Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
10
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Simon Spies
stdpp
Commits
46304c52
Commit
46304c52
authored
Jun 24, 2013
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Misc prelude changes.
parent
472ccca0
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
12 additions
and
6 deletions
+12
-6
theories/decidable.v
theories/decidable.v
+2
-2
theories/option.v
theories/option.v
+7
-0
theories/proof_irrel.v
theories/proof_irrel.v
+3
-4
No files found.
theories/decidable.v
View file @
46304c52
...
...
@@ -24,10 +24,10 @@ Lemma decide_rel_correct {A B} (R : A → B → Prop) `{∀ x y, Decision (R x y
(
x
:
A
)
(
y
:
B
)
:
decide_rel
R
x
y
=
decide
(
R
x
y
).
Proof
.
done
.
Qed
.
Lemma
decide_
t
rue
{
A
}
`
{
Decision
P
}
(
x
y
:
A
)
:
Lemma
decide_
T
rue
{
A
}
`
{
Decision
P
}
(
x
y
:
A
)
:
P
→
(
if
decide
P
then
x
else
y
)
=
x
.
Proof
.
by
destruct
(
decide
P
).
Qed
.
Lemma
decide_
f
alse
{
A
}
`
{
Decision
P
}
(
x
y
:
A
)
:
Lemma
decide_
F
alse
{
A
}
`
{
Decision
P
}
(
x
y
:
A
)
:
¬
P
→
(
if
decide
P
then
x
else
y
)
=
y
.
Proof
.
by
destruct
(
decide
P
).
Qed
.
...
...
theories/option.v
View file @
46304c52
...
...
@@ -137,6 +137,13 @@ Tactic Notation "case_option_guard" "as" ident(Hx) :=
Tactic
Notation
"case_option_guard"
:
=
let
H
:
=
fresh
in
case_option_guard
as
H
.
Lemma
option_guard_True
{
A
}
(
P
:
Prop
)
`
{
Decision
P
}
(
x
:
option
A
)
:
P
→
guard
P
;
x
=
x
.
Proof
.
intros
.
by
case_option_guard
.
Qed
.
Lemma
option_guard_False
{
A
}
(
P
:
Prop
)
`
{
Decision
P
}
(
x
:
option
A
)
:
¬
P
→
guard
P
;
x
=
None
.
Proof
.
intros
.
by
case_option_guard
.
Qed
.
Tactic
Notation
"simplify_option_equality"
"by"
tactic3
(
tac
)
:
=
repeat
match
goal
with
|
_
=>
progress
(
unfold
default
in
*)
...
...
theories/proof_irrel.v
View file @
46304c52
...
...
@@ -30,10 +30,9 @@ Proof. destruct b; simpl; apply _. Qed.
Lemma
sig_eq_pi
`
(
P
:
A
→
Prop
)
`
{
∀
x
,
ProofIrrel
(
P
x
)}
(
x
y
:
sig
P
)
:
x
=
y
↔
`
x
=
`
y
.
Proof
.
split
.
*
destruct
x
,
y
.
apply
proj1_sig_inj
.
*
destruct
x
as
[
x
Hx
],
y
as
[
y
Hy
]
;
simpl
;
intros
;
subst
.
f_equal
.
apply
proof_irrel
.
split
;
[
by
intros
<-
|].
destruct
x
as
[
x
Hx
],
y
as
[
y
Hy
]
;
simpl
;
intros
;
subst
.
f_equal
.
apply
proof_irrel
.
Qed
.
Lemma
exists_proj1_pi
`
(
P
:
A
→
Prop
)
`
{
∀
x
,
ProofIrrel
(
P
x
)}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment