H H2) as (?&?&?)
end
| H : Forall3 ?P ?l ?l' ?k |- _ =>
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment